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Dependency Network Analysis 
(DEPNA) Reveals Context Related 
Influence of Brain Network Nodes
Yael Jacob1,2,3, Yonatan Winetraub3,4, Gal Raz1,3,5, Eti Ben-Simon3,6, Hadas Okon-Singer7, 
Keren Rosenberg-Katz3,8, Talma Hendler1,3,6,9,* & Eshel Ben-Jacob1,2,10,*,†

Communication between and within brain regions is essential for information processing within 
functional networks. The current methods to determine the influence of one region on another are 
either based on temporal resolution, or require a predefined model for the connectivity direction. 
However these requirements are not always achieved, especially in fMRI studies, which have poor 
temporal resolution. We thus propose a new graph theory approach that focuses on the correlation 
influence between selected brain regions, entitled Dependency Network Analysis (DEPNA). Partial 
correlations are used to quantify the level of influence of each node during task performance. As a proof 
of concept, we conducted the DEPNA on simulated datasets and on two empirical motor and working 
memory fMRI tasks. The simulations revealed that the DEPNA correctly captures the network’s hierarchy 
of influence. Applying DEPNA to the functional tasks reveals the dynamics between specific nodes as 
would be expected from prior knowledge. To conclude, we demonstrate that DEPNA can capture the 
most influencing nodes in the network, as they emerge during specific cognitive processes. This ability 
opens a new horizon for example in delineating critical nodes for specific clinical interventions.

It has been long acknowledged that communication between and within brain regions is an essential element 
for effective network processing. More so, the influencing relationship between nodes in a network may point to 
regions that are most relevant for a specific task or state.

Several methods have been developed to estimate functional connectivity in fMRI, designed to search for 
subgroups of highly co-activated regions during “resting state”1. In order to discern such a functional relationship 
in different contexts, the seed region functional connectivity was further developed by the psychophysiological 
interactions (PPI) approach2. However, these methods provide the co-activation for one network’s node at a 
time, thus precluding an integrative measure of coupling between different nodes in the network. In an attempt 
to deal with this limitation, data-driven whole brain approach such as principal component analysis (PCA)3 and 
independent component analysis (ICA)4 have been used to extract distributed brain activation that contributes 
commonly to the explained variance in the signals. Yet, these methods are limited in addressing the influencing 
relationships among nodes of a given network during task performance5. For example, these methods can identify 
the motor network, but cannot determine the most influencing nodes during performance on a motor task. This 
type of information regarding nodes in the network is needed to better characterize its functional specificity6 
and accurately target the most influencing nodes on task performance. Furthermore, it can provide better neural 
targeting for clinical interventions.

Effective connectivity methods7 were developed to assess the influences of nodes within a network. Currently 
there are two main approaches to address this issue: the first is dynamic causal modeling (DCM)8, which is based 
on a generic Bayesian probability model aiming to determine the direction of relations between nodes within a 
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Figure 1.  Dependency network analysis (DEPNA). Step 1: (a) Partial correlation coefficient – a statistical 
measure indicating how a third variable affects the correlation between two other variables. For example the 
partial correlation between nodes i and k with respect to a third node j - PC(i,k|j) defined in the equation. Where 
C (i,k), C (i,j) and C (k,j) are the ROI-ROI correlations. We then define the influence of j on the pair of elements i 
and k as the difference between the correlation and the partial correlation. Step 2: (b) Dependency Matrix– Next, 
we calculate the partial correlation effect for each ROI on all other pairwise correlations in the network. We define 
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functional network. This method requires an a-priori model that delineates the directions of influence among 
the network’s nodes, and is thus limited when the tested network consists of more than a few nodes. The second 
method is Granger causality analysis9, in which temporal precedence is used to identify the direction of causality. 
While this method is data driven and not model based, it requires a relatively high temporal resolution, which is 
limited when using standard fMRI testing. Therefore, there is currently no satisfactory manner in which to deter-
mine the functional relations of a given network or set of networks during task performance.

In this work we aim to provide a computational approach to determine the level of influence of nodes within 
a network using a graph theory approach. Analysis methods based on graph theory were found reliable to detect 
complex network properties in fMRI including hierarchical organization of the network10–12. However, most fMRI 
studies to date have been based on measures of functional connectivity resulting in undirected graphs of brain 
networks13. Few studies have applied Granger causality on resting state fMRI data in order to construct a directed 
graph14,15, with these studies constrained by the temporal resolution required by the Granger methodology.

In order to provide directed graphs with minimal constrains we applied a new graph theory based approach 
for fMRI data analysis, entitled Dependency Network Analysis (DEPNA). This method was originally introduced 
for the study of financial data16,17, and has been extended and applied to other systems, such as the immune 
system18, and the study of semantic networks19. This method evaluates a node’s centrality within a given net-
work according to its correlation influence; namely its effect (or contribution) on the correlations between all 
other pairs of nodes during task performance. Partial correlations between the time courses of the network’s 
nodes are used to quantify the node’s impact on the network. Simply put, the method provides each node with 
an ‘Influencing Degree’, defined as the sum of influences of the node on all other nodes in the network, and 
‘Influenced Degree’ as the sum of influences of all other nodes on it.

In a preliminary proof of concept study we demonstrate that the described approach successfully captures the 
true hierarchy of influence within a network. This will be presented both on simulated fMRI data and two empiri-
cal fMRI data during two task types; motor task of hand/leg moving and cognitive task of visual working memory.

Results
Dependency network analysis (DEPNA).  In our method, the steps needed to indicate the network’s 
regions of interest (ROIs) ‘Influencing Degree’ or ‘Influenced Degree’ are (see Fig. 1); (Step 1) Compute partial 
correlations coefficient matrices. We then define the influence of node j on the pair of elements i and k as the dif-
ference between the correlation and the partial correlation. This quantity is large only when a significant fraction 
of the correlation between nodes i and k can be explained in terms of node j. (Step 2) Compute the dependency 
matrix. We calculate the partial correlation effect for each ROI (i.e. node) on all other pairwise correlations in 
the network. We define the total influence of node j on node i, D(i,j) as the average influence of node j on the 
correlations C(i,k), over all nodes k. The node dependencies define a dependency matrix D, whose (i,j) element 
is the influence of node j on node i. It is important to note that the dependency matrix is nonsymmetrical since 
the influence of node j on node i is not equal to the influence of node i on node j. The dependency matrix consists 
of mainly positive influences and few negative influences. In order to avoid cases when we sum over elements 
of different signs we choose to sum over positive influences only. (Step 3) Compute the ‘Influencing Degree’- We 
define the influences of node j as the sum of the influence D(i,j) of j on all other nodes i. The higher this measure 
the more this node influenced all other connections in the network. (Step 4) Compute the ‘Influenced Degree’- 
The dependency matrix is nonsymmetrical, therefore we can also sum all the influences (or dependencies) of all 
other nodes i in the network on node j - D(j,i). The higher the influenced degree measure the more this node was 
dependent or influenced by all the other nodes in the network. (Step 5) Creation of context related graph visuali-
zation – This graph captures both the ‘Influencing Degree’ (or ‘Influenced Degree’) and the differences in dependen-
cies between two different experimental conditions (or two different groups). All pairwise ROIs with dependency 
elements D that are significantly different at the p <​ 0.001 level are plotted as graph edges. This procedure allows 
for a simple graph visualization of the differences between the conditions across all subjects.

In addition, a visualization of the influence of nodes on a particular edge can be extracted from the analysis. 
All ROIs with correlation influence element d (see Equation 3 in the method section) that are significantly dif-
ferent at the q <​ 0.05 FDR corrected level are plotted as graph edges. This allows for a simple visualization of the 
influences on a specific edge in the network (i.e. upon the correlations between two specific ROIs) between con-
ditions across all subjects. The DEPNA toolbox is available on request from the corresponding author.

Simulations results.  In order to test DEPNA robustness and its ability to correctly estimate the direction of 
the connection and influence hierarchy, we generated biophysical fMRI model simulations of several network 

the total influence of node j on node i, D (i,j) as the average influence of node j on the correlations C (i,k), over 
all nodes k. The node dependencies define a dependency matrix D, whose (i,j) element is the influence of node j 
on node i. It is important to note that the dependency matrix D is nonsymmetrical since the influence of node j 
on node i is not equal to the influence of node i on node j. Step 3: (c) ‘Influencing Degree’– We then define the 
influences of node j as the sum of the influence D(i,j) of j on all other nodes i. The higher this measure the more 
this node influenced all other connections in the network. Step 4: (d) ‘Influenced Degree’– The dependency 
matrix is nonsymmetrical, therefore we can also sum all the influences (or dependencies) of all other nodes i in 
the network on node j D(j,i). The higher the influenced degree measure the more this node was influenced by 
all the other nodes in the network. Step 5: (e) Context related Graph Visualization – Each ROI is color-coded 
according to its influencing or influenced degrees. All pairwise ROIs with dependency elements D that are 
significantly different between two conditions (or groups) at the p <​ 0.001 level are plotted as edges. Each edge is 
color-coded according to the t-test sign as light or dark grey. The arrows represent the direction of influence.
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scenarios. The simulation procedure was adopted from Smith et al.20, in which networks were used to simulate 
fMRI BOLD signals. The simulations were based upon the DCM fMRI forward model21. We examined four dif-
ferent simulations by adjusting different parameters;

(1) �Homogenous chain topology - in order to examine the ability of the DEPNA to capture the true hierarchy of 
influence in the network, we simulated a simple chain topology network consisting of four regions, in which 
region A influences region B that in turn influences region C that in turn influences region D (see Fig. 2a). 
With all connection strengths in the network equal to one another. We then calculated the DEPNA measures 
for different connection strengths ranging from 0.1 to 0.5. The results revealed that the closer the region is to 
the input entrance point, the more influence it has on the network. As expected, the first region in the chain, 
which derives the simulated cascade of signals down the chain, has the highest ‘Influencing Degree’. Whereas, 
the last region in the chain, which only receives input and does not send output, has the lowest ‘Influencing 
Degree’. Therefore, the DEPNA correctly captured the network’s hierarchy of influence. This is true for all 
connection strengths ranging from 0.2 to 0.5 (see Fig. 2b). In addition, our results reveal that the stronger the 
connection strength (i.e. correlation coefficient), the higher the ‘Influencing Degree’. However, although the 
last region in the chain, region D, should not be influencing upstream network regions, it was found to have a 
small degree of influence as connection strength was stronger.

	� For the ‘Influenced Degree’ we found an expected mirror effect to that of the ‘Influencing Degree’, showing that the 
further downstream the node is in the network, the higher its ‘Influenced Degree’. For example, while region B 
was influenced only by region A, region D was influenced by regions A, B and C, therefore its ‘Influenced Degree’ 
is expected to be higher. However, the ‘Influenced Degree’ results (demonstrated in Supplementary Figure S1),  
exhibited this result only for the three first regions in the chain, whereas, the forth region in the chain (i.e. 
region D) did not obtained the highest ‘Influenced Degree’ as would be expected. This is due to the signal’s 
decay over time, which is inherent in the simulation. Hence, the further downstream a region is along the 
path, the lower its signal to noise ratio (SNR); thus the DEPNA is unable to accurately capture its dependencies. 
Contrary to the ‘Influencing Degree’, the ‘Influenced Degree’ was found to be much more sensitive to the SNR. 
Therefore, in order to achieve the expected correct results for the forth region in the chain we increased the 
size of the input signal, controlling for higher SNR. From here on we increased the SNR by a factor of 2 for all 
‘Influenced Degree’ measures of all the simulations. As a result we were able to obtain the anticipated results, 

Figure 2.  Simulated simple chain topology with homogenous connection strength results. (a) Illustration 
of the simple chain network topology. The arrows indicate the directed connection between the regions; 
the influence from one region to another, where c indicates the connection strength. Here we simulated a 
homologous network in which the connection strength between all regions is the same, while we adjusted 
it to range from a weak connection strength of 0.1 to a strong connection strength of 0.5. For each network 
connection strength the DEPNA was conducted on 200 randomized simulated BOLD signals (20 subjects X 10 
trials). The DEPNA conducted on the simulated data results of ‘Influencing Degree’ (b) and ‘Influenced Degree’ (c).  
The DEPNA, as expected, correctly captured the network’s hierarchy of influence showing that the first region in 
the chain, which derives the simulated cascade of signals down the chain, has the highest ‘Influencing Degree’. 
Whereas, the last region in the chain, which only receives input and does not send output, has the lowest 
‘Influencing Degree’. The ‘Influenced Degree’ exhibited an expected mirror effect, showing that the further 
downstream the node is in the network, the higher its ‘Influenced Degree’.
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demonstrating that the further the region is down the path the higher its ‘Influenced Degree’. This was true for 
all connections strengths, except for the last region in the chain (region D). Again, due to the SNR sensitiv-
ity, region D was correctly captured as having the highest ‘Influenced Degree’ only for connections strengths 
stronger than 0.3 (Fig. 2c). In addition, although region A should not be influenced by regions downstream, it 
was found to be influenced by some small degree that increased with connection strength.

(2) �Different mid connection strengths - in order to examine the robustness of the DEPNA results we sought to 
test what happens if we strengthen or weaken only one connection in the chain. Therefore, we constructed 
the same simple chain topology, only this time adjusted only the middle connection strength between region 
B and region C (see Supplementary Figure S2), while fixing all other connection strengths to 0.4 (the mean 
connection strength according to Smith et al.20). Fixing the connection strength of the network and changing 
only the connection strength in the middle of the chain demonstrated the robustness of the DEPNA measure 
(see Supplementary Figure S2). The results show that strengthening this connection increases the ‘Influencing 

Figure 3.  Simulated two-leg topology ‘Influencing Degree’ results. (a) Illustration of the two-leg network 
topology (as in Fig. 2). Here we simulated a network where a single region influences two separate regions 
creating two alternative paths. The DEPNA simulation results demonstrate the ‘Influencing Degree’ of the 
network regions in the two-leg versus one-leg scenario (simple chain topology as in Fig. 2), depicted in (b–e). 
As expected, the influence of the first region (region A) increases significantly as it influences twice the regions 
compared to the one-leg scenario. In addition, although there is no direct connection between homologues 
regions (B and B’, C and C’ etc.), adding the second leg increases the ‘Influencing Degree’ of the regions 
downstream. Nevertheless, the network’s the influence hierarchy is preserved.
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Degree’ of the first regions in the chain (i.e. A and B), whereas only a minor effect occurs for regions C and 
D downstream. The ‘Influenced Degree’ demonstrates the inverse effect, showing that strengthening this con-
nection results in higher ‘Influenced Degree’ for the subsequent regions along the path (i.e. regions C and D).

(3) �Two leg topology - in order to test a different network topology we added a second alternative pathway to the 
simple chain described above, where region A now influences two separate regions B and B’ that later cascade 
into two paths (legs) with no further connections between the paths after the separation (see Fig. 3a). The 
results revealed the expected increase in the influence of the first region (region A), as it influences twice 
the regions compared to the one-leg scenario (Fig. 3b). However, although there is no direct connection 
between homologues regions (B and B’, C and C’ etc.), adding the second leg increases the ‘Influencing Degree’ 

Figure 4.  Adjusting regional temporal decay factor. Illustration of the simple chain network topology  
(as in Fig. 2), where m indicates the regions temporal decay time factor. (a) Here we simulated a network where 
a single region, region D, has a prolonged activation, representing the within region processing variability.  
(b) The DEPNA ‘Influencing Degree’ and (c) ‘Influenced Degree’ of the four regions, showing that increasing the 
temporal decay factor for the last region in the chain topology (region D), was found to significantly increase its 
‘Influencing Degree’ and increased the general influence level in the network. (d) Increasing region C’s temporal 
decay factor, which is the third region in the chain, significantly increases its influence on the network, and 
above all, significantly increases the next region’s (region D) ‘Influencing Degree’ (e) and ‘Influenced Degree’ (f).
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of regions downstream. This increase of influencing level of region B when two legs are present (Fig. 3c) is a 
property of the measure calculation and not of the topology of the network, since region B is not influencing 
B’. Nevertheless, the network’s influence hierarchy is preserved, demonstrating that the ‘Influencing Degree’ 
gradually decays down the network’s path. For the ‘Influenced Degree’ measure we obtain the opposite direc-
tion, showing that the last regions in the path (D and D’) have the highest ‘Influenced Degree’, whereas the first 
region (region A) has the lowest values (see Supplementary Figure S3).

(4) �Different temporal decay factor - under the assumption that a longer temporal decay of the averaged region’s 
BOLD signal reflects longer local field potential (LFPs) activity22,23,we hypothesize that these prolonged BOLD 
activations (or sustained neuronal activation) will increase the impact of this region on the network and thus 
increase its ‘Influencing Degree’. We thus conducted the simulation again on the simple chain topology (all 
connections were set to 0.4, which is the mean connection strength according to Smith et al.20), only this time 
we adjusted the region temporal decay of a specific region by factor m, ranging from 0.1 to 10 (see Fig. 4a). 
Increasing the temporal decay factor for the last region in the chain topology (region D) was found to signif-
icantly increase its ‘Influencing Degree’ and to increase the general influence level in the network (Fig. 4b). In 
addition, when increasing the temporal decay of the third region in the chain, region C, again, its ‘Influencing 
Degree’ measure significantly increased. Above all, region D’s ‘Influencing Degree’ increased as well (Fig. 4e).

(5) �Homogenous cycle topology - in order to examine the DEPNA performance on a more realistic brain network 
topology, we simulated cycle topologies networks (see Fig. 5a,d). With all connection strengths in the network 
equal to one another. We then calculated the DEPNA measures for different connection strengths ranging from 
0.1 to 0.5. The results revealed that as expected, and as in the simple chain topology network, the closer the 
region is to the input entrance point, the more influence it has on the network. Therefore, the DEPNA correctly 
captured the network’s hierarchy of influence. In addition, as expected, adding a connection of influence 
between the last region, region C, and the first region, region A, increased the ‘Influencing Degree’ level of 
region C and consequently the ‘Influencing Degree’ of the now downstream regions A and B (Fig. 5b). The 
‘Influenced Degree’ measure however, did not seem to change considerably (Fig. 5c). Adding a second loop 
by adding a connection of influence between region C and region B (Fig. 5d), showed again as expected that 
DEPNA correctly captured the network’s hierarchy of influence, and also showed an increase in the ‘Influencing 
Degree’ level of region C and consequently the ‘Influencing Degree’ of regions A and B (Fig. 5e). The ‘Influenced 
Degree’ showed a slight increase in the level of dependency of all three regions (Fig. 5f).

Empirical fMRI data results.  Data for this study consisted of scans from 100 subjects provided in the Q2 
data release of the HCP24,25. We used data from two separate imaging conditions: motor and working memory.

Motor task results.  This task was adapted from Buckner and colleagues26. Participants were presented with 
visual cues instructing them to either tap their left or right fingers, or squeeze their left or right toes. The motor 
network included a set of regions that are consistently activated during hand or foot movement27,28; the bilateral 
precentral gyrus, supplementary motor area (SMA), thalamus and cerebellum. Overall the motor network con-
sisted of 8 regions of interest (ROIs). The principal eigenvariate (time series) was extracted for each ROI mask 
image and each subject and then averaged across all left hand/foot movement blocks and right hand/foot move-
ment blocks separately.

Applying the DEPNA to left hand/foot movement blocks revealed that the contralateral right precentral gyrus 
on average had the highest influence on the network (average ‘Influencing Degree’ =​ 1.6), whereas analysis of the 
left hand/foot movement blocks revealed that the contralateral left SMA had the highest average influence on the 
network (average ‘Influencing Degree’ =​ 1.48) (Fig. 6b). Comparison of the influence degrees of each ROI between 
the two conditions revealed that the left precentral gyrus in the contralateral right hand/foot movement condi-
tion had a greater influence on the network compared to the ipsilateral condition (t =​ −​4.59, p =​ 1.28e-05 FDR 
corrected), and the right precentral gyrus in the contralateral left hand/foot movement condition had a greater 
influence on the network compared to the ipsilateral condition (t =​ 5.84, p =​ 6.67e-08 FDR corrected) (see Fig. 6c 
and Table 1). As for the ‘Influenced Degree’ measure, none of the regions were found to be more influenced by all 
other regions in the network in the left hand/foot condition compared to the right hand/foot condition.

In addition, visualization of the influences of nodes on a particular edge (i.e. upon the correlations between 
two specific ROIs) is presented in the supplementary information Figure S4. These results demonstrate for exam-
ple that the correlation between the right and left cerebellum is significantly influenced by the right precentral 
gyrus in the left hand/leg movement condition, and by the left precentral gyrus in the right hand/foot movement 
condition.

Working memory task results.  For the working memory task we used the N-back paradigm in which 
subjects are presented with a sequence of visual stimuli (pictures of places, tools, faces and body parts), and 
asked them to indicate if the current stimulus matches one n steps earlier in the sequence. Participants were 
presented with blocks of trials that consisted of either 0-back or 2-back loads. Working memory network was 
defined according to a meta-analysis of the N-back paradigm by Owen et al.29. The network included a total of 12 
ROIs: the bilateral premotor, right SMA, bilateral dorsolateral prefrontal cortex (DLPFC), bilateral ventrolateral 
prefrontal cortex (VLPFC), left frontal pole, medial posterior parietal, bilateral inferior parietal lobule (IPL) and 
medial cerebellum. The principal eigenvariate (time series) was extracted for each ROI mask image and each sub-
ject. These signals were then averaged across all of the 2-back blocks and across all of the 0-back blocks separately.

The analysis revealed that the performance of the 2-back condition involved increased influence of almost all 
working memory network regions compared to the 0-back condition. The ‘Influencing Degree’ and ‘Influenced 
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Figure 5.  Simulated cycle topology with homogenous connection strength results. (a) Illustration of the 
simulated cycle network topology in which the last region, region C, influence back on the first region, region A. 
The DEPNA conducted on the simulated data results of (b) ‘Influencing Degree’ and (c) ‘Influenced Degree’.  
(d) Illustration of the simulated cycle network topology in which the last region, region C, influence back on 
both previous regions. The DEPNA conducted on the simulated data results of (e) ‘Influencing Degree’ and  
(f) ‘Influenced Degree’. As expected, and as in the simple chain topology network (Fig. 2), the closer the region 
is to the input entrance point, the more influence it has on the network. Moreover, closing a loop in the network, 
increases the ‘Influencing Degree’ and ‘Influenced Degree’ levels in general, whereas the overall direction of 
influence in the network is preserved.
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Figure 6.  DEPNA conducted on a motor task. The ‘Influencing Degree’ (a) and ‘Influenced Degree’ (b) network 
illustrations. Each region is color coded according to his averaged ‘Influencing Degree’ or ‘Influenced Degree’ 
over all subjects. All pairwise ROIs with connections that were significant at the p <​ 0.05 level are plotted as 
edges Graph visualization of the motor network ‘Influencing Degree’ (c) and ‘Influenced Degree’ (d) (Different 
visualization of the same results as in A and B respectively). (e) The nodes’ ‘Influencing Degree’ averaged over 
all 100 subjects. Left hand/foot movement condition involved increased influence of right precentral gyrus 
compared to right hand/foot movement condition, and vice versa, the right hand/foot movement condition 
involved increased ‘Influencing Degree’ of left precentral gyrus.
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Degree’ are shown in Figs 7 and 8 respectively. The ‘Influencing Degree’ was higher during the 2-back condition 
than during the 0-back epoch in right DLPFC (t =​ 4.8, p =​ 5.64e-06), right VLPFC (t =​ 6.59, p =​ 2.11e-09), left 
VLPFC (t =​ 7.1, p =​ 1.9e-10), right premotor (t =​ 4.95, p =​ 3.05e-06), left premotor (t =​ 2.90, p =​ 0.0046), right 
IPL (t =​ 5.94, p =​ 4.28e-08), left IPL (t =​ 3.79, p =​ 0.00026), frontal pole (t =​ 2.98, p =​ 0.0036) and medial cerebel-
lum (t =​ 3.89, p =​ 0.00018) all FDR corrected (see Table 2).

All of the network regions showed a significant increase in ‘Influenced Degree’ (p <​ 0.05 FDR corrected).

Discussion
The current study introduces a new approach for the analysis of the dynamics of task related functional networks, 
as depicted by fMRI, entitled Dependency Network Analysis (DEPNA). Using partial correlations, DEPNA calcu-
lates how much the correlation between two nodes is influenced by a third node. Formally, partial correlation 
is a measure of the strength and direction of a linear relationship between two continuous variables whilst con-
trolling for the effect of a third continuous variable. Thus, it obtains the clean correlation between two nodes X 
and Y when regressing out the influence of a third node Z. In order to quantify how much node Z influenced the 
correlation between nodes X and Y, we calculate the ‘correlation influence’ which is the correlation between X and 
Y minus the partial correlation between them given Z. That leaves us with just the influence that Z had over the 
correlation between nodes X and Y. Therefore, the ‘correlation influence’ measure is not a measure of correlation 
(i.e. co-linearity between two signals), rather a quantity of the effect a third node signal had over the correlation. 
Meaning, this quantity is large only when a significant fraction of the correlation between node X and node Y can 
be explained in terms of Z (for more details see Kenett et al.17). Then, the dependency matrix element is just the 
sum on all influences of node Z on the correlations of node X with all other nodes in the network. We thus obtain 
a dependency matrix which is a directed matrix as it is asymmetric, because the influence of node Z on node X is 
not the same as the influence of node X on node Z. Finally, we quantify for each node with an ‘Influencing Degree’, 
defined as the sum of influences of the node on all other nodes in the network, and ‘Influenced Degree’ as the sum 
of influences of all other nodes on it.

Our results demonstrate the ability of DEPNA to capture the true direction of the influence using a biophysical 
data simulation. Importantly, we show that the closer the region is to the entering point of information, or the 
longer the region processes the information, the higher it’s influence on the entire network. Using empirical fMRI 
data from two tasks derived from 100 participants we showed the ability of the DEPNA to compare features from 
different graphs, thus demonstrating its ability to explore functional influence hierarchies across various experi-
mental conditions.

Depicting the topological characteristics of DEPNA via simulated data.  Conducting the DEPNA on 
a biophysical simulated dataset we demonstrated that the DEPNA was successful in capturing the network’s hier-
archy of influence as anticipated. More specifically, we showed that the region generating the cascading influence 
exhibited the highest ‘Influencing Degree’; whereas the region that merely received input and did not send out any 
output had the lowest ‘Influencing Degree’. Therefore, the region’s ‘Influencing Degree’ measure indeed reflects its 
correct relative place in the influence hierarchy; thus regions with a high ‘Influencing Degree’ are more likely to 
generate the cognitive process.

In addition, we demonstrated that the stronger the connection between nodes, the higher the overall influence 
level of the network. In order to demonstrate DEPNA robustness, we also showed that the overall influence level 
hierarchy was found to be insusceptible to changes in connection strength or changes in the strength of only one 
connection in the chain (see Supplementary Figure S2). Therefore, the DEPNA successfully captures the correct 
influence hierarchy, even when a single connection between two regions is relatively weak.

For the ‘Influenced Degree’ we found an expected mirror effect, showing that the further downstream the node 
is in the network, the higher its ‘Influenced Degree’. In a specific node, the ‘Influenced Degree’ is the inverse of the 
‘Influencing Degree’ in the sense that its direction of change is opposite as a function of the nodes’ distance from 
input (Fig. 2). Nevertheless, both measures in a selected node can be relatively high or low. It is important to note 
that as opposed to the ‘Influencing Degree’, the ‘Influenced Degree’ was found to be very sensitive to the SNR of 
the input signal; the DEPNA might miss a later activated node in a simple chain network, therefore this measure 
should be interpreted with some caution (see Supplementary Figure S1). However, importanly the DEPNA is suc-
cessful in capturing regions that are simultaneously influenced by many other regions.

ROI Hemisphere Influencing Degree Influenced Degree

Precentral gyrus
L t =​ −4.59 p =​ 1.28e-05* t =​ 0.52 p =​ 0.60

R t =​ 5.84 p =​ 6.67e-08* t=​−0.014 p =​ 0.99

SMA 
L t =​ −0.66 p =​ 0.51 t =​ 0.56 p =​ 0.58

R t =​ 0.35 p =​ 0.72 t =​ 0.17 p =​ 0.87

Thalamus 
L t =​ −2.51 p =​ 0.014 t =​ −0.20 p =​ 0.84

R t =​ 1.59 p =​ 0.11 t =​ 0.98 p =​ 0.33

Cerebellum 
L t =​ 0.50 p =​ 0.62 t =​ 1.22 p =​ 0.23

R t =​ −0.078 p =​ 0.94 t =​ 0.17 p =​ 0.86

Table 1.   Left vs. Right Hand/Foot movement conditions T-test results. A t-test comparison in each network 
region’s ‘Influencing Degree’ between the two conditions (i.e. Left vs. Right hand/foot movement) conducted 
across all 100 subjects. *​p <​ 0.05 FDR corrected.
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Following the assumption that the BOLD fMRI signal reflects neural activity of LFPs22,23, we hypothesized that 
a longer temporal decay of the BOLD signal reflects sustained activity. We found that a regional increase in the 
temporal decay of the signal significantly increased its ‘Influencing Degree’, and further increased the ‘Influencing 
Degree’ of regions further downstream the path. Therefore, another crucial outcome of the simulation is that 
DEPNA also takes into account the regional temporal decay of the signal, assigning additional influence to regions 
that may involve higher processing levels.

Conducting the simulation on a different network topology of a single region cascading into two separate 
chains of regions (Fig. 3a), demonstrated that DEPNA measures are highly influenced by correlations and not only 
by the causality of time. Therefore, regions that have no direct connection between them but exhibit similar signal 
patterns will be influenced by one another; however, the network’s influence hierarchy is preserved. This is a cru-
cial point indicating that DEPNA measures do not infer causal influence in a true sense, rather infer the network’ 
hierarchy of influence based on correlational influences.

Additionally, although the last region in the chain is not thought to influence the upstream network regions, 
and the first region in the chain thought not to be influenced by downstream regions, they were however found 

Figure 7.  DEPNA conducted on a working memory N-back task- ‘Influencing Degree’ results. The working 
memory network illustration on an axial view (a) and graph visualization (b). Each region is color coded 
according to his ‘Influencing Degree’ during 2-back condition (see colored scale). All pair-wise ROIs with 
connections that were significant at the p <​ 0.001 level are plotted as edges. (c) The nodes’ ‘Influencing Degree’ 
averaged over all 100 subjects. The right DLPFC, medial cerebellum, frontal pole, bilateral VLPFC, premotor 
and IPL showed a significant increase in their ‘Influencing Degree’ in the 2-back condition compared to 0-back 
condition (p <​ 0.05 FDR corrected).
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to have a small degree of such an influence (Fig. 2). This residual influence effect might results from the fact that 
correlation values between regions always have a residual non-zero value even if the expected correlation is zero.

Finally, various studies have shown that anatomical brain networks exhibit a modular structure consisting 
of high clustering coefficients and closed loops30,31. Therefore, in order to examine the DEPNA performance on 
a more realistic brain network topology, we conducted simulations of different cycle topologies. As anticipated, 
these simulations revealed that, as in the simple chain topology network, the closer the region is to the input 
entrance point the more influence it has on the network. Moreover, closing a loop in the network increases the 
‘Influencing Degree’ and ‘Influenced Degree’ levels in general, while the overall direction of influence in the net-
work is preserved.

Revealing the functional validity of DEPNA via empirical data.  We further applied DEPNA to two 
empirical fMRI datasets using time courses of pre-selected brain networks. Relying on existing prior knowl-
edge regarding the functional properties of the brain regions examined here, we show that DEPNA is an effec-
tive method for quantifying the correlational influence between nodes in a network. As expected, examining 
fMRI data obtained during a lateralized motor task revealed higher influence of the contralateral, rather than 
the ipsilateral, precentral gyrus for motor movement. This finding is in line with the well known critical role 

Figure 8.  DEPNA conducted on a working memory N-back task- ‘Influenced Degree’ results. The working 
memory network illustration on an axial view (a) and graph visualization (b). Each region is color coded 
according to its ‘Influenced Degree’ during 2-back condition. All pair-wise ROIs with connections, significant 
at the p <​ 0.001 level, are plotted as edges. (c) The nodes’ ‘Influenced Degree’ averaged over all 100 subjects. 
All of the network regions showed a significant increase in their ‘Influencing Degree’ in the 2-back condition 
compared to 0-back condition (p <​ 0.05 FDR corrected).
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of the contralateral precentral gyrus region in motor execution (see review by Beaul et al.32). In addition, the 
bilateral SMA region showed no difference between conditions, in accordance to the less strict lateralization of 
this medial region in the control of movement33. Furthermore, the bilateral SMA showed the highest averaged 
‘Influencing Degree’ values, which is in line with the known role of the SMA in generation and initiation of move-
ment sequences32,34,35. As was shown in different electrophysiological and fMRI studies, the SMA is known to be 
activated up to 2 seconds prior to movement initiation, preceding other motor regions36–38. Therefore, its high 
‘Influencing degree’, regardless of lateralization, is highly expected. This result demonstrates the strength of the 
DEPNA in identifying the sequential temporal contribution of network regions in real fMRI data; in spite of its 
poor temporal resolution, thus confirming its ability to infer causal relations within a network using fMRI data.

In the second data set we examined the effect of a working memory task using the N-back paradigm. We 
found that several ROIs including the right DLPFC, right premotor, bilateral VLPFC and bilateral IPL had greater 
influence on the network (i.e. ‘Influencing Degree’) during the 2-back condition compared to 0-back. Specifically, 
the bilateral IPL and right DLPFC showed the highest ‘Influencing Degree’ values. Cohen et al.39 have shown that 
the right DLPFC and IPL regions exhibit a sustained activation signal pattern (as opposed to transient signal), 
suggesting that these regions play a key role in the active maintenance of working memory. It is possible that the 
observed increase in the ‘Influencing Degree’ of these regions when the working memory load is higher, could 
be attributed to their sustained activation quality, an effect that was shown in the simulated data results (Fig. 4). 
Importantly, these results demonstrate the ability of DEPNA to extract the influence level hierarchy, assigning 
higher ‘Influencing Degree’ to regions that play a significant role in the cognitive task and involve higher levels of 
processing.

Furthermore, the right DLPFC, right premotor, frontal pole and bilateral IPL have been previously suggested 
to play a role in nonverbal identification N-back tasks29, such as was performed in this dataset. Therefore, we used 
a working memory network constructed from a meta-analysis of all N-Back experiment types. Nevertheless, 
the ‘Influencing Degree’ marked regions that are more specific to the nonverbal identification N-Back task type. 
Therefore, DEPNA can successfully find regions that play a substantial role in the cognitive task and change their 
influence level significantly between two conditions.

Regarding the ‘Influenced Degree’ measure, all of the network regions showed a significant increase in the 
2-back compared to 0-back, indicating that all of these regions were more influenced by each other as the work-
ing memory load increased. This result is interesting, demonstrating that under higher cognitive loads regions 
in the network are more influenced by each other, thus the network is more interconnected. Furthermore, this 
result highlights the difference in the changing relations of nodes in a network, as influencing or being influenced, 
under specific conditions. Here for example, we found that under high vs. low cognitive load few regions exhib-
ited higher ‘Influencing Degree’, while the entire network regions were found to be more influenced.

In line with the known role of the VLPFC as the end point of the ventral pathway, which processes informa-
tion about the stimuli’s characteristics40 and plays an important role in behavioral inhibition, for example as in 
go-no go tasks41,42, we found that the bilateral VLPFC exhibited the highest ‘Influenced Degree’ in the network. 
We hypothesize that the ‘Influenced Degree’ measure marked the VLPFC as the end point of the cognitive process 
taking place in the N-back paradigm. Therefore, the VLPFC gathers information from many other regions in the 
network in order to execute a decision. This result demonstrates the ability of the DEPNA to identify such hubs in 
the network that receive a lot of information (input) as shown in real fMRI data.

Altogether the empirical fMRI dataset findings demonstrate the ability of DEPNA to allocate important influ-
ential regions in experimentally-induced coupling within a relevant functional network.

DEPNA strengths and limitations.  DEPNA offers a new way of constructing a context specific directed 
graph that is principally based on partial correlations. In this regard, DEPNA does not rely on the temporal resolu-
tion of the analyzed signal, which is an advantage given the poor temporal resolution of fMRI.

ROI Influencing Degree Influenced Degree

L VLPFC t =​ 7.10 p =​ 1.9e-10 * t =​ 6.11 p =​ 1.98e-08*
R VLPFC t =​ 6.59 p =​ 2.11e-09* t =​ 6.62 p =​ 1.83e-09 *
R IPL t =​ 5.94 p =​ 4.28e-08* t =​ 5.28 p =​ 7.55e-07 *
R Premotor t =​ 4.95 p =​ 3.05e-06* t =​ 5.10 p =​ 1.63e-06*
R DLPFC t =​ 4.80 p =​ 5.64e-06* t =​ 5.13 p =​ 1.44e-06 *
Medial cerebellum t =​ 3.89 p =​ 0.00018 * t =​ 5.06 p =​ 1.97e-06 *
L IPL t =​ 3.79 p =​ 0.00026* t =​ 4.75 p =​ 6.84e-06*
L Frontal Pole t =​ 2.98 p =​ 0.0036* t =​ 3.72 p =​ 0.00033 *​

L Premotor t =​ 2.90 p =​ 0.0046* t =​ 3.92 p =​ 0.00016 *​

Medial posterior parietal t = 1.94 p = 0.055 t =​ 2.94 p =​ 0.0041*
R SMA t = 1.46 p = 0.15 t =​ 3.84 p =​ 0.00022 *​

L DLPFC t = −1.26 p = 0.21 t =​ 2.63 p =​ 0.0097* 

Table 2.   2-back vs. 0-back T-test results. A t-test comparison in each network region’s influence degrees 
between the two conditions (i.e. 2-back and 0-back) conducted across all 100 subjects. *​p <​ 0.05 FDR corrected.
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DEPNA probes the hierarchies and the influence within the network. In addition, DEPNA reveals crucial infor-
mation that is not provided by standard analysis of BOLD activation; information regarding connectivity in the 
network and the influence hierarchies. Figure S5 in the supplementary information presents the different network 
hierarchies outlined by BOLD activation magnitude and by DEPNA. Moreover, DEPNA allows for the study of the 
influences on specific nodes (e.g. Fig. 6c,d) and also on explicit edges (i.e. connections in the network) (Figure S4).

Most fMRI studies to date have been based on the pair-wise correlation matrix resulting in undirected graphs 
of brain networks13. Few studies have applied Granger causality on resting state fMRI data in order to construct 
a directed graph14,15, with these studies constrained by the temporal resolution required by the Granger meth-
odology. DEPNA offers a new way of constructing a directed graph that is based on correlations. This is of great 
importance in the field of neuroimaging such as fMRI in which the only information regarding communication 
between regions is based on correlations.

As opposed to other functional connectivity methods such as PPI, DEPNA allows for an integrative measure 
of coupling between different nodes in the network (as opposed to one network node at a time), thus the study 
of context dependent brain states, as well as revealing the functional hierarchy within and between networks. 
Compared to data-driven functional connectivity methods such as ICA and PCA, DEPNA addresses the dynamic 
relationships among nodes of a given network or between networks which can be used to underlie functional 
hierarchies5. Such hierarchies can then better characterize the functional specificity of a network6.

DEPNA does not require any specific a-priori assumption of direction of influence models as opposed to other 
model-driven network methods, such as the DCM. Nevertheless, the main limitation of DEPNA is that it does not 
infer causal influence in the true sense, since “data cannot cause data; data are caused by underlying brain states”, 
as stated by Friston et al.43. Therefore, this method is somewhere between functional connectivity and effective 
connectivity and can be used to make inferences about the influence hierarchy of a network. We therefore suggest 
that DEPNA may serve as a pre-test for other causality methods, such as the DCM, to delineate the a-priori model 
of critical nodes and correlational influences in a specific network.

While this method can be easily implemented in a data-driven manner on whole-brain data, such an approach 
also entails important limitations. It might be sub-optimal in cases of modular processing, in which a specific 
psychophysiological function is related to a specific network rather than to whole-brain activity. In this case, key 
features of the influence within the functional network might be masked when accounting for a large set of irrel-
evant influences. Therefore, we speculate that conducting DEPNA on whole brain interactions will mainly depict 
critical regions that show a general overall non-specific effect.

Most centrality measures, such as node degree, betweenness and closeness centrality44, require a certain 
threshold on the complete graph in order to create an adjacency matrix. Thus this arbitrary choice of threshold 
can result in completely different findings of the network hubs. Other centrality measures such as eigencentrality44  
can use the weighted matrix of the fully connected graph (i.e. all nodes are connected to all nodes) in order to 
calculate node centrality. However, these measures are not appropriate for correlation networks which contain 
negative edges, unless the edge weight sign is ignored.

Lastly, the dependency matrix consists of mainly positive influences and few negative influences which could 
be considered as suppressors45,46. Therefore, if we sum over elements of different signs a node’s influence degree 
could be nearly zero but may still exert influence over, or be influenced by, specific nodes in the network. In order 
to deal with this issue we defined the DEPNA to sum over positive influences only. Conversely, one can also argue 
that suppressors might also be influential, then we suggest to sum over the magnitude of the influences (i.e. abso-
lute values). Nevertheless, it is important to note that if these negative influences are smaller than the sample’s 
standard deviation it is reasonable to assume that they do not indicate suppression, rather they reflect the variance 
of the sampling. Future studies should further investigate negative influences and their interpretation.

In addition, we suggest that if one has a specific assumption regarding a particular module in the brain net-
work, DEPNA can assign different influence degrees of the node regarding each different module.

Conclusions
DEPNA offers a new computational way of looking at the direction of influence among nodes within a given 
brain network during task performance. By pointing to functional influential hierarchy within a network DEPNA 
could ultimately facilitate in deciphering important network hubs that underlie specific cognitive processes. This 
targeting is of clear importance from both a theoretical and clinical point of view. From a clinical perspective for 
example, DEPNA could help identify the most effective target regions for neuro-modulation techniques such as 
transcranial magnetic stimulation (TMS), transcranial direct current stimulation (tDCS) and neurofeedback.

Methods
Dependency network analysis (DEPNA).  The ROI-ROI correlations.  The Pearson correlation of BOLD 
signals in different brain regions is widely used to obtain functional networks from fMRI signals28,47. Moreover, it 
has been shown that linear correlation captures most of the interaction, and is a very good tool to study functional 
connectivity graphs48,49.

The ROI-ROI correlations was calculated by Pearson’s formula50:
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where Xi (n) and Xj (n) are the signal activity of ROIs i and j of subject n, m stands for average, and si and sj are 
the standard deviation (STD) of the dynamics profiles of ROIs i and j. Note that the ROI-ROI correlations for all 
pairs of ROIs define a symmetric correlation matrix whose (i, j) element is the correlation between ROIs i and j.
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Partial correlations.  Next, we used the resulting ROI correlations to compute partial correlations51 (Fig. 1a). 
The first order partial correlation coefficient is a statistical measure indicating how a third variable affects the 
correlation between two other variables52. The partial correlation between nodes i and k with respect to a third 
node j – PC (i, k| j) is defined as:

=
−

− −
PC i k j C i k C i j C k j

C i j C k j
( , ) ( , ) ( , ) ( , )

[1 ( , )][1 ( , )] (2)2 2

where C (i, j), C (i, k) and C (k, j) are the ROI-ROI correlations.

The correlation influence and correlation dependency.  The relative effect of the correlations C (i, j) and C (k, j) of 
node j on the correlation C (i, k)17, is given by:

≡ −d i k j C i k PC i k j( , ) ( , ) ( , ) (3)

This approach avoids the trivial case where node j appears to strongly affect the correlation C (i, k), mainly because 
C (i, j), C (i, k) and C (k, j) all have small values. We note that this quantity can be viewed either as the correlation 
dependency of C (i, k)on node j, or as the correlation influence of node j on the correlation C (i, k)17 (Fig. 1a). Also, 
this quantity is large only when a significant fraction of the correlation between nodes i and k can be explained 
in terms of node j. There might be cases of negative influences which could be considered as suppressors45,46.  
In order to avoid cases where we sum over positive and negative influences, we chose to reset all negative values 
to zero. However, one can also choose to look at the absolute values of the influences.

ROI activity dependencies.  We then define the total influence of node j on node i, or the dependency D (i, j)  
of node i on node j to be:

∑=
− ≠

−
D i j

N
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1
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(4)k j

N 1

As defined, D (i, j) is a measure of the average influence of node j on the correlations C (i, j), over all nodes k. N 
is the number of nodes in the network. The node activity dependencies define a dependency matrix D whose 
(i, j) element is the influence of node j on node i. It is important to note that while the correlation matrix C is a 
symmetric matrix, the dependency matrix D is nonsymmetrical – D (i, j) ≠​ D (j, i), since the influence of node j 
on node i is not equal to the influence of node i on node j (Fig. 1b).

The ROI ‘Influencing Degree’ and ‘Influenced Degree’.  Next we sorted the nodes according to the system level 
influence of each node on the correlations between all other node pairs (Fig. 1c). The system level ‘Influencing 
Degree’ of node j is simply defined as the sum of the influence of node j on all other nodes i, that is:

∑=
≠

−
Influencing Degree j D i j( ) ( , )

(5)i j

N 1

The higher the ‘Influencing Degree’ measure the more this node influences all other connections in the network. 
The above definition is for the outgoing influence; however a similar definition can be used to define the incoming 
influence of the combined dependencies.

The influence of the network on node j is defined as the sum of the influences (or dependencies) of all other 
nodes i in the network on node j, that is:

∑=
≠

−
Influenced Degree j D j i( ) ( , )

(6)i j

N 1

The higher the ‘Influenced Degree’ measure the more this node was dependent or influenced by all the other nodes 
in the network (Fig. 1d).

The DEPNA toolbox is available on request from the corresponding author.

Simulations.  The simulation procedure was adopted from Smith et al.20. The description of the simulation is 
detailed as follows:

First, we calculated the signal propagation in time, given by:

σ= +
+ = +





z Az Cu
z t z t z( 1) ( ) (7)

where z is the neural activity time series and, σ​ is the neural lag, set to 50 ms. The vector u indicates the external 
input according to the simulated experiment paradigm, where u equals one when the stimuli is presented, and 
zero when resting. C is the weights matrix controlling how the external input is fed into the system. We set such
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that the external input is always fed only to the first region. Off-diagonal elements in matrix A determines the 
network connection strength between regions, where the diagonal elements model within region temporal decay. 
The effect of the within-node dynamics (exponential temporal decay) creates a lag between the input and output 
of every node. The matrix A was different for each simulation according to the connection strength or temporal 
decay.

The BOLD signal is then given by:

= ∗ +BOLD z HRF n (9)

where HRF is the hemo-dynamic response function, *​ is the convolution operation, and n is the white Gaussian 
random noise (thermal noise) with a mean of 0.1 and standard deviation of 0.9. The BOLD signal was then down 
sampled to the experiment time resolution (TR =​ 2.2 seconds).

The simulation paradigm was based on a typical fMRI block design experiment consisting of 20 subjects. The 
paradigm consisted of 10 blocks; each block lasted 22 seconds (10 trials). We then calculated the neural network 
model to receive a simulated BOLD signal for each subject and each trial. Next we used the acquired simulated 
BOLD signal to calculate the ‘Influencing Degree’ and ‘Influenced Degree’ scores per trial per subject. Therefore, we 
obtained 200 scores (10 trials X 20 subjects) and averaged across trials and subjects to receive the final scores of 
‘Influencing Degree’ and ‘Influenced Degree’ along with their standard error of the mean.

We examined four different simulations by adjusting different parameters in matrix A;

(1) �Homogenous chain topology - a simple chain topology network consisting of four regions, with all connection 
strengths in the network equal to one another (see Fig. 2a). We then calculated the DEPNA measures for differ-
ent connection strengths ranging from 0.1 to 0.5. Diagonal elements were set to −​1 according to Smith et al.20.

(2) �Different mid connection strengths - a simple chain topology, only this time adjusted only the middle con-
nection strength (see Supplementary Figure S1), while fixing all other connection strengths to 0.4 (the mean 
connection strength according to Smith et al.20), and diagonal elements set to −​1.

(3) �Two leg topology - adding a second alternative pathway to the simple chain described above, where the first 
region influences two separate regions that later cascade into two paths (legs) with no further connections 
between the paths after the separation (see Fig. 3a). Diagonal elements were set to −​1 according to Smith et 
al.20.

(4) �Different temporal decay factor – a simple chain topology (all connections were set to 0.4), only this time we 
adjusted the region temporal decay of a specific region by dividing its diagonal element in the matrix by factor 
m, ranging from 0.1 to 10 (see Fig. 4a).

Empirical fMRI Datasets.  The datasets used in this work came from the Human Connectome Project24,25, 
derived from 100 healthy participants. All experiments were performed in accordance with the relevant guide-
lines and regulations of the Human Connectome Project, WU-Minn Consortium (Principal Investigators: 
David Van Essen and Kamil Ugurbil; 1U54MH091657) funded by the 16 NIH Institutes and Centers that sup-
port the NIH Blueprint for Neuroscience Research; and by the McDonnell Center for Systems Neuroscience at 
Washington University, which approved all the experimental protocol and procedures. Written informed consent 
was obtained for every participant in the study.

All scans were obtained by a Siemens Skyra 3T scanner with a 32-channel head coil located at Washington 
University in St. Louis. The acquisition parameters of the task fMRI (tfMRI) data were: 90 ×​ 104 matrix, 220 mm 
FOV, 72 slices, TR =​ 0.72 s, TE =​ 33.1 ms, flip angle =​ 52°, BW =​ 2290 Hz/Px, in-plane FOV =​ 208 ×​ 180 mm, 
2.0 mm isotropic voxels.

The preprocessing pipeline included motion correction, spatial smoothing, temporal pre-whitening, slice time 
correction, global drift removal. All of these steps are implemented by FSL FEAT53,54. For more detailed data 
acquisition and preprocessing see24,25.

Motor task.  This task was adapted from Buckner and colleagues26. Participants were presented with visual 
cues instructing them to either tap their left or right fingers, or squeeze their left or right toes. Each block involved 
a different movement type and lasted 12 seconds (10 movements), preceded by a 3 seconds cue. The task included 
8 blocks (4 hand movement blocks, 2 right and 2 left, and similarly 4 foot movement blocks).

The motor network included a set of regions that are consistently activated during hand or foot movement27,28. 
Overall the motor network consisted of 8 regions of interest (ROIs). These ROIs were defined according to the 
Wake Forest University (WFU) PickAtlas55. The principal eigenvariates (time series) were extracted for each ROI 
mask image and each subject using SPM8 (Wellcome Department of Cognitive Neurology, London, UK, http://
www.fil.ion.ucl.ac.uk/spm/). These signals were then averaged across all left hand/foot movement blocks and 
right hand/foot movement blocks separately.

http://www.fil.ion.ucl.ac.uk/spm/
http://www.fil.ion.ucl.ac.uk/spm/
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Working memory task.  The N-back paradigm was used as a working memory task, in which participants 
are presented with a sequence of visual stimuli (pictures of places, tools, faces and body parts), and asked to indi-
cate if the current stimulus matches one n steps earlier in the sequence. Participants were presented with blocks of 
trials that consisted of either 0-back or 2-back loads. The dataset included 4 2-back blocks and 4 0-back blocks. A 
2.5 second cue indicated the task type (and target for 0-back) at the start of the block. Overall the task contained 8 
task blocks of 25 seconds (10 trials of 2.5 seconds each) and 4 fixation blocks (15 seconds). On each trial, the visual 
stimulus was presented for 2 seconds, followed by a 500 ms inter-task interval (ITI).

Working memory network was defined according to a meta-analysis of the N-back paradigm by Owen et al.29. 
The network included a total of 12 ROIs. The coordinates reported in Owen et al.29 were converted from Talariech 
to MNI space using tal2icbm56,57. For each ROI, we created spherical masks (radius =​ 8 mm, volume =​ 2376 mm3) 
centered on the peak x, y, z MNI coordinates using SPM8 (Wellcome Department of Cognitive Neurology, 
London, UK, http://www.fil.ion.ucl.ac.uk/spm/). The principal eigenvariate (time series) was extracted for each 
ROI mask image and each subject. These signals were then averaged across all of the 2-back blocks and across all 
of the 0-back blocks separately.

Network representation of ROI dependencies.  In order to create network visualization we used the 
pair-wise dependency connectivity matrix. First we normalized the dependencies’ coefficients by using a Fisher 
Z transformation. Then a two-tailed t statistic was computed to compare the two conditions (e.g. left vs. right 
hand/foot movements). In order to construct a weighted adjacency matrix we applied a threshold connecting all 
pair-wise ROIs with dependencies that were significantly different between the two conditions (p <​ 0.05 level). 
This procedure allows for a simple graph visualization of the differences between the conditions across all sub-
jects. The brain visualization of the graph was conducted with the BrainNet Viewer (Xia et al. 2013, http://www.
nitrc.org/projects/bnv/)58.

In addition, to create a visualization of the influences of nodes on a particular edge (i.e. upon the correlations 
between two specific ROIs) we used the correlation influence d values (Equation 3). We first normalized the 
correlation influences coefficients by using a Fisher Z transformation. Then a two-tailed t statistic was computed 
to compare the two conditions (e.g. left vs. right hand/foot movements). All ROIs with correlation influence that 
were significantly different between the two conditions (p <​ 0.05 level) were plotted. This procedure allows for 
a simple visualization of the influences on a specific edge in the network between conditions across all subjects.

Context related analysis.  The DEPNA was computed for each subject and condition (i.e. left and right 
hand/foot movements in the motor task, or 2-back and 0-back in the working memory task) resulting in an 
‘Influencing Degree’ and ‘Influenced Degree’ of each network region for each condition per subject. Next, a t-test 
between the two conditions was conducted across subjects and the results were corrected for multiple compari-
sons using false discovery rate (FDR)59 to estimate statistical significance. The FDR correction threshold was set 
to 0.05.
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