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Macrophage migration Inhibitory factor (MIF) was one of the earliest pro-inflammatory 
cytokines to be identified. Increasing interest in this cytokine in recent decades has 
followed the cloning of human MIF and the generation of Mif−/− mice. Deepening under-
standing of signaling pathways utilized by MIF and putative receptor mechanisms have 
followed. MIF is distinct from all other cytokines by virtue of its unique induction by 
and counter regulation of glucocorticoids (GCs). MIF is further differentiated from other 
cytokines by its structural homology to specific tautomerase and isomerase enzymes 
and correlative in vitro enzymatic functions. The role of MIF in immune and inflammatory 
states, including a range of human autoimmune diseases, is now well established, as are 
the relationships between MIF polymorphisms and a number of inflammatory diseases. 
Here, we review the known pleiotropic activities of MIF, in addition to novel functions of 
MIF in processes including autophagy and autophagic cell death. In addition, recent 
developments in the understanding of the role of MIF in systemic lupus erythematosus 
(SLE) are reviewed. Finally, we discuss the potential application of anti-MIF strategies to 
treat human diseases such as SLE, which will require a comprehensive understanding of 
the unique and complex activities of this ubiquitously expressed cytokine.
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iNTRODUCTiON

Macrophage migration inhibitory factor (MIF) also known as glycosylation-inhibiting factor (GIF) 
is a multifunctional protein with a broad range of immunomodulatory properties. The existence of 
a MIF has been hypothesized since the experiments of Rich and Lewis (1), where it was shown that 
tuberculin-induced delayed-type hypersensitivity reactions (DTH) were associated with the inhibi-
tion of macrophage migration. However, it was not until 1966 that MIF was first described as a soluble 
factor responsible for the inhibition of emigration of macrophages during DTH (2, 3). MIF acts as 
a mediator of innate immunity by promoting host inflammatory responses through induction of 
pro-inflammatory cytokines, including TNF-α and IL-6. MIF can also modulate host inflammatory 
responses by regulating cellular processes such as T-cell proliferation, suppression of p53-dependent 
apoptosis, and counter regulation of the immunosuppressive actions of glucocorticoids (GCs). 
Human MIF cDNA was first isolated in 1989 (4), although both human and murine forms of MIF 
were not cloned and functionally tested until the early 1990s by Bernhagen and colleagues (5–7). The 
first MIF knockout mice (Mif−/−), reported in 1999, were generated through disruption and deletion 
of exon 3 in the MIF gene (8). Since then there has been significant scientific interest in MIF, which 
has been shown to function not only as a pro-inflammatory protein but also as a stress factor and a 

http://www.frontiersin.org/Immunology/
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2015.00577&domain=pdf&date_stamp=2015-11-11
http://www.frontiersin.org/Immunology/archive
http://www.frontiersin.org/Immunology/editorialboard
http://www.frontiersin.org/Immunology/editorialboard
http://dx.doi.org/10.3389/fimmu.2015.00577
http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
https://creativecommons.org/licenses/by/4.0/
mailto:tali.lang@monash.edu
http://dx.doi.org/10.3389/fimmu.2015.00577
http://www.frontiersin.org/Journal/10.3389/fimmu.2015.00577/abstract
http://www.frontiersin.org/Journal/10.3389/fimmu.2015.00577/abstract
http://loop.frontiersin.org/people/204346/overview
http://loop.frontiersin.org/people/290037/overview
http://loop.frontiersin.org/people/175070/overview
http://loop.frontiersin.org/people/64234/overview


November 2015 | Volume 6 | Article 5772

Lang et al. MIF and Systemic Lupus Erythematosus

Frontiers in Immunology | www.frontiersin.org

growth factor (9) released by cells of the anterior pituitary gland, 
similar to a hormone (10).

MiF GeNeTiCS AND PROTeiN 
STRUCTURe

Migration inhibitory factor is a non-glycosylated 12.5-kDa 
protein composed of 114 amino acids, highly conserved across 
species with murine MIF showing 90% homology to human MIF 
(11). Within the human genome, the MIF gene is located on chro-
mosome 22 (22q11.23). MIF is composed of three short exons 
of 107, 172, and 66 bp and two introns of 188 and 94 bp (11). 
Crystal structures demonstrate that MIF is a homotrimer with 
structural homology to three bacterial enzymes; oxalocrotonate 
tautomerase, 5-carboxymethyl-2-hydroxymuconate isomerase, 
and chorismate mutase (12–16). Within recent years, a gene 
homologous to MIF, which encodes the protein d-dopachrome 
tautamerase (D-DT), has been included in the MIF superfam-
ily (17). MIF and D-DT are located within close proximity on 
chromosome 22, and are nearly identical in exon lengths with 
variable non-coding intron regions.

MIF and D-DT gene expression are both regulated by tran-
scription factors. MIF is regulated by ten known polymorphic 
sites, as previously described within the MIF gene (18). Two of 

TABLe 1 | Associations between MiF −173*C and −794 CATT5−8 polymorphisms and autoimmune disease.

Disease MiF polymorphism effect Reference

Rheumatoid arthritis −794 CATT5 Protective (19)
−794 CATT7, −173C Increased severity, radiological progression (20)
−794 CATT7, −173C Do not predict response to glucocorticoid treatment or anti-TNF- α therapy (24)
−173C Increased susceptibility amongst CRP-negative patients (25)
−173C Increased susceptibility (meta analysis) (26)
794 CATT7, −173C Associated with early onset, associated with high disease activity (27)

Juvenile idiopathic  
arthritis

−173C,  
−794 CATT7, −173C haplotype

Increased susceptibility (22, 23)
Increased susceptibility (28)

−173C Increased susceptibility (meta analysis) (29)
−173C No link to susceptibility but strong predictor of poor prognosis (30, 31)
−173C Predictor of poor response to glucocorticoids (32)

Inflammatory polyarthritis −173C, −794 CATT7 Increased susceptibility, but no link to severity (33)

Rheumatic fever −173C Increased susceptibility (34)

Systemic lupus 
erythematosus

−173C, −794 CATT7, −794 CATT7 
−173C haplotype

Increased susceptibility, Increased severity, Increased TNF-α (35, 36)

−173C, −794 CATT7 Reduced susceptibility (37)
−794 CATT5 Protective against tissue damage (37)

Psoriasis −173C, −174 CATT7, −794 CATT7  
−173C haplotype

Increased susceptibility (38, 39)

Ulcerative colitis (UC) −173C Increased susceptibility (40–44)
−173C No association (45, 46)
−173C Increased pancolitis (47)
−794 CATT7 Increased susceptibility and severity (48)
−794 CATT5 Protective (48)

Crohn’s disease (CD) −173C Protective (45, 49)
−173C No effect (43)

Celiac disease −173C, −794 CATT7, −794 CATT7 
−173C haplotype

Increased susceptibility (50)

these polymorphisms have been demonstrated to have func-
tional impact and to influence susceptibility to and/or severity of 
a number of diseases (Table 1). The first is a short-tandem repeat 
(STR), which is a microsatellite repetition consisting of cyto-
sine–adenine–thymine–thymine (CATT) at position −794  bp, 
−794 CATT5−8 (rs5844572) within the 5′ promoter region (19). 
High expression alleles such as −794 CATT7 have been associ-
ated with an increase in MIF gene expression, increased levels of 
circulating MIF (20), and severity in clinical phenotypes (20). 
Conversely, the sub-Saharan, low expression −794 CATT5 allele 
is associated with reduced levels of circulating MIF (21). The 
second polymorphism is a single nucleotide polymorphism 
(SNP) in which guanine (G) is replaced with cytosine (C) in the 
MIF gene at position −173 bp, −173 G > C (rs755662) (22). The 
−173*C allele has also been shown to correlate with increased 
levels of circulating MIF, as identified in several populations (20, 
23). Based on findings published to date, it can be postulated 
that MIF promoter polymorphisms and consequent changes 
in MIF expression contribute to the susceptibility and clinical 
severity of many inflammatory and autoimmune disorders 
where MIF has been implicated. However, one should be cau-
tious about associations made between expression of MIF alleles 
and clinical severity and/or susceptibility, and study limitations, 
such as ethnic populations recruited as well as overall cohort 
size, which may influence outcomes in gene association studies 
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due to population stratification of the MIF gene locus, need to 
be considered.

SiGNAL TRANSDUCTiON AND 
ReGULATiON OF CeLL ACTivATiON

Migration inhibitory factor is a highly pleiotropic cytokine, 
as reflected by the complexity of its involvement in regulating 
multiple signal transduction pathways (Figure 1). Cellular acti-
vation by MIF is reportedly initiated through interactions with 

FiGURe 1 | Signal transduction pathways of MiF and regulation of glucocorticoid immunosuppression. Extracellular MIF binds to the transmembrane 
receptor complex CD74 and CD44 to activate downstream Src-family kinase resulting in the subsequent phosphorylation of ERK/MAPK. This facilitates activation of 
transcription elements AP1, PI3K/Akt, and Cyclin D1 leading to expression of pro-inflammatory cytokines, cell cycle regulators, and co-stimulatory genes. MIF also 
binds to G-protein-coupled chemokine receptors CXCR2 and CXCR4 to promote calcium influx and integrin activation. Following endocytosis, MIF interaction with 
JAB-1 down-regulates MAPK thereby modulating cellular redox homeostasis. Elevated levels of MIF inhibit p53-mediated apoptosis through enhanced cPLA2 activity 
resulting in increased AA production and PGE2 release. Intracellular AA is required for the activation of pJNK for transcriptional stability of mRNAs for TNF-α and 
other cytokines. These signaling events can be inhibited by GCs via modulation of cPLA2 activity. GCs prevent expression of NF-ĸB-dependent genes primarily by 
increasing expression of IĸB. GC induced expression of MKP-1, which inactivates MAPK activity in response to pro-inflammatory stimuli, is inhibited by MIF through 
the dephosphorylation of multiple MAPK members. Finally, MIF can counter-regulate the expression of both MKP-1 and GILZ through blocking Akt-dependent 
activation and translocation of FoxO3a (55).

its proposed receptor, CD74 – the cell surface form of the MHC 
class II invariant chain – which subsequently forms a signaling 
complex with the accessory protein CD44 (51). MIF has also been 
reported to interact with the chemokine receptors CXCR2 and 
CXCR4 in complexes involving CD74 (52–54).

Migration inhibitory factor activates Src-family tyrosine 
kinases downstream of extracellular signal regulated kinase 
(ERK1/2) and p38, both members of the mitogen-activated 
protein kinase (MAPK) family (56, 57). Sustained activation 
of ERK is attained via c-Jun activation domain binding protein 
(JAB-1) (58). ERK activation leads to the phosphorylation of 
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cytosolic proteins as well as up-regulation of phospholipase 
A2 (cPLA2) activity to produce prostaglandin precursors from 
arachidonic acid (AA) (56). AA activates JUN-terminal kinase 
(JNK), which is in turn required for activation of downstream 
regulatory elements ETS, PI3K/Akt, and AP1 (56, 59). These 
pathways lead to the transcription of pro-inflammatory 
cytokines, such as TNF-α, as well as chemokines such as CCL2 
(MCP-1), implicated in the development of many autoimmune 
diseases, including SLE (60).

Elevated levels of MIF also result in reduced p53 accumulation 
in the cytoplasm, thereby blocking p53-mediated cell death and 
leading to continuous production of pro-inflammatory cytokines 
such as TNF-α, IL-1β, IL-6, and prostaglandins (11, 56, 61). This 
process occurs in an autocrine manner, whereby MIF phos-
phorylates ERK1/2 and activates cPLA2 and cyclooxygenase-2 
(Cox-2), blocking p53-induced apoptosis. MIF has also been 
shown to counter-regulate GC-induced expression of MAPK 
phosphatase-1 (MKP-1), a critical MAPK signaling inhibitor, 
through which GCs signal to suppress pro-inflammatory cytokine 
secretion (62, 63). It was shown by Roger and others that MIF 
targets MKP-1 in an autocrine manner to prevent GC-induced 
MKP-1 expression, thereby tempering the post-transcriptional 
inhibition of cytokine production by GCs (62, 64). Moreover, 
MIF-deficient macrophages show increased sensitivity to GCs 
following LPS stimulation, with higher levels of MKP-1 expres-
sion and reduced activation and phosphorylation of p38-MAPK 
(62, 64). However, in this study no effect of GCs on IĸBα levels 
was observed. Correspondingly, there was no interference in the 
ability of NF-ĸB to translocate to the nucleus and bind the TNF-α 
promoter, which correlates with previous findings from earlier 
studies (63, 65, 66). It has been proposed that decreased levels 
of MIF leads to increased MKP-1, resulting in destabilization 
of AU-rich elements found in mRNA of multiple cytokines, via 
phosphorylation and activation of the downstream target MAPK-
activated protein kinase-2 (MAPKAPK2) (67). Therefore, MIF 
counter regulation of anti-inflammatory actions by GCs results 
in the reduced expression of MKP-1, increased activity of p38 and 
MAPKAPK2 and greater stability of mRNAs conferring AU-rich 
element-dependent translation.

Studies from own lab have identified a novel molecular 
mechanism through which MIF can regulate the expression of 
MKP-1 and activation of MAPK through the GC-responsive 
protein, GC-induced leucine zipper (GILZ, also known as TSC22 
domain family protein 3) (68). GILZ interacts with numerous 
signaling pathways relevant to inflammatory diseases (69). We 
recently demonstrated that exogenous MIF inhibited both GILZ 
and MKP-1 expression in fibroblasts and macrophages. MIF 
regulation of GILZ was shown to occur through inhibition of 
the Akt-dependent nuclear translocation of the transcription 
factor, FoxO3a. Moreover, MIF inhibition of MKP-1 expression 
was dependent on this inhibition of GILZ, suggesting a novel 
mechanism through which MIF impairs GC sensitivity (17).

MiF AND iMMUNiTY

Migration inhibitory factor is produced by most cells of the 
immune system, including monocytes, macrophages, blood 

dendritic cells, B-cells, T-cells, neutrophils, eosinophils, mast 
cells, and basophils (1). MIF is constitutively expressed and stored 
in intracellular pools, so does not require de novo synthesis for 
secretion. MIF is secreted by macrophages following stimulation 
with LPS, or other pro-inflammatory cytokines such as TNF and 
IFN-γ (6). Moreover, macrophage-derived MIF can stimulate the 
synthesis of other pro-inflammatory mediators via autocrine and 
paracrine effects, enhancing macrophage functions, including 
phagocytosis, reactive oxygen species (ROS) production, and 
nitric oxide (NO) production (6, 70–72).

Migration inhibitory factor is secreted by pituitary cells follow-
ing LPS stimulation in vivo and this contributes significantly to 
circulating MIF in the post-acute phase of LPS-induced endotox-
emia. Furthermore, co-injection of MIF with LPS increases lethal-
ity, while anti-MIF antibody protects mice against LPS-induced 
endotoxemia (10). The small molecule MIF antagonist, ISO-1 
((S,R)-3-(4-hydroxyphenyl)-4,5-dihydro-5-isoxazole acetic acid 
methyl ester), also protects mice against LPS-induced endotox-
emia and reduces TNF-α production by peritoneal macrophages 
(73). Similarly, MIF-deficient mice are protected against lethal 
sepsis induced by LPS or Staphylococcus aureus enterotoxin B 
(SEB) with d-galactosamine (8).

While MIF clearly has pathogenic roles to play in responses to 
bacterial products, it also facilitates the detection of endotoxin-
containing bacteria through the up-regulation of TLR4 in 
macrophages, allowing rapid and protective pro-inflammatory 
responses to these pathogens (11). Consistent with this, MIF-
deficient mice were more susceptible to infection with Salmonella 
typhimurium, producing lower levels of IL-12, IFN-γ, and TNF-α 
(74). More recently, MIF has been shown to play a role in protec-
tion against Mycobacterium tuberculosis, which does not express 
LPS and has a more complex relationship with TLR4 (75). Mif−/− 
mice are more susceptible to infection with either M. tuberculosis 
or Mycobacterium bovis BCG and demonstrate inhibited secre-
tion of TNF-α, IL-12, and IL-10 (76). Moreover, the low expresser 
MIF genotype −794 CATT5/5 is enriched in a cohort of Ugandan 
patients with HIV and disseminated tuberculosis (TB) (76).

Migration inhibitory factor is constitutively expressed by T 
cells and secreted in response to mitogenic or antigenic stimula-
tion (77, 78); treatment with anti-MIF antibody reduces T cell 
IL-2 production and proliferation (78–81). In  vivo, MIF has a 
well-defined role in DTH, which is inhibited by MIF neutraliza-
tion or deficiency, leading to decreased antigen-specific T cell 
proliferation, IgG production and IFN-γ secretion (78, 80, 82). 
MIF can stimulate secretion of both Th1 and Th2 cytokines by T 
cells (78), as well as IL-17 by lymph node cells (83), suggesting no 
single clear role in T cell polarization. MIF can also facilitate leu-
kocyte recruitment and trafficking through the up-regulation of 
classical chemokines, such as CXCL8 (IL-8), CCL-5 (RANTES), 
and CCL-2 (MCP-1) (57, 84, 85). Moreover, MIF is now sug-
gested to be a non-cognate ligand of the chemokine receptors 
CXCR2 and CXCR4, through which it can influence chemotaxis 
of monocytes, T cells, and B cells directly (52, 86). Interestingly, 
in the context of tumor immunology it has been demonstrated 
that MIF promotes the infiltration of immune-suppressive cells, 
including myeloid-derived suppressor cells (MDSCs) and Tregs 
(87, 88). These cell sub-populations have been implicated in tumor 
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progression and metastasis by limiting anti-tumor immunity, as 
well as inducing immune tolerance. It is unknown whether MIF 
similarly modulates immune-suppressive cells in the context of 
other inflammatory diseases, including SLE.

MiF AND AUTOPHAGY

Autophagy is a catabolic pathway for the delivery of cytosolic con-
stituents, including long-lived proteins, protein aggregates and 
organelles, to lysosomes for degradation. Activated during nutri-
ent deprivation, autophagy acts as a cytoprotective mechanism 
for amino acid recycling (89). In addition, autophagy has been 
shown by many groups to regulate the transcription, processing 
and secretion of pro-inflammatory cytokines (90). Inhibition 
of autophagy increases the secretion of IL-1α, IL-1β, IL-18, and 
IL-23 by macrophages and dendritic cells in response to TLR 
agonists (91–94). This process is dependent on the accumulation 
of ROS and mitochondrial DNA in the cytosol (95). Conversely, 
induction of autophagy inhibits the secretion of IL-1β and IL-23 
(92, 96). Recent studies have demonstrated that MIF can regulate 
autophagy. In one study, MIF was shown to suppress a phenom-
enon termed autophagic cell death in the human MCF-7 breast 
cancer cell line (97). This is likely due to activation of the PI3K/
Akt pathway, which inhibits autophagy (98, 99). In contrast, other 
studies have suggested that MIF induces or facilitates autophagy in 
mouse myoblasts, cardiomyocytes and human HuH-7 hepatoma 
cells (100–103). MIF-induced autophagy in HuH-7 cells was 
dependent on the generation of ROS and, interestingly, starvation 
induced MIF secretion, again dependent on ROS (100). However, 
it is not clear whether this is an autophagy-dependent process, or 
a side effect of amino acid starvation, independent of autophagy 
induction.

Given that autophagy has been linked to a number of inflam-
matory diseases (104) and there is evidence to suggest that 
autophagy is dysregulated in SLE patients (105–108), a better 
understanding of how MIF intersects with this important cellular 
process could prove highly significant.

MiF AND SYSTeMiC LUPUS 
eRYTHeMATOSUS

Given its pleiotropic role in the regulation of inflammatory 
cytokines and leukocyte trafficking, it is perhaps unsurprising that 
MIF has been linked with a number of autoimmune and inflam-
matory diseases. Genetic studies have identified associations 
between MIF polymorphisms and autoimmune diseases, includ-
ing rheumatoid arthritis (RA), systemic lupus erythematosus 
(SLE), type I diabetes, and autoimmune liver disease (Table 1). 
Here, we will discuss the association of MIF polymorphisms 
and their relevance to disease progression, severity and clinical 
outcomes in SLE.

Systemic lupus erythematosus is complex chronic multi-organ 
autoimmune disease of unknown etiology with significant het-
erogeneity in clinical manifestations. It is generally considered a 
multifactorial disease, as a combination of genetics, environmen-
tal triggers, sex hormones, and other factors are thought to be 

involved (109). SLE is most prevalent within African-American 
and Asian populations, typically in females of childbearing age 
(110, 111). SLE is characterized by loss of tolerance to nucleic 
acids and their interacting proteins, resulting in the development 
of autoantibodies, inflammation, and tissue damage (109). Our 
own lab has demonstrated that levels of circulating MIF are raised 
in patients with SLE and are positively associated with disease 
damage (measured by SLICC/ACR index) and, interestingly, 
GC use (112). Similarly, renal MIF is increased in patients with 
lupus (and non-lupus) proliferative glomerulonephritis, correlat-
ing with leukocyte infiltration, tissue damage and impairment 
of renal function (113). To date, it is unknown whether kidney 
injury associated with SLE contributes to elevated serum MIF, 
and thus future studies examining levels of serum and urine MIF 
in relation to lupus nephritis are needed.

In the lupus-prone MRL/lpr mouse strain, MIF expression 
has been demonstrated to be increased in both skin and kid-
ney lesions. Correspondingly, Mif−/− mice showed prolonged 
survival, reduced renal and skin lesions, as well as reduced 
proteinuria and glomerular injury; MIF deficiency was associ-
ated with almost complete protection from crescentic nephritis 
in this model (114). Complementary to this study, treatment of 
either MRL/lpr mice and another lupus-prone strain, NZB/NZW 
F1 mice, with the MIF antagonist ISO-1, reduced functional and 
histological indices of glomerulonephritis, inhibited CD74+ and 
CXCR4+ leukocyte recruitment, and lowered levels of circulating 
TNF-α in MRL/lpr mice and CCL2 in NZB/NZW F1 mice (115). 
Expression of mRNA for TNF-α, IL-1β, and CCL2 in kidney 
tissue was reduced in both strains of lupus-prone mice following 
treatment with ISO-1. Neither autoantibody production nor T 
and B cell activation was significantly affected (115), suggesting 
that the protective effect of MIF inhibition in SLE is dependent 
on the regulation of innate inflammation rather that autoim-
munity. This conclusion is aligned with findings in MIF-deficient 
MRL/lpr mice, in which protection from renal damage was not 
accompanied by any change in systemic autoantibody levels or 
local autoantibody deposition (114). In humans, serum MIF 
levels are increased in patients with SLE, although this can be 
partly explained by increased GC use (112). However, independ-
ent of GC-induced MIF, high serum levels have been positively 
associated with SLE disease damage (SLICC/ACR index) (112).

To date, few studies have comprehensively investigated the 
role of MIF polymorphisms in the susceptibility and severity of 
SLE, thus leaving many questions to be answered as to how MIF 
alleles contribute to pathogenesis. Findings from one study with 
a multinational cohort of 1369 SLE patients showed that both 
Caucasian and African-American patients with the high expres-
sion haplotype −794 CATT7/−173*C had a lower incidence of 
SLE with higher levels of circulating MIF (37). Moreover, when 
they looked at the relationship between MIF alleles and anti-
nuclear antibody (ANA) status, both healthy controls and SLE 
patients with the high expression CATT7 or −173*C alleles or the 
CATT7/−173*C haplotype were less likely to be ANA positive. 
These findings possibly suggest that high expression MIF alleles 
confer some protection from autoimmunity in SLE. One possible 
explanation for this is that high expression MIF alleles confer 
protection against infections, such as community-acquired 
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pneumonia (18), which may be mechanistic triggers for SLE 
through antigenic mimicry. Conversely, patients within the 
cohort, who had established SLE with end-organ complications, 
such as serositis, nephritis, and cerebritis, had lower frequencies 
of the low expression MIF −794 CATT5 allele (37). This would 
suggest that, in patients with established disease, higher levels of 
MIF are associated with greater pathology, a finding consistent 
with the murine studies described above.

In contrast to this study, a report on a Mexican SLE cohort 
showed both the −173*C and −794 CATT7 polymorphisms 
increased susceptibility to SLE (35). In this study, both serum 
MIF and TNF-α were significantly increased in SLE patients and 
in patients with the high expression polymorphisms. Similarly, 
Sánchez et al. (36), reported that the −173*C allele was associ-
ated with increased susceptibility to SLE in a Spanish cohort and 
that homozygosity (−173C/C) increased susceptibility further. 
Moreover, the −173*C haplotype with the −794 CATT7 allele 
conferred a twofold increase in susceptibility to SLE. In this study, 
none of the MIF polymorphisms were significantly associated 
with specific clinical manifestations.

MiF AS A POTeNTiAL THeRAPeUTiC 
TARGeT

In healthy individuals, MIF is typically found circulating in 
plasma at a range between 2 and 8 ng/ml. However, in autoim-
mune disease MIF concentrations can fluctuate to markedly 
higher levels. As such, MIF is commonly seen as a hallmark of 
disease progression and chronicity, even if increased levels of 
MIF are the consequence of exacerbated inflammatory cascades, 
rather than a primary cause of disease (116). By virtue of its 
breadth of activities, MIF is an essential regulator of innate and 
inflammatory responses (11). Conversely, MIF can also regulate 
physiological cell activities enzymatically, as a d-dopachrome 
tautomerase, phenylpyruvate tautomerase, or a thiol-protein 
oxidoreductase (14, 117, 118). Given MIF is a pluripotent protein 
with a range of biological functions, it has become an attractive 
small molecule and antibody target for therapeutic intervention 
in autoimmune inflammatory disorders. Currently, there are sev-
eral classes of small molecule inhibitors of MIF that are designed 
to interact with MIF at its tautomerase active site and attenuate 
its pro-inflammatory activities. Most of these inhibitors, includ-
ing ISO-1 and related molecules, work through direct binding 
to the active site, allosteric inhibition, modification of residues 
within the active site or disturbance to the tautomerase trimer 
(119–121). However, the majority of the reported compounds are 
not suitable candidates for pharmaceutical development due to 
the high concentrations (micromolar) required for activity (122). 
Currently, there are 11 classes of MIF small molecule inhibitors 
described within the literature [previously comprehensively 
reviewed in Ref. (123)]; one recently reported novel compound 
class was shown to have protective effects in a model of myocar-
dial infarction (124), which is the most common cause of death 
in SLE patients (125).

To date, only a handful of MIF inhibitors have been found to 
disrupt MIF-CD74 interactions with IC50 values of less than 5 μM 

(120). More promisingly, AV411 (ibudilast; 3-isobutyryl-2-iso-
propylpyrazolo-[1,5-a]pyridine), is a non-selective inhibitor of 
phosphodiesterases that is used clinically as an anti-inflammatory 
drug to treat bronchial asthma and post-stroke complications. 
Cho and colleagues demonstrated that AV411 was able to allos-
terically inhibit MIF’s catalytic capabilities in vitro via conversion/
substitution of a methyl-group to an amine group, which induces 
conformational changes in pockets adjacent to the active site 
(126). Furthermore, AV411 was shown to significantly inhibit 
chemotactic capabilities of PBMCs at clinically relevant concen-
trations (10 nM) (127).

Migration inhibitory factor is highly stable in its trimer 
conformation, but relatively unstable as a monomer. Ebselen, a 
compound known for its anti-inflammatory and anti-oxidant 
properties, was reported as the first small molecule inhibitor to 
interfere with MIF oligomerization through interactions with 
cysteine residues (119). This results in changes to the structural 
conformation of MIF, consequently inhibiting its ability to induce 
AKT phosphorylation and induction of pro-inflammatory 
cytokines. Furthermore, Ebselen was shown to reduce chemotac-
tic activities of epithelial progenitor cells in the presence of recom-
binant MIF. More recently, Bai and colleagues have reported on a 
novel allosteric MIF inhibitor, p425, which occupies the interface 
of two MIF trimers (128). p425 was shown not only to potently 
inhibit MIF’s ability to tautomerize 4-hyrdoxy-phenyl pyruvate 
but also block the interaction between MIF and CD74, thereby 
hampering its pro-inflammatory actions (128). Molecular dock-
ing and modeling techniques have also been extensively used to 
characterize potential compounds that will specifically interact 
with MIF to block its tautomerase activities. Most compounds 
generated following computational analysis are tested in  vitro 
using a variety of cell-based assays. However, very few of these 
in  silico modeled compounds have been successfully translated 
for clinical use, due to very high IC50 values required for desired 
inhibitory effects (120, 129, 130). It is important to note that the 
connection, if any, between MIF’s tautomerase activity and pro-
inflammatory actions, is unclear [see Ref. (131)]. Drugs which 
inhibit tautomerase activity might also induce conformational 
changes that alter MIF signaling and vice versa.

The use of anti-MIF neutralizing antibodies has be shown 
to be therapeutically efficacious in several models of inflam-
matory and autoimmune diseases (82, 132–135). In a recent 
study, Tarasuk and colleagues employed the human single-chain 
variable fragment (HuScFv) monoclonal antibody no. 22 to 
illustrate binding capabilities specific to MIF using a variety of 
in vitro based assays (136). Moreover, the tautomerase activity of 
MIF was dose-dependently reduced in the presence of HuScFv 
antibody through binding of the antibody to catalyitic residues 
within the tautomerase active site (136). Anti-MIF monoclonal 
antibody therapy is currently in phase I trials both for solid 
tumors (NCT01765790) and for lupus nephritis (NCT01541670).

FUTURe PeRSPeCTiveS

Given the abundance of studies implicating MIF as a funda-
mental participant in the pathogenesis and progression in 
autoimmune diseases, MIF may represent a therapeutic target 
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with untapped potential for benefits in the clinic. The effects 
of MIF to amplify pathogenic pathways, including cytokine 
expression, T cell activation, and macrophage function, as well 
as its effects to hinder the efficacy of GCs, mean that antagoniz-
ing MIF could have broad application in immune disease. The 
development of therapeutics using small molecule inhibitors 
that abrogate tautomerase activity has been limited, as many 
reported compound classes are not practical for pharmaceutical 
development. However, the development of anti-MIF mono-
clonal antibodies has opened new avenues. Understanding the 
precise mechanisms by which MIF regulates signaling cascades 

involved in inflammatory conditions will provide new and 
important insights into the potential to exploit inhibition of MIF 
to regulate inflammation and immunopathogenesis in autoim-
mune disorders.
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