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AMD is a major cause of legal blindness in older adults approachable through
multidisciplinary research involving human tissues and patients. AMD is a vascular-
metabolic-inflammatory disease, in which two sets of extracellular deposits, soft drusen/
basal linear deposit (BLinD) and subretinal drusenoid deposit (SDD), confer risk for end-stages
of atrophy and neovascularization. Understanding how deposits form can lead to insights for
new preventions and therapy. The topographic correspondence of BLinD and SDD with
cones and rods, respectively, suggest newly realized exchange pathways among outer retinal
cells and across Bruch’s membrane and the subretinal space, in service of highly evolved, eye-
specific physiology. This review focuses on soft drusen/BLinD, summarizing evidence that a
major ultrastructural component is large apolipoprotein B,E-containing, cholesterol-rich
lipoproteins secreted by the retinal pigment epithelium (RPE) that offload unneeded lipids of
dietary and outer segment origin to create an atherosclerosis-like progression in the subRPE-
basal lamina space. Clinical observations and an RPE cell culture system combine to suggest
that soft drusen/BLinD form when secretions of functional RPE back up in the subRPE-basal
lamina space by impaired egress across aged Bruch’s membrane-choriocapillary endothelium.
The soft drusen lifecycle includes growth, anterior migration of RPE atop drusen, then
collapse, and atrophy. Proof-of-concept studies in humans and animal models suggest that
targeting the ‘‘Oil Spill in Bruch’s membrane’’ offers promise of treating a process in early
AMD that underlies progression to both end-stages. A companion article addresses the
antecedents of soft drusen within the biology of the macula.
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INTRODUCTION AND SYNOPSIS

AMD is a major cause of legal blindness in older adults
approachable through multidisciplinary research involving

human tissues and patients via clinical imaging and genetics.
The central theses of this review are as follows:

1. Soft drusen and basal linear deposit (BLinD) are two
forms of the same extracellular lipid rich material that
together make up an Oil Spill on Bruch’s membrane
(BrM). Drusen are defined in reference to a three-layer
BrM and in distinction to other entities that are not
drusen;

2. AMD is a vascular-metabolic-inflammatory disease in
which soft drusen/BLinD and subretinal drusenoid
deposit (SDD; also called reticular pseudodrusen) are
major risk factors for progression to end-stages of atrophy
and neovascularization that involve substantial loss of
retinal pigment epithelium (RPE) and photoreceptors1;

3. The topographic relation of soft drusen/BLinD to cones
and SDD to rods strongly suggests that deposit biogenesis
reflects newly realized exchange pathways among cones,
rods, RPE, Müller cells, and choriocapillary endothelium,
across BrM and the subretinal space, in service of highly
evolved, eye-specific physiology;

4. A major component of soft drusen/BLinD is lipoprotein
particles containing apolipoproteins B and E, secreted by
RPE in a physiologic lipid-recycling program. The
composition suggests a dual origin of lipids (fatty acids
from diet, cholesterol from diet and photoreceptor outer
segments);

5. Clinical imaging and an RPE cell culture system together
define a druse lifecycle to which RPE demise can be
linked. Soft drusen/BLinD form when secretions of
functional RPE back up in the subRPE-basal lamina space,
because egress across aged BrM-choriocapillary endothe-
lium is impaired. Drusen can expand in volume, RPE
migrate off the top into the retina, leading to disintegra-
tion of the RPE layer, druse collapse, and atrophy;

6. The Oil Spill strategies for druse abatement to forestall
type 1 neovascularization and geographic atrophy have
supportive preclinical and clinical data; and

7. Understanding outer retinal physiology driving lipopro-
tein production has potential to advance treatments as
impactful for AMD as statins have been for atheroscle-
rotic cardiovascular disease; relevant model systems
exist.

This conceptual framework directs attention to understand-
ing the formation and clearing of drusen as a basis for targeting
precursors pharmacologically to delay end-stages. The overall

Copyright 2018 The Authors

iovs.arvojournals.org j ISSN: 1552-5783 AMD160

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

https://creativecommons.org/licenses/by-nc-nd/4.0/


hypothesis is limited to discussion of soft drusen (and their
differential diagnoses) and should be contextualized among
other known contributors to AMD pathobiology. These include
aging in the choroidal vasculature,2 inflammation, and activity
of resident/transient immune cells,3 among others. Many
mechanisms operating simultaneously give rise to AMD’s
complexity. Validated multimodal clinical imaging offers bright
prospects for connecting disparate pieces in a coherent
timeline to clarify therapeutic strategies. Despite knowledge
gaps, enough is known about soft drusen/BLinD biology to
launch new approaches. A companion article considers what
aspects of macular biology drive soft drusen biogenesis.4

NEUROBIOLOGY AND AGING OF THE MACULA

A neurovascular unit5,6 comprises microvessels, neurons, glia,
pericytes, and extracellular matrix that link blood flow to the
metabolic demands of neurons. The cells and tissues most
prominently affected by AMD pathology are those of the outer
retinal neurovascular unit7 (i.e., photoreceptors, RPE, Müller
cells [in neurosensory retina], and the choriocapillaris [ChC]
endothelium [in the choroidal vasculature]). The choroid has
the highest blood flow in the body, and the choriocapillaris is
sinusoidal and fenestrated. Between RPE and ChC is a
laminated subendothelial extracellular matrix called Bruch’s
membrane (BrM), which functions as a vessel wall laid out flat,
paralleling vascular lumens.8 The RPE is a monolayer of
cuboidal polygonal cells embedded between photoreceptors
and BrM. Strong apical to basolateral polarization makes the
RPE a key player in the homeostasis of photoreceptors and the
pathology of SDD apically and choriocapillaris and the
pathology of drusen basally. The macular neurosensory retina
consists of a 0.8-mm diameter all-cone fovea surrounded by a
rod-dominated annulus of 6-mm outer diameter. The Henle
fiber layer contains inner fibers of photoreceptors and Müller

glia that form junctions at the external limiting membrane.
Among numerous Müller cell functions9 are recently recog-
nized roles in delivering to cones for phototransduction
vitamin A derivatives of dietary origin.10,11 Xanthophyll
pigments lutein and zeaxanthin are prominent in the foveal
center, and lutein, in the Henle fiber and inner plexiform
layers.12,13 A hypothesis that Müller cells are major xanthophyll
reservoirs is explored separately.4

Of major age-related tissues changes detailed separately,4 we
focus on BrM, where AMD pathology is prominent, including
cross-linking,14 thickening,15 and lipidization,16–18 and loss of
ChC density and apposition to BrM.19 The lipidization of BrM
provides a straightforward path to lipids in soft drusen,
arguably the first druse component described.20–24 Lipid
accumulation in vessel walls connects to both the pathophys-
iology of atherosclerotic cardiovascular disease25 and the
clinical success in reducing its public health burden.26

DEFINING THE LAYERS OF AMD

A cellular- and molecular-level understanding of drusen begins
with delicate tissue layers in the RPE-BrM-ChC complex and
adjoining potential spaces (Fig. 1). The anatomic definition of
BrM27 is five layers (from inner to outer), RPE-basal lamina (BL)
and inner collagenous, elastic, and outer collagenous layers
(inner collagenous layer [ICL], elastic layer [EL], outer
collagenous layer [OCL]). Pathology may be best understood
with the Sarks-Gass concept of a three-layer BrM (ICLþELþOCL)
that does not include the RPE and ChC basal laminas, thereby
defining the subRPE-BL space between the RPE-BL and the ICL.
Drusen are focal deposits located between the RPE-BL and the
ICL of BrM, in the subRPE-BL space. BLinD is a thin layer of soft
druse material, in the same compartment. This framework
facilitates explaining the participation of basal laminar deposit
(BLamD) in clinical AMD, the trajectory of type 1 (subRPE-BL)

FIGURE 1. AMD by the layers. BrM consists of the ICL, EL, and OCL. Soft drusen and BLinD are two forms (lump and layer) of the same AMD-specific
extracellular deposit. BLamD is a thickening of the RPE-BL. Basal mound is soft druse material within BLamD. Subretinal drusenoid deposit localizes
to the subretinal space (between photoreceptors and RPE). RPE cells contain melanosomes, lipofuscin and melanolipofuscin, and mitochondria that
provide signals for color fundus photography, fundus autofluorescence, and OCTs. Abbreviations from inner to outer: ONL, outer nuclear layer;
ELM, external limiting membrane; IS, inner segments of photoreceptors; OS, outer segments of photoreceptors; R, rods; C, cones; L, lipofuscin; M,
melanosome; ML, melanolipofuscin; Mt, mitochondria; Mu, Müller glia; circles, lipoprotein particles.
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neovascularization, the differing embryologic origins of RPE-BL
versus ICLþELþOCL, and Mendelian disorders preferentially
affecting the RPE-BL28–30 versus structural elastin and colla-
gen.31,32 By this definition, the Oil Spill in aging BrM33

becomes the Oil Spill on BrM.
Drusen are focal and can be recognized clinically. In

contrast BLinD is thin and diffusely distributed, poorly visible
in paraffin histology, and invisible clinically, leading to a
common misperception that BrM thickens in AMD when in
fact new layers are interposed (Fig. 1).

IMAGING, EPIDEMIOLOGY, AND THE EXPANDING

SPECTRUM OF DRUSEN

Drusen are the major intraocular risk factor for progression,
and how they are detected clinically impacts theories of their
formation and significance.34 Drusen were linked to end-stages
of geographic atrophy (GA) and neovascularization on a time
course of years by Gass using color fundus photography (CFP)
and fluorescein angiography,35 as repeated in large sam-
ples.36,37 Major epidemiologic studies of European-derived
populations since 1991 are based on standardized CFP-based
grading systems.38 Soft drusen are yellow-white elevations
ranging from 30 lm to more than 1000 lm in diameter with an

indistinct border due to sloping sides (Figs. 2C, 2F, 2I).39

Numerous hard drusen (Figs. 2B, 2E, 2H) and cuticular drusen
(originally called basal laminar drusen [Figs. 2A, 2D, 2G])
increase risk in the aggregate and over the long term (15
years), in part by increasing risk for soft drusen.40–42 East and
South Asian populations have low prevalence of typical drusen
but progress to neovascularization.43,44

Spectral-domain optical coherence tomography (OCT),
commercialized in 2007, is an interferometry technique using
low-coherence light to achieve depth-resolved, comprehen-
sive, and noninvasive cross-sectional views of chorioretinal
structure. Advancements, such as eye tracking and signal
averaging, combine to make cross-sectional structural OCT the
base modality for AMD clinical trials going forward.45 By OCT,
soft drusen are dome-shaped RPE elevations with homogenous
and moderately reflective ‘‘ground-glass’’ interiors internal to
BrM, which appears at the druse base as a fine reflective line.
In small cohorts examined so far, soft drusen are the most
common among macular druse types.46 Internal structure in
soft drusen visible on OCT signify risk for progression,47–51 and
approximately 10% of soft drusen may have subclinical
(nonexudative) neovascularization.52 A spectrum of RPE
elevations now exists.53–59 By the gold standard of histology
of clinically documented cases (Fig. 2),40,60–63 hard and
cuticular drusen are ultrastructurally similar, small, globular

FIGURE 2. Drusen types in AMD macula have distinct geometry and ultrastructure. Cuticular, small hard and soft drusen in (A–F) high-resolution
light microscopy and (G–I) transmission electron microscopy. (A–C) Drusen are found between the RPE-BL and the inner collagenous layer of BrM).
Hard drusen and cuticular drusen are small with steep sides and contain dense hyalinized contents; cuticular drusen are numerous. Soft drusen are
large and have sloping sides. BLamD and BLinD associate only with soft drusen (F) and not (D) cuticular drusen or (E) small, hard drusen. (G, H)
Cuticular and small hard drusen are homogenous and electron dense, with small vacuoles attributed to extracted lipids distributed throughout. (I)
Soft drusen are packed with ‘membranous debris’ (considered partially preserved lipoproteins) and are continuous with BLinD, giving rise to a ‘soft’
appearance in the fundus. Detachment of the retina from RPE is a postmortem artifact. Black arrows denote individual drusen. Images (A, D, G)
taken from macular sections of the left eye of the patient with cuticular drusen. Scale bars: (A–C) 60, (D–F) 30, (G) 5, (H) 2, and (I) 5 lm. BM,
basement membrane; CC, choriocapillaris. Reprinted with permission from Balaratnasingam C, Cherepanoff S, Dolz-Marco R, et al. Cuticular drusen:
Clinical phenotypes and natural history defined using multimodal imaging. Ophthalmology. 2018;125:100–118. � 2017 by the American Academy
of Ophthalmology.
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deposits 30 to 60 lm in diameter. Cuticular drusen are
numerous in generally younger patients, exhibiting imaging
signs of RPE attenuation at the apices.64

A major limitation to current estimates of progression risk is
the recent recognition of extracellular deposits in the
subretinal space, between photoreceptors and RPE, first called
reticular pseudodrusen65 and recently, SDD.66,67 SDD is
biologically distinct and not just drusen in the wrong place34

(see the Subretinal Drusenoid Deposits: Extracellular, Space-
Filling, Distinct From Drusen section). SDD were in part
misclassified as soft drusen or omitted altogether from five CFP-
based grading systems36–38,68–71 that underlie prevalence
estimates, risk models, and genetic associations. Thus, risk
attributed to soft drusen in some CFP-based grading systems is
aggregate risk of soft drusen plus SDD. All literature must
therefore be interpreted anew—do authors mean subretinal or
subRPE? Did study eyes have SDD? Consequently, experimental

studies must include highly polarized RPE cells for greatest
AMD relevance (see the Model Systems for Mechanistic and
Translational Drusen Research section).

INTRODUCTION TO CHOLESTEROL AND LIPOPROTEINS

Because ample multidisciplinary evidence supports lipoprotein
particles as a major component of soft drusen, we introduce
the chemistry and biology of cholesterol and lipoproteins (Fig.
3); comprehensive reviews are available.72,73 Cholesterol is a
lipid with a hydrophobic four-ring system. A 3b-hydroxyl group
binds long-chain fatty acids to form esters. We refer to

FIGURE 3. A major component of BLinD and pre-BLinD is lipoproteins.
Black arrowheads, RPE-BL; white arrowhead, subRPE-basal laminar
space. (A, B) Thin-section transmission electron microscopy; osmium
postfixation, vertical cross-section, scale bars: 1 lm. (C, D) Quick
freeze deep etch microscopy; en face fracture plane of subRPE-basal
laminar space; scale bars: 200 nm. (A, C) Pre-BLinD is a layer of
lipoproteins 3 to 4 deep in the subRPE-BL space of many older eyes.
Lipoproteins are spherical particles of uniform diameter with surface-
and-core morphology. They were originally described as vesicles in
osmium postfixed specimens (A). RPE, (B, D) BLinD in an eye with
geographic atrophy is a mixture of native and fused lipoprotein
particles, with lipid pools, in the same plane, originally described as
membranous debris in osmium postfixed specimens (B). (E) Lipopro-
tein particles isolated from BrM are large and spherical; negative
stain,144 scale bar: 50 nm. (F) BrM lipoprotein composition inferred
from direct assay,97,144 druse composition, and RPE gene expres-
sion.135,358 Apo, apolipoproteins. ?, as-yet-unknown apolipoproteins.

FIGURE 4. Soft drusen/basal linear deposit: lipid lakes, no structural
collagen/elastin. (A) Ex vivo OCT imaging of a short postmortem donor
eye with large soft drusen (arrow, shown in [B]) and central GA, 79-
year-old male. R, retina, (C) choroid; ONH, optic nerve head; (B) Large
soft druse shown in (A) has numerous lipid pools (arrow) containing
esterified cholesterol (refer to Fig. 3C,135 overlaid with dysmorphic
RPE and BLamD. The underlying BrM has refractile patches of
hydroxyapatite (light blue). Choriocapillaris endothelium ranges from
normal to ghosts. Submicrometer section, osmium tannic acid
paraphenylenediamine postfixation, toluidine blue stain. (C, D) Soft
druse (C) and BLinD ([D] above the yellow arrowheads) from different
donors126 contain membranous profiles with electron-dense exteriors
and homogeneous and moderately electron-dense interiors, thought to
represent partly preserved lipoprotein particles. The same material is
found internal (basal mound,8 X) and external to the RPE-BL. Scale bar:
1 lm. Osmium postfixation and transmission electron microscopy.
White arrowheads, RPE-BL. Asterisks, lipid lake.
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unesterified and esterified cholesterol (UC and EC), respec-
tively. EC, accounting for approximately 70% of total choles-
terol in humans, is used for storage and transport. UC is
essential to all animal cells in roles of membrane integrity,
fluidity, and permeability. Membrane UC is intercalated among
phospholipids (PL) and concentrated in lipid rafts to influence
many cellular activities, include gene transcription, nerve
conduction, and synaptogenesis. Three physical forms—oily
droplets, lamellar membranes, and monohydrate crystals—
differ in the relative proportions of EC, UC, and PL. For
transport through plasma and interstitial fluid, UC and EC form
with apolipoproteins, PL, and triglycerides (TG) spherical
multimolecular complexes called lipoproteins. Plasma lipopro-
tein classes identified by ultracentrifugation include (from large
to small) chylomicrons (CM), very low-density (VLDL), low-
density (LDL), and high-density (HDL) lipoproteins. Apolipo-
protein B-100 (apoB-100) is the principal protein of LDL and is
present with apoE in VLDL of hepatic origin, which is the
parent particle of LDL. Apolipoprotein A-I (apoA-I) is the
principal protein of plasma HDL. Brain HDL lipoproteins are
rich in apoE.74 Cross talk between plasma lipoproteins and
complement components is under investigation.73

Cells have many ways to efflux UC, and RPE may be capable
of all, because some evidence currently exists for many. These
include transfer to circulating HDL,75 complexing with
endogenously synthesized apolipoproteins, conversion to an
oxysterol capable of passing through cellular membranes,76

and release as microvesicles (budding of plasma membrane) or
exosomes (trafficked from endosomes).7 Conversely, lipopro-
tein particles and milk fat represent the only known ways by
which cells release EC.

GENETICS AND GENE EXPRESSION STUDIES RELEVANT

TO LIPIDS

AMD’s major genetic associations are complement factor H
(CFH)78 and ARMS2, a gene with an uncertain function, now
separated statistically from HTRA1, also on chromosome 10.79

Among pathways, lipids are the most highly implicated after
complement.80 Candidate gene studies reported an association
with AMD of single nucleotide polymorphisms (SNP) in
APOE.81,82 Genome-wide association studies (GWAS) later also
identified SNPs associated with advanced AMD in CETP,
ABCA1, and LIPC, best known from plasma HDL homeosta-
sis.83,84 The International Age-related Macular Degeneration
Genomics Consortium found associations of these genes with
AMD (n ¼ 16,144 cases and 17,832 controls) but with not
elevated levels of plasma HDL85 (see Refs. 86–88). The
Consortium dataset was probed via Mendelian randomiza-
tion,89 which showed that three variants of genes associated
with plasma lipid levels (LIPC, 2; CETP, 1) reached genome-
level significance, placing AMD between cardiovascular disease
and Alzheimer disease in the strength of lipid gene associa-
tions. SNPs in LIPC and ABCA1 are associated with interme-
diate and large drusen, and CFH, C3, C2, and ARMS2/HTRA1,
large drusen.90 A rare CFH variant is associated with abundant
soft drusen,91 and two CFH SNPs, with greater drusen area in
central macula.92

These studies and others72,93 suggest that lipid genes
impact AMD risk significantly, yet independent of, or even
reverse to, plasma lipoprotein profiles from cardiovascular
disease, a paradox likely related to the existence of intraocular
regulatory mechanisms. In normal human donor eyes, micro-
array93 and comprehensive RNA-sequencing94 analysis demon-
strated that scores of genes controlling all aspects of
cholesterol and lipoprotein homeostasis are expressed in both
neurosensory retina and RPE. Immunolocalization using

validated antibodies and polarized RPE (in vivo or high-fidelity
culture, Refs. in 34) include APOE (photoreceptor outer
segments, RPE, Müller cells, drusen, and SDD); ABCA1 (diffuse
labeling of RPE cell bodies); CETP (photoreceptor outer
segments and outer plexiform layer (OPL), with some labeling
in the choroid); LIPC (all retinal neurons including photore-
ceptors and ganglion cells plus RPE, and not in Müller cells).
Thus, theories of AMD pathogenesis based on genes well
studied in liver, intestine, adipose tissue, and brain must also
incorporate chorioretinal expression.94

Human retina expresses two hallmark genes of hepatic and
intestinal lipoprotein secretion, microsomal TG transfer
protein (MTTP) and apoB (APOB) (for expert review see Ref.
95). Localization of both proteins in RPE and in retinal ganglion
cells appears consistent with endoplasmic reticulum.96 Secre-
tion of full-length apoB-100 was demonstrated in rat-97 and
human-derived RPE cell lines98 and in mouse RPE-choroid
explants.99

MTTP is a soluble heterodimer100,101 that co-
translationally transfers lipid to apoB to ensure correct
folding.102,103 Cells expressing apoB without MTTP cannot
secrete lipoproteins.104–107 ApoB production is regulated via
co- and posttranslational degradation by the ubiquitin-protea-
some system, which is in turn regulated by lipid availability.108

ApoB’s classic function is delivering exogenous and endoge-
nous TG, cholesterol, and lipophilic vitamins throughout the
body as part of VLDL/LDL and chylomicrons. ApoB is also
expressed in kidney, placenta, and heart,109,110 apparently to
regulate TG content and forestall lipotoxicity.111 In mice,
absence of apoB is lethal in utero, and reduced apoB causes
neural tube defects.112,113 Lack of functional MTTP and apoB
results in abetalipoproteinemia (ABL, OMIM 200100) and
hypobetalipoproteinemia (HBL, OMIM 615558), rare Mendelian
disorders that include a pigmentary retinopathy and ataxic
neuropathy. Attributed to impaired delivery of lipophilic
vitamins, ABL/HBL are partly alleviated by long-term dietary
supplementation.114 Intraocular apoB and MTTP expression
indicates that ABL/HBL are intrinsic degenerations and that
lipoprotein assembly and secretion are required for retinal
health and good vision. It also means abundant research on
hepatic and intestinal lipoproteins are relevant to AMD.

SOFT DRUSEN, BLIND: LIFELONG PHYSIOLOGY,
UNCOVERED BY AGING

In the 19th century Donders,115 Wedl,116 and Müller117

discovered drusen; Wedl116 described them as lipid globules.
Long-standing theories for druse formation117 are transforma-
tion of the overlying RPE and deposition of materials onto BrM.
The latter is now accepted.118

S.H. and J.P. Sarks, two ophthalmologists in Australia,
together and in collaboration with pathologist M.C. Killings-
worth, contributed foundational AMD pathology, including the
heterogeneity of drusen within a heterogeneously presenting
disease.23,40,60,65,119–122 Studies using panoramic electron
microscopy of affected macular tissue from clinically docu-
mented eyes of S.H. Sarks’ patients40,60,119–121,123,124 defini-
tively localized drusen in the subRPE-BL space, distinct from
the overlying RPE-BL/BLamD and underlying ICL, and proved
that clinical druse phenotypes differed in ultrastructure and
thus in composition.60

Soft drusen are dome-shaped with sloping sides125 and filled
with ‘membranous debris’60 (Figs. 2, 4), implying lipids, and
considered by the Sarks to set the disease course. Soft drusen
and BLinD are two physical forms (lump and layer, respective-
ly), often continuous,126 of the same material; BLinD was also
called ‘‘diffuse drusen’’ by paraffin histology.127 When soft
drusen/BLinD are processed for conventional thin-section
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electron microscopy using osmium postfixation, biomechani-
cal fragility23,128,129 and partial extraction of lipid combine to
produce curvilinear elements resembling coiled membranes
(Figs. 4C, 4D). Thus, the principal soft druse component was
initially called membranous debris,120,123 influencing mecha-
nistic hypotheses and development of model systems exhibit-
ing cellular membrane release.130,131 Also, descriptions of
aging BrM using conventional osmium postfixed tissue
mentioned vesicles (i.e., membranous coils with aqueous
interiors).132,133

Lipid-preserving histochemical and ultrastructural tech-
niques united ‘‘vesicles’’ and ‘‘membranous debris’’ as mani-
festations of lipoprotein particles at different levels of
preservation and disintegrity. Evidence for lipoprotein involve-
ment is best for pre-BLinD (Fig. 3C) and hard drusen, where
electron-dense spherical particles are visible, and more than
40% of druse volume is Folch-extractable lipid.134 Soft drusen/
BLinD are biomechanically fragile (called ‘‘localized detach-
ments of BLamD’’)127 so evidence for their composition rests
on consistent ultrastructural and histochemical results across
studies. Soft drusen/BLinD exhibit polygonal regions of
homogeneously and moderately electron-dense material (Fig.
4), originally called ‘‘hard drusen breaking up.’’ When
prepared by sterol-specific filipin histochemistry, these shapes
are EC-rich lakes.135,136 Similar processes occur in the lipid-rich
cores of atherosclerotic plaques, where plasma LDL insu-
dates137,138 and binds to extracellular matrix, followed by
particle surface degradation, fusion, and pooling of core lipids
to create UC-rich liposomes139,140; these processes can be
mimicked in vitro by physically disrupting LDL.141

A natural history of aging BrM (17–92 years) using osmium
tannic acid post-fixation showed that ‘‘vesicles’’ were solid,
spherical particles approximately 80 nm in diameter. Further,
quick-freeze deep-etch analysis of BrM (27–86 years; Fig.
3C)17,142 revealed that particles had a surface-and-core
morphology consistent with lipoproteins.143,144 Lipoprotein
particles also appear in multivesicular bodies in BrM,17,144–146

and in lines crossing BLamD.126,127,147,148 Both studies
demonstrated three to four rows of densely packed lipopro-
teins in the subRPE-BL space, logically the direct precursors of
BLinD. This formation, first called Lipid Wall, represents
preBLinD (Fig. 3C).143,144 The nondescript fluid phase
surrounding particles contain proteins and other components
not discernible at these magnifications. We proposed the name
‘‘lipoprotein-derived debris’’149 for masses of modified lipo-
proteins in soft drusen/BLinD (Figs. 3D, 4C, 4D). This debris
also appears in basal BLamD (basal mounds)121,123,150,151 and
rarely, within large vacuoles in RPE.123,126,152 Similar material
said to occupy the subretinal space66,123 is really SDD (see the
Subretinal Drusenoid Deposits: Extracellular, Space-Filling,
Distinct From Drusen section).

A lipophilic barrier in aged BrM blocking normal, choroid-
directed fluid efflux from the RPE was postulated by Bird and
Marshall153 to explain RPE detachments in older adults. A
seminal study by Pauleikhoff et al.16 demonstrated that oil red
O binding lipids localized exclusively to BrM of healthy human
eyes. This staining was abundant in adults 61 years and older,
variably present in midlife adults, and absent in young adults.
Direct assay confirmed the age-related increase (although not
the initially reported composition).154,155 Marshall employed
BrM explants to explore transport across this tissue.156–158

Later analysis showed excellent correlation of an age-related
increase in resistivity (inverse of hydraulic conductance) with
content of hydrophobic EC.159

Specific histochemistry and analytic biochemistry combine
with gene expression (see the Genetics and Gene Expression
Studies Relevant to Lipids section) to support the concept of
EC- and linoleate-rich, apoB, apoE-containing, large lipoprotein

particles secreted by RPE (Figs. 3E, 3F). The oil red O-binding
material is EC, verified by multiple direct assays.17,97,144,160 EC
accumulates markedly in BrM, in 7-fold higher quantities in
macula than periphery.17,18 EC localizes exclusively to BrM
whereas UC and PL, also present, additionally localize to
nearby cellular membranes.161 Particles 60 to 80 nm in
diameter and with flotation properties and spherical shapes
indicating neutral lipid cores are isolable from healthy human
BrM.97,144 In the same fractions are also apolipoproteins B, A-I,
and E. BrM lipoproteins are highly EC-enriched relative to
TG,17,97,144,160 unlike hepatic VLDL, of similar diameter. Thus,
BrM lipoproteins are large like VLDL and EC-rich like
atherogenic LDL. In contrast, the neurosensory retina contains
little EC.17,160

Lipoproteins are assembled from multiple lipid sources, and
fatty acid profiling of EC and other lipid classes in BrM
lipoproteins and extracts allowed inferences about the source
of this component. Docosahexaenoate (22:n6) is distinctively
high in PL of outer segment membranes162 and neural tissue in
general. Yet, high-performance liquid chromatography in two
laboratories showed that all lipid classes in BrM are overwhelm-
ingly dominated by the fatty acid linoleate (18:2, most abundant
in plasma) with little docosahexaenoate.97,160 This result
suggests that RPE recycles docosahexaenoate back to photore-
ceptors efficiently, as postulated,163 and that plasma lipoproteins
are the major fatty acid sources to BrM lipids. On the basis of
fatty acid composition alone, it is not possible to distinguish BrM
lipoproteins from those of plasma origin, in transit to RPE from
choriocapillaris. However, BrM lipoprotein composition and
gene expression support a local source, because enrichment
with EC over TG differs sharply from plasma VLDL, and
intracellular gene and protein data (see the Genetics and Gene
Expression Studies Relevant to Lipids section) indicate RPE
capacity for lipoprotein assembly and secretion.

A long-standing hypothesis164 states that debris in aging
BrM represents outer segment membranes phagocytosed and
processed by RPE.165 Outer segment UC content is notably
low93,166,167 but could be concentrated in bulk phagocytosis
by RPE.150 Figure 5 expands this model by postulating that the
fatty acids in this material come largely from diet. BrM lipid
deposition (steps 1–2, Fig. 5) is proposed as a recycling system
in which plasma lipoproteins delivering dietary essentials are
stripped of cargo destined for photoreceptors. Unneeded fatty
acids and UC are repackaged with outer segment UC for
secretion to BrM and eventual choroidal clearance. One appeal
of this model is the specificity for BrM, unlike models involving
by-products of other lipids.168,169 Soft drusen/BLinD form
(steps 3–4, Fig. 5) when egress is blocked through aging BrM/
ChC, either due to abnormal amounts or types of BrM proteins,
loss/dysfunction of ChC, loss of VEGF sustenance to ChC, or
all. Aged BrM and subsequent soft drusen/BLinD could act as a
transport barrier to large molecular complexes,170 a source of
peroxidizable proinflammatory lipids,171,172 and part of an
increased diffusion distance impeding oxygen exchange.173

THE CALCIFIC END-STAGE OF SOFT DRUSEN AND

DIFFERENTIATION FROM AMYLOID b
One end-stage of soft drusen is calcification, inferred from
glistening fundus appearance35 and in tissues, refractility,62,123

von Kossa staining,128,174,175 and microanalysis.176 Concentric
shells within spherules impart the glistening appearance and a
punctate reflectivity on OCT.175 Spherules less than 1-lm
diameter177 show strong hydroxyapatite signal via microprobe
synchrotron x-ray fluorescence and specific dyes,178,179 and
they may enclose other druse components and promote
deposit expansion.179 Nonreflective multilobular nodules
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calcific (5–100 lm) within drusen are associated with reduced
autofluorescence signal of overlying RPE.49,177 Hydroxyapatite
is also abundant in subRPE deposits created by well-differen-
tiated cultured RPE,151 emphasizing the importance of
basolaterally directed physiologic mineral regulation.

An alternate interpretation stems from the finding of
colocalized and spherically distributed activation fragments of
complement C3 with amyloid b peptide, a major constituent of
Alzheimer disease neuritic plaques180 in some drusen of some
AMD eyes,181 with staining correlated to overall drusen load per
eye.182 Light and electron microscopy showed concentric
shells,129,182 which were not labeled by antibodies to other
amyloids.183,184 Many proteins bind to hydroxyapatite,185 which
is used in chromatography, raising the possibility that amyloid
binding to spherules is nonspecific. Amyloid b peptide was
recently found in inner retina of Alzheimer patients, signifying a
separate neurodegeneration, distant from drusen.186

OTHER COMPONENTS OF SOFT DRUSEN

Understanding druse composition is considered an important
route to discern pathways perturbed in AMD187 (Supplementary
Table S1). ApoE was an early, consistent, and abundant
component.81,135,187,188 Proteomics and immunohistochemistry
also revealed vitronectin, complement components, clusterin,
ATP synthase subunit beta, scavenger receptor B2, and retinol
dehydrogenase.134,189–191 Oxidatively modified proteins includ-

ing tissue metalloproteinase inhibitor 3 and vitronectin, and
carboxyethyl pyrrole protein adducts also191 supporting oxida-
tive damage as important in AMD progression.192

Many proteins, minerals such as zinc, and carbohydrates can
be confidently placed in macular drusen that confer progression
risk (Supplementary Table S1). However, it is unclear if these
signals are specific to macula, a question of biologic impor-
tance.4 Data comparing macular and peripheral drusen in the
same eyes are sparse.129,193 The macula is 3% of total retinal
area,194 requiring specific measures for its analysis. Many studies
assayed peripheral drusen,134,182 combined macular and periph-
eral drusen,191 or did not specify regional source.189 The
apparent synergy of immunohistochemistry with genetic
associations implicating complement was largely based on
labeling that cannot be definitively placed in the macula.
Neither membrane attack complex (terminal element of the
complement cascade)195 nor CD59196 localized to macular soft
drusen. Experimental studies suggest that BrM lipoprotein
binding can be modulated by plasma CFH factor H,197 and
genetics implicate a role for CFH in soft drusen biogenesis (see
the Genetics and Gene Expression Studies Relevant to Lipids
section). Continued investigation is warranted.

RPE LIPOFUSCIN – DISTINCT FROM DRUSEN

RPE lipofuscin comprises abundant and long-lasting intracel-
lular inclusion bodies, related to lysosomes, which are rich in

FIGURE 5. Lipid cycling pathways leading to soft drusen and an atherosclerosis-like progression in the sub-retinal pigment epithelium basal lamina
space. BLinD/soft drusen and SDD are localized external and internal to the RPE, respectively. Normal-aging RPE is at the left and center. AMD is at
right. Shown are RPE-based lipid recycling pathways for rods and cones that could drive formation of AMD extracellular lesions. (1) Plasma LDL and
HDL delivering lipophilic essentials, including vitamins E, A, lutein, and cholesterol (UC), enter basolateral RPE via LDL receptor and scavenger
receptors BI and BII, respectively. (2) ApoB, E lipoproteins secreted basolaterally by RPE (gold circles) are assembled from multiple lipid sources.
Fatty acids are dominated by linoleate, implicating internalized plasma lipoproteins (from step 1) as a major source, plus UC from all sources
esterified to EC. (3) Lipoproteins retained by binding to BrM extracellular matrix accumulate throughout adulthood (perhaps in concert with less
efficient transport by aged choriocapillaries), creating pre-BLinD between the RPE-BL and the inner collagenous layer of BrM. (4) Lipoproteins
degrade, fuse, and form lipid pools within BLinD/soft drusen, making them biomechanically fragile, proinflammatory, and cytotoxic. (5) Disks in rod
OS lose UC and gain docosahexaenoate in transit from OS base to tip (shown as loss of white). OS-derived docosahexaenoate stored as
triacylglycerol in RPE after phagocytosis return to OS. The mechanism of transfer is unknown but could be familiar proteins like interphotoreceptor
retinoid-binding protein or hypothetical HDL particles cycling between RPE and photoreceptors, especially under rod-rich perifovea, where
subretinal drusenoid deposit forms. (6) Cone OS maintain high-UC content along their length, because their disks are comb-like projections of
plasma membrane. Cone OS UC enters RPE via disk shedding, lysosomal uptake, and acid lipase activity. UC is released for intracellular transfer,
esterification, and assembly into basolaterally secreted lipoproteins, especially under cone-rich fovea. Reprinted with permission from Pikuleva IA,
Curcio CA. Cholesterol in the retina: the best is yet to come. Prog Ret Eye Res. 2014;41:64–89. Copyright � 2014 Elsevier Ltd.
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bisretinoids (vitamin A derivatives).198 Appearing in humans
in childhood and increasing throughout adulthood, RPE
lipofuscin is the principal signal source of fundus autofluo-
rescence imaging. Lipofuscin has been proposed as a source
of intermediates in the pathway to age-related glycation
products in drusen.199,200 Evidence included in vitro stud-
ies201 exposing cells to a lipofuscin fluorophore recently
found to be less abundant in macula than in periphery.202–207

Histopathology of human AMD eyes indicate that lipofuscin is
present in RPE40,60,121,123 and rarely in drusen.129 Further
evidence that lipofuscin is not a major source of druse
components includes different topographies of lipofuscin
(high in perifovea208,209) and soft drusen (high in central
macula) and different emission spectra of fluorophores in
lipofuscin versus soft drusen.210 Because lipofuscin-attribut-
able autofluorescence is a superb reporter of RPE metabolism
that can be combined with OCT for subcellular-level insight in
vivo,211 the biology and role in AMD pathophysiology of RPE
lipofuscin remains a research priority.

BLAMD - DISTINCT FROM DRUSEN, IMPORTANT IN

DRUSE BIOGENESIS

BLamD is a distinct deposit meriting its own study (Fig. 1).
Continuous subfoveal BLamD is considered diagnostic for
AMD, and continuous BLamD in the presence of BLinD is an
early AMD threshold.119,212 BLamD’s role besides association
with drusen can now be explored in clinical OCT. If RPE is
present, BLamD is shadowed and appears hyporeflective.213 If
RPE is absent, BLamD is a moderately reflective line across the
atrophic macula.214,215

In many older healthy eyes BLamD forms small patches (~5-
lm wide) between the basolateral RPE plasma membrane and
the RPE-BL. Early (palisade) BLamD is discontinuous, thin, and
fibrous. In AMD, continuous BLamD is 15-lm thick or
more.121,150,216 Late BLamD is thick, multilayered, and
scalloped on the inner aspect.123,126,147,214 BLamD ultrastruc-
ture resembles basement membrane, containing laminin,
fibronectin, type IV, and type VI collagen with 120-nm
periodicity,217–220 as well as vitronectin, matrix metalloprotei-
nase (MMP), metalloproteinase inhibitor 3 (TIMP-3), C3, and
C5b-9.216 Eyes with BLamD also tend to have high drusen
loads. BLamD contains lipid-rich particles transiting to
BrM147,150 that aggregate as basal mounds121 (Fig. 9B151; Figs.
3E–H150). By retaining lipoproteins en route from RPE to BrM,
BLamD may increase exposure time to oxidizing agents that
result in proinflammatory, cytotoxic lipids.221 Some inherited
retinopathies exhibit BLamD containing lipid and associate
with drusen30,222 and/or type 1 (subRPE) neovasculariza-

tion.147 Other retinopathies lacking drusen also have BLamD223

suggesting it is a nonspecific RPE stress response with a
specific role in AMD.

BLamD and BLinD are often jointly named ‘‘basal deposits.’’
This imprecise term (to which this author added148) comes
from low resolution paraffin and cryosection histology and is
unwarranted if epoxy-resin histology or transmission electron
microscopy is available. The commendable goal of ‘‘determin-
ing the origin and pathogenesis of BLamD and BLinD as a route
to preventive measures’’127 is best served by high-resolution
visualization techniques and precise terminology.

SUBRETINAL DRUSENOID DEPOSITS: EXTRACELLULAR,
SPACE-FILLING, DISTINCT FROM DRUSEN

As reviewed,34 ‘‘drusen seen in blue light’’ reported in 1990224

were called various names depending on detection technology
and patient population,225 finally settling on reticular pseudo-
drusen (viewed en face)65 and SDD (viewed cross-sectional-
ly).66,67 In 1988 Sarks et al.123 described by electron
microscopy ‘‘focal collections of membranous debris’’123 in
the subretinal space (see the Soft Drusen, BLinD: Lifelong
Physiology, Uncovered by Aging section).65 In a donor eye,
Rudolf et al.66 described regularly spaced deposits, distinct
from photoreceptors and RPE. Definitive histology of clinical
cases122,226 established the presence of extracellular deposits.
The association of SDD with atrophy,227 intraretinal neovascu-
larization,228 and photoreceptor degeneration229,230 indicates a
place for SDD in the AMD spectrum.1 Beyond location, SDD
differs from soft drusen/BLinD (Table 1) in lipid, protein, and
mineral content, specificity for AMD, and association with
neovascular subtypes.34 A histologic survey of AMD donor
eyes225 showing that SDD was thickest in the perifovea, and
that soft drusen/BLinD was thickest under the fovea, leading to
a novel suggestion that deposits reflect differential physiology
of rod and cone photoreceptors, respectively. Hypothesized
driving pathways include lipid transport via lipoproteins (Fig.
5) and/or interphotoreceptor retinoid binding protein.34 A
comprehensive understanding of SDD molecular composition
is urgently needed.

PROOF-OF-CONCEPT VIA DRUSEN-IN-A-DISH CULTURE

SYSTEMS

The BrM lipoproteins that make up soft drusen are thus
postulated as dual-source, with fatty acids coming from uptake
of plasma lipoproteins and cholesterol coming from outer
segments as well (Fig. 5). If diet is an important driver of

TABLE 1. Differentiating Soft Drusen From Subretinal Drusenoid Deposit

Soft Drusen/BLinD SDD Reference

Location Between the RPE-BL and ICL of BrM*

(sub-RPE-BL space)

Between RPE and photoreceptors

(subretinal space)

66, 122, 123, 225, 226

Proteins ApoE, vitronectin, CFH; CD59� ApoE, vitronectin, CFH; CD59þ 66, 226

Lipids Unesterified and esterified cholesterol;

oil red O-binding

Unesterified cholesterol; oil red O

binding

150, 226, 359

Minerals Hydroxyapatite Undetected to date 151, 175, 179, 254

Topography Follows cones (BLinD) Follows rods 225, 227, 360

Specificity for AMD AMD AMD; inherited diseases of BrM, retinoid

transport

60, 123, 126, 361–365

Associated neovascular

subtype

Type 1 (subRPE), 2 (subRPE, subretinal) Type 3 (intraretinal) 228, 366–368

* RPE-BL, basal lamina of the RPE.
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constitutive lipid cycling pathways, then cultured RPE cells
might generate deposits in vitro with only culture media
containing serum (and plasma lipoproteins) and lacking outer
segments. Amin et al.131 demonstrated membranous material
between the ARPE-19 cell line and a solid surface in 11 weeks
of supplementation with a retinal extract. Recent advances
include the use of commercially available culture medium231

over custom formulations232 and culture well inserts that allow
independent monitoring of apical and basal chambers of
polarized cells, essential for parsing druse- and SDD-relevant
pathways. In a proof-of-principle study by Johnson et al.,146

cultured fetal human RPE on 100-lm thick porous supports in
a standard medium without retinal supplementation produced
particulate deposition of apoE-immunoreactive material within
the insert (replicated in Ref. 151).

Using a 10-lm thick polyester membrane that restricted
access to the basal compartment to pores crossing the insert,
Pilgrim et al.151 found that beginning at 8-weeks polarized and
highly differentiated primary porcine RPE lay down extensive
deposits on the insert surface. Deposits were approximately 2-
lm thick, extracellular, electron-dense, continuous, and
sometime focal, with similar material filling the insert pores.
Deposits exhibited histochemical and spectroscopic signatures
of soft drusen, including lipid, apoE, and hydroxyapatite.
Because cells were polygonal, had good transepithelial
resistance, and expressed RPE-specific genes, including MTTP,
cells appeared functional. Thus, deposits formed, because
egress through the insert was blocked as the pores filled. These
data strongly suggest that dietary input is required for druse
initiation. Outer segments are not required, although they
clearly shape deposit composition in vivo, nor were exogenous
stressors. Learning what aspects of culture medium are
essential will require selective depletion experiments.

Similarly, Galloway et al.233 showed that induced pluripo-
tent stem cells (iPS) from patients with inherited retinopathies
(see the BLamD - Distinct From Drusen, Important in Druse
Biogenesis section) also generate electron-dense deposits
between the RPE-BL and culture dish inserts. Deposit was
generally sparse and discontinuous and varied according to
genotype. Layers of collagen IV and apoE immunoreactivity
resembled the RPE-BL and subRPE-BL space in vivo, respec-
tively. Contrary to previous findings,146 exposure to human
serum was not required to initiate deposits but did enrich them
with C5b-9 immunoreactivity. Deposit sparseness relative to
Pilgrim et al.151 may be due to withdrawal of fetal bovine
serum and/or use of iPS cells at passage 3. The authors
concluded that RPE dysfunction leads to deposits in these iPS
cells that express mutant genes.233 However, deposits can be
made by wild-type, differentiated porcine RPE.151

Culture systems are valuable when functional RPE can be
studied in isolation and can demonstrate the minimum
requirements for deposit. They offer limited mechanistic
insights beyond that, in the absence of choroid and retina. In
vivo, the ‘‘insert’’ to which RPE-BL attaches is ICL of BrM. Data
suggest that aged BrM/ChC acts as a physical barrier to retain
constitutively secreted material that accumulates (as it does in
vivo) under the RPE.142 Neither cell culture studies nor other
approaches have addressed whether BrM protein composition,
BrM molecular sieving properties, inefficient translocation by
aging ChC endothelium, or other factors initiate the binding of
lipid in situ.234–236 Atherosclerosis research may be a source of
ideas.237,238

HOW SOFT DRUSEN LEAD TO ATROPHY

AMD natural history is now visualizable at the cellular level
with optimized structural eye-tracked OCT imaging.239 A

pathway from soft drusen to subRPE neovascularization,
includes gradients of VEGF secretion by stressed RPE,
macrophage activity in breaching BrM, invading capillaries
that remove or replace friable deposits, and damage to
surrounding cells by peroxidized lipids.192,221,240 Recent data
now also strongly implicate drusen as a causative factor in GA,
further stimulating interest in targeting drusen to prevent or
delay atrophy.

Clinicopathologic correlation,124 epidemiology,41,241,242

and clinical observation243 show that hyperpigmentation is
the largest intraocular risk factor for progression after drusen
abundance. In OCT, intraretinal hyperreflective foci found
overlying drusen244–247 and appearing frequently in photore-
ceptor layers47,248 are correlated with hyperpigmentation on
CFP248,249 and are now attributed to anteriorly migrated
RPE.250 Reflective foci seen by either in vivo or ex vivo OCT
could be directly linked to intraretinal RPE by histology251–256

and distinguished from cells with lipid droplets (presumed
microglia or macrophages) in neovascular AMD.252,255 A high-
resolution histology survey of RPE morphology suggested two
main pathways of RPE fate.239 One pathway, apparently
apoptotic, comprised the shedding of RPE organelles into
underlying BLamD. A second pathway comprised rounding and
sloughing of cells into the subretinal space, followed by
anterior migration into the neurosensory retina, in coordina-
tion with Müller cells and photoreceptors at the external
limiting membrane.

Drusen are dynamic, coalescing and disappearing in a
manner suggestive of regulated processes.60,257–260 Over 5 to 7
years, 20% to 34% spontaneously disappear.261–263 Others
disappear after retinal detachment.91 Drusenoid pigment
epithelial detachment (PED; i.e., drusen with >350 lm base
diameter) is a defined route to atrophy.123,264 A PED lifecycle
was determined by measuring deposit volume in OCT scans for
periods up to 6.6 years.265 Deposits grew slowly and collapsed
quickly, with a legacy of complete RPE and outer retinal
atrophy (Fig. 6). Before collapse, the RPE layer thickened at the
druse apex, hyperreflective foci appeared vertically above in
the retina, and the RPE-BL disintegrated.254 A similar lifecycle
was demonstrated independently for more than 6000 RPE
elevations of varying sizes.266 In some eyes, RPE death/
migration leaves a raised line of reflective persistent BLamD
across the atrophic area.215

These spatiotemporal characteristics together with cell
culture studies (see the Proof-of-Concept Via Drusen-in-a-Dish
Culture Systems section) clarify how RPE cells die over drusen.
If a druse is growing, the RPE is functional enough to secrete
druse components, which then back up against the BrM-ChC
complex due to slowed clearance.151 When the druse gets
large enough, RPE cells on the apex either migrate or die. Then
the druse collapses, because druse component production is
discontinued, and clearing processes catch up. It has been
thought that as drusen collapse, the RPE dies, but the contrary
is true. Further, because drusenoid PED are the largest deposits
on a continuum leading to GA, we can judiciously extrapolate
to drusen-associated atrophy overall.267 Interestingly, other
clinical studies support this overall model, including drusen
over choroidal nevi that compress ChC59 and diminished ChC
flow signal under drusen by OCT angiography.268

Anterior migration of RPE suggests attractants from the
retina, repellents in the druse, or both. Oxygen tension is
reduced by 30% to 50% at druse apices, depending on
height.173,269 RPE atop drusen are maximally distant from the
ChC and may migrate to seek oxygen from retinal capillaries. In
intraretinal neovascularization (retinal angiomatous prolifera-
tion), ectopic RPE cells positive for VEGF immunoreactivity are
found immediately adjacent to capillaries.255,270,271 Further,
druse volume is a strong predictor of which individual deposits
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proceed to atrophy.272 Data can support a model of RPE cell
death related to distance from the ChC, in concert with local
lipotoxicity,172 driven by hypoxia, micronutrient deficiency,
and bioenergetic failure, with drusen the common underlying
mechanism.

CONTINUING TO LEARN FROM ATHEROSCLEROTIC

CARDIOVASCULAR DISEASE

Atherosclerotic cardiovascular disease has been a rich source
of molecules, mechanisms, techniques, and inspiration for
approaching the biology of soft drusen and new treatments
and preventions. Arguably, the several biologic pathways for
AMD risk outlined by meta-analyses of GWAS80,273 align along
an atherosclerotic progression.72

Table 2 keeps this comparison in perspective by showing
that despite many similarities at the level of the vessel wall,
from calcific end-stages to extracellular matrix regulation to
lipoprotein sources of cholesterol, the top-level biologic risk
factors of AMD and cardiovascular disease (e.g., plasma LDL
and apoE4 genotype) are dissociated. The evidence that lipid
deposition in aging BrM is dictated by needs of outer retinal
cells and not an ocular manifestation of systemic perifibrous
lipid in human connective tissues and atherosclerosis is
compelling. Nevertheless, the commonality of lipoprotein-
instigated vascular disease suggests that the many antidyslipi-
demic agents developed for cardiovascular disease may be
intelligently probed for their utility in AMD.

THERAPEUTIC APPROACHES TO SOFT DRUSEN

Our hypotheses motivate the pharmacologic targeting of soft
drusen components and antecedent processes to prevent
downstream sequelae, a strategy similar to that used for stroke:
target vessel walls, so neurons and supporting cells will
benefit. We elaborated the Oil Spill strategies (Fig. 7)33,72:
detoxifying or removing drusen (‘‘Skimmers and Dispersants’’),
retarding drusen formation by preventing RPE lipoprotein
outflow (‘‘Top Kill’’), and preventing drusen formation by
modulating dietary input (‘‘Bottom Kill’’).

Statins are widely used inhibitors of 3-hydroxy-3-methylglu-
taryl-CoA reductase, the rate-limiting enzyme for cholesterol
synthesis, that reduce plasma LDL by upregulating LDL
receptors throughout the body, especially the liver. Because
statins also directly reduce apoB secretion,274 they are dual-
action Top Kill and Bottom Kill, because RPE and RPE-derived
cells expresses LDL receptors,275 secrete apoB, and respond
differentially to various statins. 98 Clinical evidence regarding
statin efficacy for AMD has been equivocal.276–278 Retrospec-
tive and population-based studies included patients at varying
AMD severity levels, used statins of varying lipophilicity, and
predated concepts of intraocular cholesterol and lipoprotein
homeostasis. Several authors have advocated revisiting sta-
tins.98,279,280

In a double-masked randomized placebo-controlled proof-
of-concept trial by Guymer and associates,279 114 normolipe-
mic AMD patients received either simvastatin 40 mg/day or
placebo. Patients with bilateral intermediate AMD receiving
simvastatin experienced a significant 2-fold decrease in the risk
of progression, with no effect seen in unilateral intermediate
AMD (advanced AMD in the fellow eye). Further, a single-arm,
two-center trial of 80 mg/day atorvastatin reported by Vavvas
and associates281 showed that over 1 year, 10 of 23 patients
exhibited marked reduction of large drusen, lack of progres-
sion to atrophy and neovascularization, and quiet RPE over
druse domes. Three patients dropped out due to side-effects

FIGURE 6. RPE demise linked to the life cycle of drusenoid pigment
epithelial detachment (DPED). (A) Eye-tracked, spectral-domain OCT,
in a 72-year-old patient. Intraretinal hyperreflective foci are first noted
at 7 months as localized hyperreflective lesions arising from the RPE-BL
band (yellow arrows). At 23 months, disruptions to the RPE-BL band
(green arrow) with increased light transmission (hypertransmission) to
the choroid are evident, followed by reduction in DPED volume until
41 months. (B) DPED volume increased slowly and declined rapidly in
this patient. Modified from Balaratnasingam C, Yannuzzi LA, Curcio CA,
et al. Associations between retinal pigment epithelium and drusen
volume changes during the lifecycle of large drusenoid pigment
epithelial detachments. Invest Ophthalmol Vis Sci. 2016;57:5479–
5489.

Understanding and Targeting Soft Drusen IOVS j Special Issue j Vol. 59 j No. 4 j AMD169



not uncommon at this dose. Although this study lacked
quantification of druse volume and a comparison group to
account for the natural history of druse dynamism, results were
singular and corroborated the previously seen lack of
progression.279

A ‘‘Skimmers and Dispersants’’ approach is exemplified by a
recent preclinical study of a lipid scavenger.282 Apolipoprotein
(apo) A-I mimetics are short (18 amino acids) synthetic

amphipathic helical peptides that emulate the antiatherogenic
properties of apoA-I (243 amino acids).283,284 Amphipathicity
allows peptides to sequester lipids and travel through an
aqueous environment. Peptide 4F has four phenylalanine
residues on the nonpolar face of the helix.283–289 It is anti-
inflammatory, avidly binding oxidized phospholipids and fatty
acid hydroperoxides290 and reducing large-artery atherosclerosis
in animal models.283,291–293 In phase II trials for cardiovascular
disease, systemic 4F was tolerated,294,295 but not advanced, due
to uneven absorption after oral administration. 4F’s small size
and the commonality of lipoprotein-instigated vascular disease
in atherosclerosis and AMD made it an excellent candidate for
targeting drusen and/or druse precursors. A popular model of
atherosclerosis, ApoE�/� mice also exhibit BrM disintegrity,
thickening, and EC accumulation at 10 to 11 months.282 One
eye was injected with 4F or a scrambled peptide (0.6, 1.2, 2.4
lg), and the fellow eye served as a control. Transmission
electron microscopy and perfringolysin-green fluorescent pro-
tein histochemistry showed at all doses that BrM ultrastructure
improved and EC was reduced.296 Animals receiving 4F tagged
with a fluorescent tracer exhibited fluorescence at 1 day
postinjection in BrM, remaining for at least 14 days, while
replenished from neurosensory retina. Many questions remain,
including effects on plasma inflammatory markers, precise lipids
removed, safety profile, and effects on retinal function.17,143

Despite limitations, this study demonstrated a tolerated and
effective pharmacologic reduction of BrM lipids from
mice.126,129 Because soft drusen are extracellular and loosely
packed,126,129 surface-active agents like 4F offer advantages.

Unlike targeting extracellular drusen, other lipid-based
approaches involve intracellular RPE lipid. For example, the
offloading of cellular cholesterol to circulating HDL via LXR

TABLE 2. Learning About AMD From Atherosclerotic Cardiovascular Disease

Compare and Contrast* at the Level of the Vessel Wall

CVD (Arterial Intima, Liver/Intestine) AMD (BrM, RPE)

Calcific, inflammatory, neovascular complications in a vessel wall Calcification of drusen and BrM, neovascularization types 1-2-3

Toxically modified lipoprotein components Linoleate hydroperoxide, 7-ketocholesterol

Lipid-rich and biomechanically unstable lesions (necrotic core of

plaque)

Soft drusen and basal linear deposit

Stereotypic locations in vasculature Central macula

Perifibrous lipid – lipoprotein binding to extracellular matrix in sub-

endothelial space

Age-related deposition of lipoproteins in BrM

Age-related thickening of sub-endothelial space Age-related thickening of BrM

Esterified, unesterified, crystalline cholesterol Esterified, unesterified cholesterol

LDL (VLDL remnant) as cholesterol source BrM lipoprotein as cholesterol source

ApoB,E lipoprotein particles ApoB,E lipoprotein particles

Lipoproteins of hepatocyte, enterocyte origin Lipoproteins of RPE origin

Macrophages are source of foam cells Macrophages active in neovascularization, druse clearance (with

Müller cells)

Physiological needs driving lipoprotein production (delivery of fuel,

cholesterol, lipophilic vitamins)

Physiological needs driving lipoprotein protein (recycling of unneeded

lipids from diet-delivery and outer segment phagocytosis to plasma)

Evolutionary selection of fitness Evolutionary selection of acute vision

Contrast* at the Level of Persons and Populations

CVD AMD

ApoE4 genotype Increase risk Decrease risk

Elevated plasma cholesterol or LDL Increase risk Not associated

Elevated plasma HDL Decrease risk 6 risk

Diabetes (type 2) Increase risk Not associated

Statin therapy Standard of care Under investigation

Antioxidant therapy 6 effect Standard of care

Table outlines the limitations of analogizing AMD and CVD.
* Contrast shown in italic.

FIGURE 7. Interlocking Oil Spill strategies for AMD. The RPE is a
polarized and constitutive secretor of lipoproteins bearing apolipopro-
teins B and E (and likely others). As such it fills a role like liver in
atherosclerosis, with the role of arterial intima played by BrM.
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agonists297 may reduce substrate available for apoB lipidation
and druse biogenesis. Another approach is to stimulating RPE
uptake of lipids, presumably to clear drusen (e.g., via the CD36
scavenger receptor).298 It is instructive to recall that among
agents modulating VLDL for cardiovascular disease, the lipid
content of source cells was a less fruitful target than impacting
the vessel wall through plasma lipid-lowering. Indeed, inhib-
itors of hepatic microsomal triglyceride transfer protein
(MTTP) and acyl cholesterol acyltransferase-1 caused steatosis
(fatty liver).108,299–302 Investigators should thus check for RPE
lipoidal degeneration, a steatosis-like intracellular accumula-
tion of lipid droplets associated with depressed electroretino-
grams.303–306

A major roadblock to clinical trials of drugs targeting drusen is
nonavailability of approved and appropriate endpoints, although
candidates exist. Visual acuity can remain good until late AMD.
Rod-mediated dark adaptation and low-luminance visual acuity
are sensitive to early disease stages but take time to adminis-
ter.307–309 The only imaging endpoint currently approved by
regulatory authorities is slowed expansion of GA viewed with
fundus autofluorescence, a bar which several agents failed to
meet.310–313 It is possible that GA is too late for intervention,
because photoreceptor degeneration and gliosis are already
severe.123,314–318 A earlier-stage surrogate endpoint is druse
volume,261 in the causal pathway to progression and readily
calculable from OCT scans.319 Another potential surrogate is
hyperreflective foci over drusen (migrating RPE254), a risk factor
for atrophy47,51,320 that can be quantified.272

MODEL SYSTEMS FOR MECHANISTIC AND

TRANSLATIONAL DRUSEN RESEARCH

Monkeys: Drusen Without Progression

Monkeys in closed colonies have strong matrilines that vary in
the degree of AMD pathology.321 They share with humans
AMD susceptibility genes322 and plasma hyperlipidemias.323

To date, monkeys have not exhibited neovascularization, GA,
BLamD, SDD, migratory RPE, or drusen with internal
structure visible on OCT,306 all typical for human AMD; this
possibly reflects a controlled environment and diet. Yet some
monkeys appear to have soft drusen and requisite Oil Spill
biology. Drusen with ‘‘membranous debris’’ and lipoprotein-
like particles in BrM were demonstrated by electron
microscopy.303 BrM exhibits both oil red O and filipin staining
for EC.305 A large study (n ¼ 60 eyes, 2- to 26-years old)
showed an age-related increase in immunoreactivity for 7-
ketocholesterol, an oxidation product of UC,172 that was
selective for RPE-choroid. Like humans, monkey drusen
contain apoE324 and carbohydrates,325 and BrM has entrap-
ment sites (i.e., upward swellings of the ICL). Unlike humans,
monkeys have cellular processes evaginated from RPE.40,326

Mouse Models Capture Some Pathways Well

Mice are experimentally advantageous yet exhibit only some
AMD-relevant biology. Relative to humans and nonhuman
primates, mice differ in the following ways: they are nocturnal;
lack an all-cone fovea, foveal pit, centrifugal displacement of
photoreceptor terminals, and long Henle fibers; have small
cones and densely packed outer segments; naturally lack
xanthophyll pigment; exhibit subretinal microglia in aging and
in retinal degenerations; have a uniform distribution of
bisretinoid A2E in RPE; have panretinal multinucleate RPE
(versus in Ref. 327); frequently have vacuolated RPE in
retinopathy (versus in Ref. 251); and do not express CETP and
thus transport cholesterol in plasma HDL rather than in LDL.

Nevertheless, components of AMD can be studied to great effect
in genetically engineered mice. Several models exhibit BLamD,
sometimes containing lipid,223,328–332 suggesting that mice have
apolipoprotein pathways but normally lack a retentive matrix.
Other mouse strains have EC in BrM,99,296,333 activated
RPE,334,335 spontaneous intraretinal neovascularization,336,337

and xanthophyll accumulation.338 Because AMD-risk genes like
APOE are expressed in several outer retinal cell types,
technologies for cell-specific knockouts will be especially
informative.339,340

It is agreed that mice lack drusen (hard or soft).197,341

Several studies claimed drusen in mice342–346 but did not meet
the Sarks standard of ultrastructurally confirmed focal,
extracellular, subRPE-BL material, correlated to fundus appear-
ance. Regularly spaced microglia appear in the subretinal space
of several aging mouse strains,347–349 and correlate to neither
human drusen nor SDD.226,350 Precision in specifying layer and
ultrastructural findings in animal models and benchmarking
against human pathology will accelerate progress on AMD.

Cell Culture Systems are Standardizing

Several RPE culture systems produce druse-relevant depos-
its,146,151,233 with one recreating a continuous deposit.151

Confluent and polygonal with sharp vertices, healthy RPE in
vivo maintains the physiologic blood–retina barrier and
exercises distinct roles vis à vis photoreceptors and the
choroid. Due to AMD deposits of differing composition in
subretinal and subRPE-BL compartments, polarity is more
essential than ever for RPE culture systems. Many protocols
exist for high-fidelity native and engineered RPE in culture,
emphasizing properties of the intact layer, particularly high
transepithelial resistance (‡250 MX).77,146,231,232,351–355 Of
current interest, cell-based therapies are raising expectations
for all RPE culture systems.356 Studies using nonconfluent
cells, cells with low transepithelial resistance, and high-passage
cell lines, such as human-derived ARPE-19, should be
interpreted cautiously. Ideally cultured RPE should be charac-
terized for polarity, barrier function, cytoskeletal precision, and
expression of RPE-specific genes.

FINAL THOUGHTS

Soft drusen are a very prominent intraocular risk factor that are
seen routinely in vivo. Yet the true impact of soft drusen on
AMD progression will be better understood when all the layers
in Figure 1 can be followed clinically and their contribution to
risk assessed. In less than decade thanks to OCT, SDD went
from invisible to a major contributor to retinal dysfunction.
Now the participation of BLamD is also becoming known. We
anticipate a day when BLinD is visible clinically and its risk
assessed along with drusen. In 2007 the Sarks et al.121 staged
eyes by the presence of ‘membranous debris’. Arguably some
of AMD’s infamous heterogeneity is because this specific
pathology cannot be directly followed in the clinic. Thus,
presentations currently attributed to individual variability may
be consequences of invisible BLinD (or other invisible
deposits). For example, Asian populations prone to neovascu-
larization without many drusen may have BLinD that escapes
detection. Fortunately, imaging technologies with promise of
revealing BLinD are emerging.210,357 There is still much to
learn about the biology of soft drusen, in the clinic and in the
laboratory. Nevertheless, current knowledge can motivate
targeting these deposits and contributory biologic processes,
to delay or avoid AMD’s sight-robbing late stages.

Limitations to this analysis are sparse experimental confir-
mation of hypotheses largely generated from human tissues and
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patients. Our hypotheses, while speculative, bring together
many evidence lines and do not exclude other major extant
hypotheses for AMD biology and may in fact occur in parallel.
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