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Abstract

Liquid biopsy is expected to be a promising cancer screening method because of its
low invasiveness and the possibility of detecting multiple types in a single test. In the
last decade, many studies on cancer detection using small RNAs in blood have been
reported. To put small RNA tests into practical use as a multiple cancer type screening
test, it is necessary to develop a method that can be applied to multiple facilities. We
collected samples of eight cancer types and healthy controls from 20 facilities to eval-
uate the performance of cancer type classification. A total of 2,475 cancer samples
and 496 healthy control samples were collected using a standardized protocol. After
obtaining a small RNA expression profile, we constructed a classification model and
evaluated its performance. First, we investigated the classification performance using
samples from five single facilities. Each model showed areas under the receiver curve
(AUC) ranging from 0.67 to 0.89. Second, we performed principal component analysis
(PCA) to examine the characteristics of the facilities. The degree of hemolysis and the
data acquisition period affected the expression profiles. Finally, we constructed the
classification model by reducing the influence of these factors, and its performance
had an AUC of 0.76. The results reveal that small RNA can be used for the classifica-
tion of cancer types in samples from a single facility. However, interfacility biases will
affect the classification of samples from multiple facilities. These findings will provide
important insights to improve the performance of multiple cancer type classifications

using small RNA expression profiles acquired from multiple facilities.
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1 | INTRODUCTION

Globally, the number of cancer patients has been increasing.
It is important to detect and treat cancer at an early stage be-
cause the survival rate decreases significantly as the disease pro-
gresses.? Various methods are used for cancer screening, including
computed tomography, endoscopy, X-ray, and PET. These screening
tests are effective in reducing cancer deaths.® However, under-
going numerous screening tests is physically hard, time-consuming,
and costly for patients.

As a solution to these problems, liquid biopsy is expected to be
a promising cancer-screening method because of its low invasive-
ness and ability to detect multiple cancer types simultaneously.
Circulating tumor DNA (ctDNA) and small RNAs (microRNA [miRNA]
and PIWI-interacting RNA [piRNA]) are the focus of cancer screening
tests.®1% In a study of multiple cancer classification using ctDNA,°
eight types of cancers were successfully classified, with a median
sensitivity of 70% and a specificity of over 99%. However, the clas-
sification performance of stage 1 was lower than that of stages 2
and 3. The performance of cancer classification by miRNAs has been
reported. In gastric cancer, the sensitivity and specificity were 73%
and 89%: in pancreatic and biliary tract cancers, they were 82%
and 97%'% in breast cancer, they were 97% and 83%'%; in cervical
cancer, they were 84% and 90%*; and in prostate cancer, they were
95% and 87%.1° In addition, several studies have reported that miR-
NAs can detect even early-stage cancers with high sensitivity, and it
is expected that miRNAs will be useful as an early cancer screening
test. 24V
However, issues remain for miRNA-based multiple cancer type
screening tests. First, the possibility of identifying cancer types by
collecting samples from multiple facilities has not been determined.
Second, there have been reports that small RNAs specific to can-
cer types have been identified, but the variety of small RNAs is not
consistent among reports.“’m’25 To overcome these issues, we col-
lected cancer and healthy control samples from multiple facilities
with a standardized protocol. Then, the classification accuracy was
evaluated by machine learning models constructed with the small

RNA expression profiles.

2 | MATERIALS AND METHODS

2.1 | Clinical samples

In this study, 2475 cancer samples and 496 healthy control samples
were collected from 20 facilities: BE, Kobe University; CH, Chiba
University; DA, Saitama Medical University, International Medical
Center; EH, National Cancer Center Hospital East; GM, Center
Hospital of the National Center for Global Health and Medicine;
HC, National Cancer Center Hospital, Cancer Screening Center;
HS, Harasanshin Hospital; JD, Juntendo University; KB, Kyoto
University; KC, Kanagawa Cancer Center; KH, Kurosawa Hospital;
NC, National Cancer Center Hospital; NY, Nagoya University; OC,

= 2145
Cancer Science Rio s

Osaka International Cancer Institute; OY, Okayama University; SG,
Sagara Hospital; SU, Showa University; TA, Osaka City University;
TM, Tokyo Medical University; and WG, Saitama Medical University,
Saitama Medical Center. Esophageal cancer (ESO), gastric cancer
(GAS), colorectal cancer (COL), liver and biliary tract cancer (LBI),
pancreatic cancer (PAN), lung cancer (LUN), breast cancer (BRE), and
prostate cancer (PRO) samples from stage O to 4 were obtained. The
stage classification was based on the 8th edition of the TNM clas-
sification published by the Union for International Cancer Control.
The ICD codes for each cancer type were ESO (C15), GAS (C16), COL
(C18, 19, 20), LBI (C22, 23, 24), PAN (C25), LUN (C34), BRE (C50),
and PRO (Cé61). All cancer samples were collected before the start of
treatments. Healthy control (CTR) samples were obtained according
to the criteria, with no obvious suspicion based on a comprehen-
sive evaluation of imaging studies, blood tests, and clinical findings.
Samples were collected by KB from 2013 to 2016; HC from 2016 to
2018; and NC, EH, OC, KC, JD, TM, HS, SG, GM, KH, WG, DA, OY,
BE, CH, TA, and SU from 2020 to 2021. The details are described
in Table S1. Informed consent was obtained from the participants.
This research was approved by the National Cancer Center Hospital
Institutional Review Board (approval number: 2018-200) and was

conducted according to the guidelines of the Declaration of Helsinki.

2.2 | Plasma sample collection

Blood samples were collected in vacuum tubes with EDTA-2Na and
refrigerated within 30 min. The blood samples were centrifuged only
once at 1,500-1,900 xg for 10 min within 12 h of venipuncture, and
plasma fractions were collected. The plasma samples were stored at
-80°C until further analysis, and more than two freeze-thaw cycles

were avoided.

2.3 | RNA purification

Small RNAs were automatically extracted from 300 pL of plasma
using the Maxwell RSC miRNA Plasma and Serum Kit (Promega)
with the Equipment Maxprep Liquid Handler (Promega) and Maxwell
RSC (Promega). The purifications were performed according to the

manufacturer’s instruction manual.

2.4 | Small RNA sequence data acquisition

cDNA libraries were synthesized from 5 pL of RNA eluate with 22
cycles of PCR using the QlAseq miRNA Library Kit (QIAGEN) with
the Biomek i5 Automated Liquid Handling Workstation (Beckman
Coulter). The concentration of each amplification product was meas-
ured with a QuantiFluor ONE ds DNA System (Promega). cDNA
libraries were merged in one tube at a final concentration of 1.0-
1.5 pmol/L. Small RNA sequence data were obtained using NextSeq
550Dx with the NextSeq 500/550 High Output Kit v2.5, 75 cycles
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(lllumina) and the NextSeq Phix Control Kit (Illumina). An automated
program was set up for each instrument according to the manufac-
turer’s instruction manual, and all the samples were processed using

the same program.

2.5 | Sequence data acquisition

To avoid bias toward certain cancer types in a particular experimen-
tal batch, data acquisition was conducted under the following condi-
tions. First, a batch consisted of at least three categories of samples.
Second, the number of samples from a single category should be
<50% of the total.

2.6 | Small RNA expression analysis

The raw sequence data were processed using fastp (version 0.19.6)%¢
to remove the amplification adapter sequence. The unique molecular
index (UMI) sequences and the probe adapter were trimmed using

umi_tools (version 1.0.1).%

Mapping was performed using Bowtie
(1.3.0) with reference to the human genome reference (hgl9). The
following options were applied: -n0, -vO, -I18, -k1, and --best. After
sorting with SAMtools (version 1.7),%% an index was created and
deduplicated with umi_tools. Then, using featureCounts (version
2.0.0),% 2,576 miRNAs and 27,683 piRNAs were identified, and the
expression levels of each gene were calculated using the follow-
ing annotation files: miRBase (version 20)30 with QlAseq Spikeins
and piRNAdb (version 1.7.5).3* The average total count of miRNAs
and piRNAs was 4.27 + 1.09 x 10° (mean + SD; min: 440,695, max:
8,890,949). Samples with a total count of <1,000,000 miRNAs
and piRNAs were omitted from subsequent analyses. For each of
2,576 miRNAs and 27,683 piRNAs, DESeq2°%%% was used for nor-
malization. Features were removed if they met the following cri-
teria: (i) genes with a minimum expression level of 50 or less in all
samples,and (ii) Pearson correlation coefficient with miR-369-3p of
[r|>0.5 to exclude miRNAs that are under the control of genomic
imprinting.3* The remaining 534 mi/piRNAs were normalized by

DESeq2 and used for subsequent analyses.

2.7 | Machine learning for multiple cancer
classification

XGBoost was used to classify the cancer types.35 Each experi-
ment was conducted 50 times with different random seeds, and
the dataset was randomly divided into 90% and 10% partitions for
training and testing, respectively. Hyperparameters were optimized
by Optuna®® to maximize the fivefold cross-validation accuracy or
the area under the receiver operating characteristic (ROC) curve
(AUC) score. The search ranges of the parameters were as follows:
learning_rate [0.01, 0.4], max_depth [3, 10], min_child_weight [0.1,
10], gamma [1e-8, 1.0], and colsample_bytree [0.6, 0.95]. For the

constructing classifier, the samples were randomly selected so that
each class would have the same number of samples in each experi-
ment. The SHAP value, and the contribution of all small RNAs was
quantified for each cancer type.37 of the cancer type classification
model was calculated

2.8 | Statistical analysis

The correlation analysis, principal component analysis (PCA),
Cohen'’s d value and box plots were performed using the statistical
analysis software R (version 3.6.3).%8 The effect size was calculated

from Cohen’s d value.

2.9 | Calculation of the hemolysis index

The hemolysis index was calculated from the small RNA expression
counts of each sample using miR-23a-3p for the miR-451a express
jon levels.37:3940

The following formula was used: Hemolysis index = Log, (miR-

451a) - Log, (miR-23a-3p).

2.10 | Feature selection based on principal
component analysis loading factors

For the first and second principal components in the PCA, the factor
loadings of each miRNA were calculated, the threshold values were
set, and the small RNAs were removed from the data according to
the threshold values. The small RNA lists for 10%, 15%, 20%, and

25% removal are shown in Table S2.

2.11 | One-dimensional nearest neighbor matching
The x-axis (PC1) and y-axis (PC2) of each sample in the PCA were
extracted, and the matching rate was defined as the probability that
both sides of an arbitrary point projected on the x-axis or y-axis were

in the same class.

3 | RESULTS

3.1 | Study design
Cancer and healthy control plasma samples were collected from
multiple facilities to construct and validate the cancer type classifi-
cation model. A total of 2,475 cancer samples and 496 healthy con-
trol samples were collected. Information on the age, sex, and stage
of the collected samples is summarized in Table 1.

For these 2,971 samples, the expression levels of small
RNAs (miRNAs and piRNAs) were measured by next-generation
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TABLE 1 Characteristics of the participants

Number of
Category samples
ESO 251
GAS 282
COL 335
LBI 321
PAN 315
LUN 335
BRE 350
PRO 286
CTR 496

Cancer Science 103

Age Sex (%) Stage (%)

Mean SD Male Female 0 1 2 3 4

65.7 8.9 182(73) 69 (27) 10 (4) 78(31) 51(20) 65 (26) 47 (19)
65.3 12.8 171 (61) 111 (39) 0 144 (51) 43(15) 41 (15) 54 (19)
64.7 11.8 181 (54) 154 (46) 11 (3) 86 (26) 83(25) 96 (29) 59 (18)
69.9 9.2 214 (67) 107 (33) 3(1) 69 (21) 101 (31) 72 (22) 76 (24)
66.9 10.5 174 (55) 141 (45) 5(2) 32(10) 75 (24) 56 (18) 147 (47)
67.9 10.8 216 (64) 119 (36) 9(3) 129 (39) 36 (11) 60 (18) 101 (30)
56.0 12.5 0 350 (100) 42 (12) 161 (46) 111 (32) 26(7) 10(3)
68.6 7.0 286 (100) 0 0 45 (15) 192 (67) 35(12) 14 (5)
49.6 10.9 252 (51) 244 (49)

Samples enrolled in this study: Cancers (n = 2,475), Healthy controls (n = 496)

Removed

A

/

4 low quality samples

Detected genes: 583 (488 miRNAs and 95 piRNAs )

Removed

A

A

49 imprinted genes

Retained genes: 534 (439 miRNAs and 95 piRNAs)

!

Dataset for classification models (Training data : Testdata=9:1)

Single facility models

v

Model 1
KB samples (n=634)

Model 2
OC samples (n=388)

Model 3
KC samples (n=306)

Model 4
NC samples (n=164)

Model 5
JD samples (n=145)

Multiple facilities model
Model 6
All samples (n=2,967)

FIGURE 1 Schematic of cancer type classification model establishment. Plasma samples were obtained from 2971 subjects, including
496 healthy controls (CTR) and 2475 cases. The small RNA sequences were matched to a database, and 583 genes were identified. Imprinted
genes and genes with low expression were removed, and 534 small RNAs were retained as features for the machine learning models. Cancer
classification Models 1-5 were constructed using samples obtained from five facilities, and Model 6 was constructed using samples from all

facilities

sequencing (NGS), and 583 types of small RNAs were detected.

Thirty-four imprinted genes located on chromosome 14g32.31 were

removed from our analysis because these genes were differentially

expressed in healthy controls. A total of 534 small RNAs were used

to construct the cancer classification models. First, samples of the

multiple cancer types were collected from a single facility, and the
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performance of the cancer type classification in each of the five
different facilities was examined using Models 1-5. Next, samples
collected from multiple facilities were used to evaluate the per-
formance of the classification model (Model 6) for multiple cancer
types to determine whether the same results could be obtained
across facilities (Figure 1).

3.2 | Verification of the reproducibility of data
acquisition

To identify cancer type-specific expression profiles, it is necessary
to have high reproducibility in data acquisition. To investigate the
reproducibility of this study, six different reference samples were
examined. For these reference samples, freezing and thawing were
performed in the same cycle numbers to avoid unexpected sample
alterations.

The correlation coefficients of the small RNA expression profiles
between the experiments were calculated. Among the six reference
samples, the highest mean value of the correlation coefficient was
0.993 (minimum 0.990, maximum 0.995), as shown in Figure 2A,C,
and the lowest mean value was 0.981 (minimum 0.969, maximum
0.992), as shown in Figure 2B,D. In the series of experiments, the cor-
relation coefficients ranged from 0.969 to 0.995 (Figure S1). These

results verified that the data acquisition was highly reproducible.

3.3 | Classification performance using each single-
facility sample

The small RNA expression profiles of samples from multiple cancer
types that were collected from five single facilities were obtained
to evaluate the classification performance (Models 1-5). The clas-
sification models were constructed by downsampling with the few-
est number of samples to equalize the cancer types. The facilities,
cancer types, and number of samples used to construct the models
are summarized in Table 2. The cancer type classification perfor-
mance outcomes of Models 1-5 are shown in Figure 3. The AUCs
of each model are shown in Figure S2. The sensitivities of Model
1 using COL, ESO, LBI, PAN, GAS, and CTR samples collected at
KB were 69%, 58%, 47%, 52%, 45%, and 73%, respectively. These
were higher than the sensitivity of 17% for six-class random clas-
sification. The AUC for the KB samples was 0.89 (95% confidence
interval [Cl], 0.88-0.89), as shown in Figure 3A. The sensitivities of
Model 2 using BRE, COL, LUN, PAN, and GAS samples collected at
OC were 83%, 30%, 38%, 34%, and 50%, respectively. These were
higher than the sensitivity of 20% for five-class random classifica-
tion. The AUC for the OC samples was 0.77 (95% Cl, 0.75-0.78), as
shown in Figure 3B. The sensitivities of Model 3 using BRE, LUN,
PRO, and GAS samples collected at KC were 56%, 42%, 52%, and
56%, respectively. These were higher than the sensitivity of 25% for
four-class random classification. The AUC was 0.76 (95% Cl, 0.74-
0.78), as shown in Figure 3C. The sensitivities of Model 4 using COL,

ESO, PAN, and GAS samples collected at NC were 31%, 52%, 38%,
and 47%, respectively. These were higher than the sensitivity of
25% for four-class random classification. The AUC was 0.67 (95%
Cl, 0.63-0.70), as shown in Figure 3D. The sensitivities of Model 5
using BRE, COL, LBI, and LUN samples collected at JD were 59%,
40%, 48%, and 52%, respectively. These were higher than the sensi-
tivity or 25% for four-class random classification. The AUC was 0.77
(95% Cl, 0.74-0.79), as shown in Figure 3E. Based on the above clas-
sification performance outcomes of the five facilities, Models 1-5
using samples from a single facility showed higher classification per-
formance outcomes than random classification. These data suggest
that a machine learning model with small RNA profiles can classify
multiple cancer types at least within a single facility.

Next, we evaluated the influence of stage on performance in
cancer classification. Stages 0O, 1, and 2 were grouped together as
early stages, and stages 3 and 4 were grouped together as advanced
stages. We selected KB and OC based on sample numbers and com-
pared their performance outcomes (Table S3). KB samples showed
the following sensitivities: COL (early 58%, advanced 44%), ESO
(early 42%, advanced 67%), GAS (early 71%, advanced 51%), PAN
(early 53%, advanced 65%), and LBI (early 56%, advanced 54%), as
shown in Figure S3A. OC samples showed the following sensitivities:
COL (early 57%, advanced 57%), LUN (early 67%, advanced 31%),
and PAN (early 21%, advanced 53%), as shown in Figure S3B. Early
stages showed equal to or higher sensitivities than advanced stages

in five out of eight classifications.

3.4 | principal component analysis using multiple-
facility samples

To explore facility-specific biases, we performed PCA using multiple-
facility samples. The color-coded PCA by cancer type, facility, and
data acquisition period are shown in Figure 4A,B,C. No clear clusters
of cancer types were observed. The data acquisition facilities and
the first principal component (PC1) were related, and clusters were
formed in some facilities. Regarding the data acquisition period,
clusters were formed in relation to the second principal component
(PC2).

To further clarify the reason for the clustering in some facilities,
the characteristics of the top 10 miRNAs of the factor loadings of
PC1 of each small RNA were investigated. Hsa-miR-144-3p, hsa-miR-
32-5p, and hsa-miR-96-5p were included in the top 10 miRNAs. These
small RNAs are known to be abundant in red blood cells (RBCs).*1™#2
Furthermore, other RBCs-derived miRNAs, such as hsa—miR—451a,40
hsa-miR-486-5p,** hsa-miR-4732-3p,*> and hsa-miR-363-3p,* were
enriched in higher rankings in PC1 factor loadings (Table S4). The
formation of clusters at different facilities was thought to be due to
differences in the degree of hemolysis in the samples. Therefore, the
hemolysis index of each sample was colored in the plot. The results
showed that the increase or decrease in PC1 was linked to the he-
molysis index (Figure 5A). Then, the distributions of the hemolysis
index at collection facilities were compared. The distribution range of
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(A) Reference sample 1 (B)

Reference sample 2

1.00
0.75
0.50
0.25
0.00

1.00
l 0.75
0.50

. 0.25
0.00

1
1
(©) (D)
50 A
40 -
20 A
30
S 4
> C
o =
o Q
© 201
10 A
10 A
0 -
T T T T T T 0 A
0.990 0.991 0.992 0.993 0.994 0.995 . . .
Correlation coefficient, Ref 1 0.97 0.98 0.99

Correlation coefficient, Ref 2

FIGURE 2 Evaluation of data acquisition reproducibility using reference samples. The distribution of correlation analysis using small RNA
expression profiles measured from the same reference sample is shown. Reference samples were always measured at fixed positions of the
96-well plate. (Reference samples 1 (A) and 2 (B) are shown. Each data acquisition experiment was assigned a number, and the correlation
coefficients between experiments were color-coded in matrices. The histogram of the correlation coefficients of Reference sample 1 is
shown in (C) and that of Reference sample 2 is shown in D)

TABLE 2 Number of samples used in

e Category and number of samples
each classification model gory P

Model  Facility ESO GAS COL LBI PAN LUN BRE PRO CTR

1 KB 100 100 100 134 100 100
2 ocC 66 80 66 72 104
3 KC 48 115 92 51
4 NC 46 83 45 40
5 JD 37 31 28 49
the hemolytic index was different among facilities (Figure 5B). In fact, that in KC, and the clusters of both in PCA were also close (Figure 5D).

the distribution of the hemolytic index in KC was different from that These results suggest that PC1 reflects the effect of hemolysis and
in KH, and the clusters of both in PCA were also clearly separated that there were differences in the hemolysis index among the facilities,
(Figure 5C). The distribution of the hemolytic index in KB was near which led to the formation of clusters.
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Accuracy 0.58, AUC 0.89 Accuracy 0.47, AUC 0.77 Accuracy 0.50, AUC 0.76
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(®) NC ® JD
Accuracy 0.42, AUC 0.67 Accuracy 0.50, AUC 0.77
coL4{ 31% 25% 13% 31% BRE
ESO{ 21% 52% 15% 12% _ CoL
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] ©
:
S =
PAN{ 17% 19% 25% LBI 4
GAS 4 21% 14% 17% LUN 4 8% 15% 25%
coL ESO PAN GAS BRE coL LBI LUN
Predicted label Predicted label

FIGURE 3 Classification performance outcomes of models constructed from single-facility samples. Classification models of multiple
cancer types were constructed only for cancer types with a sample size of 25 or more. The number of samples for each cancer type was

downsampled to 100 in Model 1 for KB (A), 66 in Model 2 for OC (B), 48 in Model 3 for KC (C), 33 in Model 4 for NC (D), and 28 in Model 5
for JD (E)

(A) Cancer type (B) Facilities ©) Data acquisition periods
40 40 40
.
Data
. A acquisition
Cancer ° v, Facility period
. ® b202004r
20 Lo 20 . H ! @} KB 20 A 52020057
- o BRE - PR X i s @1 KC = 2020061
S e S w} . = = < Gaozo0er
o !
B . o ESO 2 : e D =] = 52020098
o o LBl o~ ® oc o o 6202011r
(&) ® LUN (8] ™ 3] ® b202012r
-9 ® PAN o a A 52021011
0 PRO 0 Others 0 o b202102r
§TO 4 b202103r
o 62021061
4 b202106r
= b202107r
20 -
20 26
20 -10 0 10 20 30 -20 -10 0 10 20 30
PC1:0.21 PC1:0.21 -20 -10 20 30

0 10
PC1:0.21

FIGURE 4 PCA using samples from multiple facilities. The results of PCA using 2967 samples from all facilities. The results are color-
coded to indicate the categories (A), facilities with a sample size of 150 or more (B), and data acquisition periods (C)

3.5 | Classification performance using multiple- we attempted to reduce these effects by removing the small RNAs
facility samples that have large contributions to the PC1 and PC2 scores. PCA was

performed again using the data from which 10%, 15%, 20%, and 25%
It was suggested that the hemolysis index and data acquisition pe- of small RNAs in both positive and negative directions ranked by fac-

riod could affect the cancer classification performance. Therefore, tor loadings were removed. The numbers of remaining features were
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FIGURE 5 Comparison of the hemolysis index between facilities. The results of PCA performed on 2967 samples are color-coded to
indicate the hemolysis index (A). A higher value in red indicates a higher degree of hemolysis. Distribution of the hemolysis index of each
facility (B). PCA plot positions are indicated in KC and KH (C) and in KB-KC (D). Differences in these facility pair positions had a correlation in

their distribution of the hemolytic index

534 for no removal (Figure 6A), 324 for 10% removal (Figure 6B),
232 for 15% removal (Figure 6C), 160 for 20% removal (Figure 6D),
and 98 for 25% removal (Figure 6E). The retained small RNAs are
listed in Table S2. As the removal rate increased, these clusters con-
verged into a group (Figure 6E).

To quantitate the change in cluster formation with/without the
removal process, the probability that the nearest neighbor points
of an arbitrary point were in the same class was calculated. In PC1,
the matching rates focusing on cancer type were almost the same
with/without small RNA removal, but the matching rates focusing
on facility were reduced: 5.0% (without removal), 6.2% (10% re-
moval), 5.7% (15% removal), 3.6% (20% removal), and 2.6% (25%
removal). The matching rates of the data acquisition period were
reduced to 5.5% (without removal), 3.0% (10% removal), 3.0% (15%
removal), 2.4% (20% removal), and 2.2% (25% removal), as shown in
Figure 6F. The reducing effect was largest under 25% removal. In
PC2, the matching rates of cancer types and facilities were almost
the same with/without small RNA removal, but the matching rates of

the data acquisition period were reduced to 7.6% (without removal),

13.0% (10% removal), 11.0% (15% removal), 4.1% (20% removal),
and 4.3% (25% removal), as shown in Figure 6G. The reducing effect
was largest under 25% removal. These results indicate that the re-
moval of small RNAs, which have a large contribution to the PC1 and
PC2 scores, can reduce the impact on the hemolysis index and the
data acquisition period.

Therefore, we evaluated the sensitivities of the multiple cancer
type classification model constructed using samples from multiple
facilities after the removal of small RNAs. The sensitivities before
the removal of small RNAs were as follows: CTR 67%, BRE 59%,
COL 32%, ESO 44%, LBI 53%, LUN 27%, PAN 29%, PRO 54%, and
GAS 34% (Figure 7A). The AUC was 0.83 (95% Cl, 0.83-0.84). The
sensitivities after the removal of 25% small RNAs were as follows
(Model 6): CTR 58%, BRE 47%, COL 19%, ESO 31%, LBl 44%, LUN
21%, PAN 23%, PRO 39%, and GAS 23% (Figure 7B). The AUC was
0.76 (95% Cl, 0.76-0.76). The random classification sensitivity for
nine classes was 11%. The results showed that the sensitivity of the
classification of multiple cancer type samples from multiple facilities
was higher than that of random classification.
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DISCUSSION

In this study, the performance of the cancer classification models

was evaluated by collecting samples of multiple cancer types from

multiple facilities. As a result, the performance of the models was

higher than that of random classification in both the single-facility

and multiple-facility models. This finding suggests the existence of

miRNAs that could identify each cancer type. However, the data
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acquisition period and the degree of hemolysis in each facility could
affect the cancer type classification performance.

One of the possible disturbing factors for the cancer type clas-
sification is batch effects. The KB confusion matrix showed that the
six-class classification results were divided into roughly two groups
(Figure 3A). Depending on the data acquisition periods, there were
differences in the reagent lots, including polymerases and ligases.
This suggested that an amplification bias of small RNA may have oc-
curred. Small RNAs with high variability between the two groups
were extracted by effect sizes (see Materials and Methods 2.8) from
the single reference sample. The top five were hsa-miR-21-5p, hsa-
miR-425-5p, hsa-piR-33057, hsa-piR-32993, and hsa-piR-32871;
the effect sizes were 5.00, 2.60, 2.26, 2.06, and 2.04; and the fold
changes were 1.64, 1.19, 1.77, 2.02, and 2.07, respectively. Although
hsa-miR-21-5p is known as a representative cancer-associated
miRNA, it showed an effect size of 0.59 and a fold change of 1.07 in
GAS versus CTR and 0.47 and 1.07 in PAN versus CTR when com-
paring the same data acquisition periods. It was one-half to one-third
smaller than that reported in similar studies.*’>° These results indi-
cate that amplification bias occurred due to differences in the data
acquisition period, which was thought to be the cause of the division
into two groups in the KB confusion matrix. The change in small RNA
expression of each cancer type in the same acquisition condition
was smaller compared to the amplification bias. This situation could
have affected the performance of the cancer type classification.

The consistency of cancer type-associated small RNAs between
our classification models and previously reported models was in-
vestigated (Table S5). To avoid interfacility variability, we extracted
cancer type-associated small RNAs from Models 1-5 by quantifying
their contribution. ESO, GAS, COL, LBI, PAN, and BRE were selected
because these cancer types were tested in more than two facilities.
We narrowed down to the common miRNAs in multiple facilities
and compared these common miRNAs with previously reported
miRNAs. Two or three miRNAs in our common miRNAs were also
reported in previous studies of cancer type-associated miRNAs. Our
results were consistent with previous reports to some extent.

Regarding the effect of hemolysis on the classification per-
formance, we collected samples with a standardized sample col-
lection protocol (see Materials and Methods 2.2). Therefore, we
expected that the interfacility variation in the hemolysis index
would not exceed the intrafacility variation. However, it was found
that the interfacility variability exceeded the intrafacility variability
(Figure 5B). Thus, the differences in the hemolysis index among the
facilities became noise, and the accuracy of cancer type classifica-
tion decreased. At the same time, the differences between facilities
could be misinterpreted as differences in cancer types, resulting in
a higher accuracy than the values with minimized hemolysis influ-
ences (Figure 7A,B). As aresult, the difference in the hemolysis index
among facilities not only affected the performance of the cancer
classification but also suggested the possibility that the differences
among the facilities could be confounded by the differences in the

cancer types.

= 2153
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Although the classification performance was higher than ran-
dom classification in multiple cancer type classifications, further
improvement is needed when considering the application as a
cancer screening test. The expression levels of miRNAs in plasma
and serum are reportedly similar,*® and we decided to use plasma
samples to avoid differences in clot formation between samples
when preparing serum. To improve the performance, two essential
issues exist. First, the expression changes of small RNAs charac-
terizing cancer types are not significant enough. To overcome this
issue, it is necessary to efficiently extract cancer-associated small
RNAs to increase expression changes. Second, improvement of the
sample preparation method is necessary to reduce the differences
in the degree of hemolysis among different facilities. A practical
approach for efficiently extracting cancer-associated small RNAs is
to purify and analyze small RNAs within exosomes after prevent-
ing the contamination of red blood cells in plasma samples using
the double centrifugation method®>>? or prefiltering.>® Although
the ultracentrifugation protocol®* is used as a standard method for
exosome purification, it has poor throughput and is not suitable
for automated sample preparation. Therefore, for practical use, the

use of size exclusion chromatographySS'56

or chemical precipita-
tion®” would be helpful. As a sample preparation method to reduce
the degree of hemolysis, it should be effective to collect blood
samples using a blood collection tube®® that contains a reagent to
inhibit the hemolysis of red blood cells. It is expected that these
approaches will further improve the classification performance of
multiple cancer types, thus establishing a cancer screening test
with practical performance.

In conclusion, to develop a robust diagnosis test for the cancer
type screening using small RNAs, we found that small RNAs can be
used for the classification of different cancer types in samples from
a single facility; however, interfacility noise affects the classification
of samples from multiple facilities. This finding provides insight into
the importance of enhancing the signal-to-noise ratio to overcome
interfacility biases for the classification of multiple cancer types
from samples derived from multiple facilities.
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