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Abstract: Significant progress has
occurred in the field of brain–
machine interfaces (BMI) since the
first demonstrations with rodents,
monkeys, and humans controlling
different prosthetic devices directly
with neural activity. This technolo-
gy holds great potential to aid
large numbers of people with
neurological disorders. However,
despite this initial enthusiasm and
the plethora of available robotic
technologies, existing neural inter-
faces cannot as yet master the
control of prosthetic, paralyzed, or
otherwise disabled limbs. Here I
briefly discuss recent advances
from our laboratory into the neural
basis of BMIs that should lead to
better prosthetic control and clini-
cally viable solutions, as well as
new insights into the neurobiology
of action.

Introduction

The goal of cortically controlled motor

neuroprosthetics [1–14] is to reliably,

accurately, and robustly convey enough

motor control intent from the central

nervous system (CNS) to drive multi–

degree-of-freedom (DOF) prosthetic de-

vices by patients with amputated, para-

lyzed, or otherwise immobilized limbs for

long periods of time (decades). To achieve

this goal, two main challenges remain: 1)

how to make viable neural interfaces that

last a lifetime, and 2) skillful control and

dexterity of a multi-DOF prosthetic device

comparable to natural movements. In a

BMI system, neural signals recorded from

the brain are fed into a machine that

transforms these signals into a motor plan.

This is the subject’s ‘‘intention of move-

ment,’’ which is then streamed to the

prosthetic device. A closed control loop is

established by providing the subject with

visual and sensory feedback of the pros-

thetic device.

The first challenge is to have a neural

interface viable for a lifetime. In the front

end, the physical substrate should be able to

withstand a variety of biotic and abiotic

effects that presumably lead to performance

degradation at the electrode-tissue interface

[15]. In the back end, the system should be

wireless, require minimum power, and

support bidirectional dataflow, i.e., ‘‘read-

ing’’ and ‘‘writing’’ from/to the brain.

Ideally, these systems would be fully

implantable in the intracranial space as

well as have batteryless operation. They

should also be modular enough to allow the

measurement and stimulation of different

types of neural signals, such as the electrical

activity of individual neurons or groups of

neurons, as well as other physiological

parameters such as glucose, brain pulsa-

tion, etc. that may become important for

powering the implanted device in future

generations of this technology [16].

The second challenge is getting the

brain to recognize an ‘‘actuator,’’ or

prosthetic device that is not part of the

body, and being able to control it without

enacting overt physical movements (as in

the case of a paralyzed patient). This has

two differentiated components: motor and

sensory. On the sensory side, the goal is to

provide realistic sensory feedback from the

prosthetic device by directly stimulating

sensory areas in brain regions that would

mimic lost/damaged inputs. This should

allow the user to feel the environment

through the prosthetic device, which has

been supported by recent examples using

electrical microstimulation [17,18]. Future

BMI systems may incorporate optical

stimulation in lieu of electrical stimulation

[19]. On the motor side, we suggest that in

order to boost the performance of current

BMI systems both neural adaptation

(brain plasticity) and artificial adaptation

(machine learning) should be combined in

a coadaptive way. Ultimately, the goal is to

achieve a quantum-leap increase in neural

controllable degrees of freedom that

should allow a patient to effortlessly

perform tasks of daily living.

Next we will focus on recent advances,

mostly from our laboratory, that are

relevant to the acquisition and retention

of skills to control disembodied effectors

such as computer cursors and prosthetic

limbs. These advances gravitate around

the concept of ‘‘prosthetic motor memory’’

facilitated through brain plasticity, and the

‘‘tuning’’ of decoding algorithms while the

subject is using the BMI.

Decoding Natural Actions vs.
Learning to Perform New Ones

When thinking about BMI design, there

are at least two different approaches one

could take for converting thought into

action, also known as the decoding vs.

learning argument [20,21]. One approach

aims to decode (or read out) the natural

motor plan to control the missing, im-

paired, or intact limb. In this approach, a

mathematical model or decoder that

relates neural activity to natural limb

movements is generated and then used to

predict these movements from the record-
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ed neural activity alone. The other

approach requires the brain to learn a

transform in order to control the new

actuator, irrespectively of physical move-

ment of the natural limb. This approach

treats a BMI system as a ‘‘modified CNS’’

that has to be learned.

But why should we approach BMI as a

modified CNS? When interfacing the

brain with a machine, we are effectively

creating a de novo circuit for action. The

neuroprosthetic system under control in

this new circuit is fundamentally different

than the natural system used to control the

native arm. For instance, our musculo-

skeletal systems have very little to do with

robotic limbs in the way they function and

how they are controlled. The same applies

to the spinal cord, which in the neuro-

prosthetic system is approximated by a set

of mathematical rules called the transform.

This transform projects from a high

dimensional space of dozens to hundreds

of neurons to a subspace of a few control

signals (e.g., position and velocity of the

end effector). This is particularly impor-

tant because the motor and sensory

pathways will be compromised in patients

with spinal cord injury or other neurolog-

ical disorders. Hence, if we are trying to

control a prosthetic device that is different

from our native arm, why should we aim

to decode the brain signals related to this

arm in the first place? Instead, could the

brain learn to control a prosthetic device

that is not part of the natural body and

generate novel actions with it?

One important aspect relevant to this

discussion is the type of experimental

model used for BMI experiments. The

brunt of the invasive BMI work (i.e., that

which uses implantable technology to

record from populations of neurons) is

currently done in able-bodied animal

subjects [22] except for some exceptions

in animal models of spinal cord injury

[23], temporary models of paralysis in-

duced via nerve blocks [9,11,12], as well as

a few clinical trials in humans [7,13,14]. In

addition, there is an increasing number of

studies in epileptic and stroke patients that

involve BMI tasks using electrocortico-

graphic (ECoG) signals [24,25]. So, how

can able-bodied subjects learn these cir-

cuits for neuroprosthetic control? Our

approach is to change the rules of the

instrumental learning task previously

learned under manual control.

Take for example a standard center-out

reaching task in which the subject manually

controls an actuator—a robotic manipulan-

dum, exoskeleton, or its own natural limb—

to reach for instructed targets in order to

obtain a reward. The performance feedback

received by the subject typically consists of a

visual observation from a computer screen

displaying the controlled actuator. Upon

switching to neural control (or ‘‘BMI mode’’),

the experimenter swaps the visual feedback

from the actuator controlled manually with

that of the actuator controlled through the

BMI. Here is when the manner in which the

subject is instructed to perform the BMI task

is key. By physically removing the actuator

from the experimental rig during BMI mode

(or restraining the arm to the primate chair in

the case of the natural arm being the actual

actuator used to reach for targets), we are

effectively changing the rules of the task. It is

no longer a ‘‘move joystick to center target’’

type of rule but one that requires learning to

mentally steer the actuator using biofeedback.

This triggers a learning process that we call

‘‘transform learning’’ [26], in which the brain

modifies the tuning properties of the neurons

incorporated into the BMI (and therefore

causally linked to behavior) to minimize error

in the motor output through a process of

plasticity [10,27,28].

Alternatively, not changing the rules of

the task upon switching to BMI mode (that

is, keeping the experimental setup and task

the same as during manual control) typi-

cally leads to the able-bodied subject

continuing to engage as in the manual task

(i.e., overtly moving the natural limb and

oblivious that a change of mode of

operation, from manual to BMI mode,

has taken place). Thus, as the afferent and

efferent pathways in the subject remain

intact, the patterns of neural activity evoked

during BMI mode will be very similar to

those evoked during manual control. This

mode of BMI operation predicts few plastic

changes in the brain, since the same circuits

for motor control are being used.

Circuit Stability Facilitates
Prosthetic Motor Memory

As noted, in the learning approach to

BMI control, the subject has to learn the

‘‘spinal cord’’ (i.e., the transform) for

neuroprosthetic function in order to per-

form the actions required to achieve the

desired goals. For practical reasons, this

learning process is typically initialized with a

biomimetic transform (i.e., generated from

natural arm movement data). However, this

is not a requirement, as previous work has

shown that primates and even rodents can

also learn arbitrary transforms trained with

nonbiomimetic data [9,10,28,29], demon-

strating the capacity of the brain to create

de novo circuits to perform novel (neuro-

prosthetic) actions.

Regardless of the way in which the

transform is trained (biomimetic or not),

the complexity of both the prosthetic device

to be controlled (e.g., degrees-of-freedom of

the apparatus) and the task to be performed

play a crucial role in transform learning.

For instance, in early studies [2–4], new

transforms were trained at the beginning of

every session. In this approach, the subject

has to effectively learn a new transform

every day before being able to perform the

task proficiently. If the task is simple

enough, the brain can learn the transform

in a single day (intrasession). However, as

task complexity increases, it becomes more

difficult for the subjects to learn the daily

trained transforms. This results in variable

performance from day to day that prevents

consolidation and retention of prosthetic

skill [10,26]. Hence, intrasession transform

learning alone becomes impractical for

learning skillful neuroprosthetic control.

So, how can we achieve consolidation of

the learned skill?

We hypothesized that pairing stable

neural recordings with a fixed, static

transform—as opposed to retraining the

transform every day—would lead to re-

tention of the learned skill across time and

therefore facilitate the consolidation of a

prosthetic motor memory. The key ele-

ment here is the stability of the circuit; the

neural input to the transform and the

parameters of the transform remains

unchanged throughout learning. This is

what we tested in previous work [10,27] in

which we showed that the primate brain

can achieve and consolidate skilled control

of a prosthetic device in a way that

resembles that of natural motor learning,

i.e., a motor skill that is retained. Specif-

ically, when a fixed transform algorithm

was applied to stable recordings from an

ensemble of primary motor cortex (M1)

neurons across days, there was dramatic

long-term consolidation of prosthetic mo-

tor skill. This process created a motor map

for prosthetic function that was readily

recalled and remarkably stable across

days. Surprisingly, the same set of neurons

could learn and consolidate a second

motor map without interference with the

first map, highlighting another attribute of

transform learning that is similar to

natural motor learning: that of being able

to learn new motor skills without interfer-

ing with previously acquired skills.

Hence, transform learning leads to the

formation of a stable cortical map that has

the putative attributes of a memory trace;

namely, it is stable across time, readily

recalled, and resistant to interference. We

believe such a prosthetic motor memory will be

critical for the skillful control of multi-

DOF prosthetic limbs, and that these

devices could eventually be controlled
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through the nominally effortless recall of

motor memory in a manner that mimics

natural skill acquisition and motor control.

The Role of Machine Learning in
the BMI Loop

What about adaptation taking place in

the machine instead of the brain? This

process, known as closed-loop decoder

adaptation (CLDA) [30], is an emerging

paradigm for achieving rapid performance

improvements in BMI control (Figure 1).

CLDA consists of adapting the transform’s

or decoder’s parameters during closed-loop

BMI operation (i.e., while the subject is

using the BMI) to more accurately repre-

sent the mapping between the user’s neural

activity and their intended movements

[3,31–36]. The error signals required to

adapt the decoder can be estimated in a

variety of different ways, including using

the task goals to infer the subject’s intention

[33], Bayesian methods to self-train the

decoder [34], and extracting error signals

directly from the brain [35].

The design process of a CLDA algorithm

requires important decisions not only about

which parameters of the decoder should be

adapted and how these should be adapted,

but also when, (i.e., how often), as the rate at

which the decoder changes can influence

performance. Also important is the way in

which the decoder is initialized. Movement

disorders such as paralysis and stroke

prevent patients from making the types of

natural movements that are often used to

initiate the decoder. As a result, less

favorable methods of decoder initialization,

such as motor imagery, must be used,

typically resulting in low initial perfor-

mance. To address the problem of acceler-

ating learning and boosting BMI perfor-

mance in these settings, we recently

developed SmoothBatch, a CLDA algo-

rithm that improves performance in a

relatively short time and independent of

the decoder initialization conditions [36].

This method infers the subject’s intended

movement goals during online control [33]

and updates the decoder on an intermedi-

ate (1–2 min) time-scale. The main feature

of SmoothBatch is that it can readily

improve performance in a relatively short

time, independent of the subject’s initial

closed-loop BMI performance. This could

be particularly useful in clinical applications

in which the patient cannot move the limbs.

While CLDA algorithms can readily

improve performance in a relatively short

time, the brain still faces a ‘‘moving-target’’

problem of being able to learn an adaptive

decoder. Can we facilitate the coadaptation

between the brain and the machine so that

the motor memory–like properties emerg-

ing through transform learning can be pre-

served while adapting the transform? One

possible avenue for future studies could be

starting with an early CLDA phase, in

which the transform is adapted until certain

level of performance is achieved, followed

by a prolonged period of static transform,

allowing the brain to optimize its control.

Conclusion

Achieving skillful control of a multi-

DOF prosthetic will entail synergizing two

different types of adaptation processes:

natural (brain plasticity) and artificial

(machine learning). In addition, providing

realistic sensory feedback from the pros-

thetic device should allow the user to feel

the environment and achieve more natural

control. Transform learning facilitates the

formation and retention of a prosthetic

motor memory through a process of

neuroplasticity. CLDA techniques expe-

dite the learning process by adapting the

transform during online performance. We

believe that BMI systems capable of

exploiting both neuroplasticity and CLDA

will be able to boost learning, generalize

well to novel movements and environ-

ments, and ultimately achieve a level of

control and dexterity comparable to that

of natural arm movements.
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