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Neuron-specific inactivation of Wt1 alters locomotion in
mice and changes interneuron composition in the spinal
cord
Danny Schnerwitzki1, Sharn Perry2, Anna Ivanova1, Fabio V Caixeta2 , Paul Cramer1, Sven Günther1 , Kathrin Weber1 ,
Atieh Tafreshiha2, Lore Becker3 , Ingrid L Vargas Panesso3,6, Thomas Klopstock6,7,8,9, Martin Hrabe de Angelis3,10,11,
Manuela Schmidt4, Klas Kullander2, Christoph Englert1,5

Locomotion is coordinated by neuronal circuits of the spinal cord.
Recently, dI6 neurons were shown to participate in the control of
locomotion. A subpopulation of dI6 neurons expresses the Wilms
tumor suppressor geneWt1. However, the function of Wt1 in these
cells is not understood. Here, we aimed to identify behavioral
changes and cellular alterations in the spinal cord associated
with Wt1 deletion. Locomotion analyses of mice with neuron-
specific Wt1 deletion revealed a slower walk with a decreased
stride frequency and an increased stride length. These mice
showed changes in their fore-/hindlimb coordination, which were
accompanied by a loss of contralateral projections in the spinal
cord. Neonates with Wt1 deletion displayed an increase in un-
coordinated hindlimb movements and their motor neuron output
was arrhythmic with a decreased frequency. The population size
of dI6, V0, and V2a neurons in the developing spinal cord of
conditional Wt1 mutants was significantly altered. These results
show that the development of particular dI6 neurons depends on
Wt1 expression and that loss ofWt1 is associated with alterations
in locomotion.
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Introduction

In vertebrates, rhythmic activity is generated by a network of
neurons, commonly referred to as central pattern generators
(CPGs) (Jessell, 2000; Grillner, 2003; Kiehn, 2006; Brownstone &
Wilson, 2008; Goulding, 2009; Berkowitz et al, 2010). CPGs do not

require sensory input to produce rhythmic output; however, the
latter is crucial for the refinement of CPG activity in response to
external cues (Rossignol & Drew, 1988; Jessell, 2000; Pearson, 2004).
The locomotor CPGs are located in the spinal cord and consist of
distributed networks of interneurons and motor neurons (MNs),
which generate an organized motor pattern during repetitive lo-
comotor tasks such as walking and swimming (Grillner, 1985; Kiehn
2006, 2016; Brownstone & Wilson, 2008; McCrea & Rybak, 2008;
Goulding, 2009; Grillner & Jessell, 2009).

The spinal cord develops from the caudal region of the neural
tube. The interaction of secreted molecules, including sonic
hedgehog and bone morphogenetic proteins, provides instruc-
tive positional signals to the 12 progenitor cell domains that re-
side in the neuroepithelium (Alaynick et al, 2011). Each domain
is characterized by the expression of specific transcription
factor–encoding genes that are used to selectively identify these
populations. The dI1–dI5 interneurons are derived from dorsal
progenitors and primarily contribute to sensory spinal pathways.
The dI6, V0–V3 interneurons, and MN arise from intermediate or
ventral progenitors and are involved in the locomotor circuitry
(Goulding, 2009).

The involvement of V0–V3 neurons in locomotion has been well
documented: V0 (Lanuza et al, 2004; Talpalar et al, 2013; Bellardita &
Kiehn, 2015), V1 (Zhang et al, 2014; Britz et al, 2015), V2a (Crone et al
2008, 2009; Dougherty & Kiehn, 2010; Zhong et al, 2010), and V3
(Zhang et al, 2008). The role for dI6 neurons in locomotion has only
recently been addressed (Andersson et al, 2012; Dyck et al, 2012;
Haque et al, 2018). A fraction of the dI6 population consists of
rhythmically active neurons (Dyck et al, 2012), and a more defined
subpopulation of dI6 neurons expressing the transcription factor
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Dmrt3 is critical for normal development of coordinated locomotion
(Andersson et al, 2012). A group of dI6 neurons is suggested to
express the Wilms tumor suppressor gene Wt1 (Goulding, 2009;
Andersson et al, 2012).

Wt1 encodes a zinc finger transcription factor that is inactivated
in a subset of Wilms tumors, a pediatric kidney cancer (Call et al,
1990; Gessler et al, 1990). Wt1 fulfills a critical role in kidney de-
velopment; however, the function of Wt1 is not limited to this organ.
Phenotypic anomalies of Wt1 knockout mice can be found, among
others, in the gonads, heart, spleen, retina, and olfactory system
(Kreidberg et al, 1993; Herzer et al, 1999; Moore et al, 1999; Wagner
et al 2002, 2005). In one of the first reports on Wt1 expression,
a particular region of the hindbrain below the fourth ventricle
and the spinal cord were described as prominent Wt1+ tissues
(Armstrong et al, 1993; Rackley et al, 1993). Very recent work focusing
on Wt1-expressing cells in the spinal cord suggested those cells to
be involved in locomotion (Haque et al, 2018). However, until now,
there is no insight on the way that Wt1 determines the character of
these cells.

Here, we have examined the importance of Wt1 for the de-
veloping spinal cord neurons. We performed locomotor analyses of

conditional Wt1 knockout mice and used molecular biological and
electrophysiological approaches to elucidate the role that Wt1
exerts on spinal cord neurons for locomotion. Our data suggest that
Wt1-expressing dI6 neurons contribute to the coordination of lo-
comotion and that Wt1 is needed for proper dI6 neuron specifi-
cation during development.

Results

Wt1-expressing cells in the spinal cord are dI6 neurons

To determine the spatial and temporal pattern of Wt1-expressing
cells in the spinal cord, we performed immunohistochemical an-
alyses. Wt1+ cells were detected in the medioventral mantle zone of
the developing spinal cord at embryonic day (E) 12.5 (Fig 1A). Until
E15.5, embryonic spinal cords showed a constant amount of Wt1+
cells; thereafter, their number gradually decreased until they could
no longer be detected in adult mice (Fig 1B).

We next wanted to determine the birthdate of Wt1+ cells, defined
as the time point when progenitor cells cease to proliferate, leave

Figure 1. Characterization of Wt1+ neurons in the
developing spinal cord.
(A) Schematic illustration and Wt1 immunolabelling
analysis of a transverse section (12 μm) from E12.5 spinal
cord showing the position of Wt1+ neurons (red) in the
mantle zone of the developing spinal cord. Stippled line
represents the border between the ventricular and
mantle zones. Scale bar: 50 μm. (B) Plot showing the
average cell number of Wt1+ neurons per 12 μm spinal
cord section from different embryonic and postnatal
stages. Wt1+ neurons are first found at E12.5 and
decrease in cell number postnatally. Data expressed
as mean ± SD. n = 12–20 embryos. (C) Determination of
the birthdate of Wt1+ neurons by BrdU proliferation
assay. Proliferating cells situated in the ventricular zone
were labelled by BrdU incorporation at different
embryonic stages (E9.5, E10.5, and E11.5). Additional
immunolabelling of these cells for Wt1 and BrdU at E12.5
revealed that prospective Wt1-expressing cells still
proliferate at E9.5 and at E10.5 but not at E11.5. Scale bar:
10 μm. Insets show higher magnifications of respective
areas. Scale bar: 5 μm. (D) Schematic illustration of an
E12.5 spinal cord section with markers and their
occurrence in different neuron populations. These
markers were used to establish the origin of Wt1+
neurons as dI6 neurons (red). (E) Immunolabelling of
Wt1+ neurons with markers present in dI6 and adjacent
interneuron populations. The partly overlapping
location of Wt1 with Pax2, Lim1/2, Lbx1, and Bhlhb5
supports a dI6 character. Scale bar: 10 μm. Insets show
higher magnifications of respective areas. Scale bar:
5 μm.
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the ventricular zone, and start to differentiate. Using BrdU, the
proliferative cells in the ventricular zone were labelled at different
embryonic stages (E9.5, E10.5, and E11.5). Immunostaining of these
cells for Wt1 at E12.5 revealed that prospective Wt1-expressing cells
still proliferate at E9.5 and even at E10.5 (Fig 1C). At E11.5, Wt1+ cells
no longer showed incorporation of BrdU, suggesting that they had
left the ventricular zone and started their migration and differ-
entiation in the mantel zone at this time point.

Wt1 has been proposed to label dI6 neurons (Goulding, 2009);
however, the only available primary data have so far only suggested
its presence in a subpopulation of dI6 neurons expressing Dmrt3
(Andersson et al, 2012). To closely examine the nature of Wt1+ cells,
we performed immunostainings of embryonic spinal cords at E12.5.
All cells expressing Wt1 were positive for Pax2 and Lim1/2 labelling
dI4, dI5, dI6, V0D, and V1 neurons (Tanabe & Jessell, 1996; Burrill et al,

1997), while being negative for the postmitotic V0V marker Evx1
(Moran-Rivard et al, 2001) (Fig 1D and E). Wt1 expression did not
overlap with Lmx1b, a marker specific for dI5 neurons, but all Wt1+
cells exhibited Lbx1 (Gross et al, 2002) and Bhlhb5 labelling (Skaggs
et al, 2011), which commonly occur in the ventral most dI4–dI6 Lbx1+
domain giving rise to dI6 neurons. Thus, these data support and
extend on the previous observations that Wt1 is a marker for
a subset of dI6 neurons.

Deletion of Wt1 affects locomotor behavior

Because a constitutive knockout of Wt1 is embryonically lethal, we
made use of a conditional Nes-Cre;Wt1fl/fl mouse line to investigate
the function of Wt1 in the spinal cord (Fig 2A). At E12.5, noWt1mRNA
or proteinwas detected in neurons from thismouse line (Fig 2A andB).

Figure 2. Mice with Wt1 inactivation display altered
locomotion.
(A) Schematic illustration of the Wt1fl/fl allele. loxP sites
flanking exons 2 and 3 of theWt1 coding sequence allow
Cre-mediated excision and conditional knockout ofWt1.
Confirmation of a functional conditional Wt1 knockout
in Nes-Cre;Wt1fl/fl at E12.5 using qRT–PCR (quantification
to the right). Data expressed as mean ± SEM. n = 4–5
embryos. Significance determined by using pairwise
reallocation randomisation test. (B) Loss of Wt1
immunopositive signals in Nes-Cre;Wt1fl/fl embryos at
E12.5 corroborates the loss of Wt1 protein. Schematic
illustration shows the position where the pictures were
taken. Stippled line represents the border between the
ventricular andmantle zones. Scale bar: 40 μm. (C) X-ray
radiograph of a walking mouse in lateral perspective.
(D) Graphs displaying stride parameters collected in the
X-ray radiograph. Stride frequency is significantly lower
in female Nes-Cre;Wt1fl/fl mice in both forelimbs and
hindlimbs. The stride length in female Nes-Cre;Wt1fl/fl

mice is increased compared with female Wt1fl/fl mice,
whereas smaller differences are found in male mice.
Box plots indicate the median of each group, n = 10
animals (bold white or black line), the 25th and the 75th

percentile (box), and the data range (whiskers).
Mann–Whitney U test was performed. Significance level
of U: ***P < 0.001; **P < 0.01; *P < 0.05. (E, F) Interlimb
coordination expressed as the time lag between footfall
events in percent stride duration. Left limbs are
reference limbs. The scheme (E) illustrates which phase
relationships are shown by which graph. Phase
relationships (F) between forelimbs (1) and between
hindlimbs (2) illustrate overall symmetry of the walk.
Timing of forelimb touchdown relative to hindlimb
touchdown for ipsilateral (3) and contralateral (4) limbs
show only minor differences between Wt1fl/fl and Nes-
Cre;Wt1fl/flmice. The timing of hindlimb footfalls relative
to forelimb footfalls (5, 6) differ between Wt1fl/fl and
Nes-Cre;Wt1fl/fl mice, particularly at the contralateral
limbs. Box plots indicate the median of each group, n =
10 animals (bold white or black line), the 25th and the
75th percentile (box), and the data range (whiskers).
Mann–WhitneyU test or t test. Significance level ofU or ts:
***P < 0.001, **P < 0.01, *P < 0.05.
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Given the location of the Wt1+ neurons within the ventral dI6
population that has been shown to be involved in regulating
locomotion, we performed behavioral tests associated with loco-
motion to investigate potential phenotypic consequences of de-
leting Wt1 in spinal cord neurons. Footprints of adult mice walking
on a transparent treadmill at fixed speeds (0.15, 0.25, and 0.35 m/s)
were recorded to analyze different gait parameters (Fig S1A). Nes-
Cre;Wt1fl/fl mice revealed a significant reduction in stride frequency
for both the fore- and hindlimbs relative to control (Wt1fl/fl) animals
at all speeds measured. Heterozygous Wt1 knockout mice (Nes-Cre;
Wt1fl/+) did not differ significantly from controls. Stride length,
accordingly, was significantly longer in Nes-Cre;Wt1fl/fl animals than
in wild-type mice and Nes-Cre;Wt1fl/+. Thus, although Nes-Cre;Wt1fl/fl

mice were slightly smaller than controls (body mass Wt1fl/fl versus
Nes-Cre;Wt1fl/fl: males, 33 ± 3.9 versus 25 ± 3.7 g; females, 25 ± 3.2 g
versus 22 ± 1.4 g; body length: males, 9.9 ± 0.4 g versus 9.4 ± 0.4 cm;
females, 9.9 ± 0.4 cm versus 9.8 ± 0.3 cm), they made longer strides
with lower frequency.

To further explore gait alterations, we used X-ray fluoroscopy as
a complementary method in a larger cohort of mice (Figs 2C and S1B
and Videos 1 and 2). When animals walked voluntarily at their
preferred speed, deviations in stride frequency and stride length
from the expected value (control baseline) for the given speed were
again observed in Nes-Cre;Wt1fl/fl (Fig 2D), but statistical signifi-
cance is confirmed only for females. The changes were accom-
panied by a significant reduction of raw speed (animal velocity in
m/s) and size-corrected speed (= Froude number) inNes-Cre;Wt1fl/fl

mice of both sexes (Fig S1C). Although both the duration of stance
and swing phases and the distance covered by the trunk and the
limbs, respectively, differ between controls and Nes-Cre;Wt1fl/fl by
more than 10 percent inmales andmore than 15 percent in females,
the ratio between the two phases, expressed by the duty factor, re-
mains unaffected (Fig S1D). Thus, the temporal coordination between
stance and swing phases in adult Nes-Cre;Wt1fl/fl mice is normal.

We tested whether changes in gait parameters are accompanied
by changes in the phase relationships between the limbs (Fig 2E
and F). The footfall pattern of control and Nes-Cre;Wt1fl/fl females
did not show significant differences at the same speed of 0.21 m/s
(Fig S1E). However, the different spread along the X-axis indicates
the evenly elongated stance and swing phases.

The symmetry of left and right limb movements expressed as the
time lag between footfalls in percent stride duration of a reference
limb (Fig S1F) was unaffected in theNes-Cre;Wt1fl/flmice (Fig 2E and F,
1 and 2). Also, the timing of forelimb footfalls relative to the
ipsilateral and contralateral hindlimb cycles is very similar be-
tweenWt1fl/fl mice and Nes-Cre;Wt1fl/fl mice (Fig 2E and F, 3 and 4).
Significant differences between Wt1fl/fl mice and Nes-Cre;Wt1fl/fl

mice were observed in the timing of the hindlimb footfalls relative
to the forelimb cycles (Fig 2E and F, 3 and 4). The touchdown of the
ipsilateral and the contralateral hindlimb falls in a later fraction of
the forelimb stride cycle in Nes-Cre;Wt1fl/fl mice compared with the
Wt1fl/fl mice. The deviation cannot be explained by the differences
in animal speed because the hind-to-forelimb coordination shows
only small amount of speed-dependent variation: the time lag
between the footfalls tend to increase with increasing speed
(baseline ipsilateral: Wt1fl/fl males: F1,248 = 13.38, r2 = 0.051, Wt1fl/fl

females: F1,248 = 18.63, r2 = 0.070; baseline contralateral: Wt1fl/fl

males: F1,273 = 16.39, r2 = 0.057,Wt1fl/fl females: F1,274 = 8.14, r2 = 0.029).
So far, the limb kinematics of adult Nes-Cre;Wt1fl/flmice compared
with the Wt1fl/fl mice shows subtle differences in gait parameters
and interlimb coordination with a high degree of variation. In sum,
these differences result in a performance reduction indicated by
the overall lower walking velocities.

Deletion of Wt1 results in a disturbed and irregular postnatal
locomotor pattern

After having observed altered gait parameters in adult Nes-Cre;
Wt1fl/fl animals, we wondered whether gait also would be affected
in younger mice. Indeed, Nes-Cre;Wt1fl/fl pups had more difficulty
coordinating their fore- and hindlimbs than controls when per-
forming air-stepping. Although there was no increase in hind-limb
synchronous steps, left/right alternating steps were decreased and
the number of uncoordinated steps was increased in Nes-Cre;Wt1fl/fl

animals (Fig S2 and Videos 3 and 4). We next performed fictive
locomotion experiments on isolated spinal cords from control and
Nes-Cre;Wt1fl/fl mice (P0–P3). Fictive locomotor drugs induced
a markedly slower, disturbed, more variable pattern of locomotor-
like activity in Nes-Cre;Wt1fl/fl spinal cords than the stable, rhythmic
pattern of locomotor-like activity in control mice. Control spinal
cords had recorded activity bursts that showed clear left/right (L2
versus L2) and flexor/extensor (L2 versus L5) alternation that
persisted throughout activity periods, whereas activity bursts in
Nes-Cre;Wt1fl/fl spinal cords were uncoordinated and did not
maintain strict left/right or flexor/extensor alternation (Fig 3A and B).
The relationship between left/right and flexor/extensor alter-
nation was examined, and control cords presented a reliable
phase preference around 180° (Fig 3C; control average phase pref-
erence in l/r: 183.4°, R = 0.93; in f/e: 185.2°, R = 0.84). However, spinal
cords from mice with Wt1 deletion showed an irregular locomotor
pattern with inconsistent alternation as indicated by its short-phase
vector (Fig 3C;Wt1fl/fl average phase preference in l/r: 165.3°, R = 0.60; in
f/e: 155.2°, R = 0.44). Although there was no difference in the preferred
phase across the two groups (l/r Watson’s U2 = 0.10, P > 0.05; f/e
Watson’s U2 = 0.07, P > 0.05), the coupling strength, or R, as indicated
by the vector length in the polar plots, was significantly decreased
upon Wt1 deletion (l/r P = 0.031 and f/e P = 0.002, one-tailed
Mann–Whitney U test). In addition, the frequency of the ventral
root output was decreased (Fig 3D: control; 0.30 ± 0.024 Hz: Nes-Cre;
Wt1fl/fl; 0.18 ± 0.08 Hz). This slower rhythm in Nes-Cre;Wt1fl/fl cords
could be attributed to altered L2 and L5 activity burst parameters,
as Nes-Cre;Wt1fl/fl mice had significantly longer burst, interburst,
and cycle periods than control (Fig 3E and F). Thus, the deletion of
Wt1 results in a disturbed and irregular locomotor pattern, which
suggests that there are changes to the neuronal locomotor circuitry
that occur following Wt1 deletion.

Wt1+ neurons receive various synaptic inputs and can project
commissurally

To assess how Wt1+ dI6 neurons are connected within the CPG
network, we focused on the innervation pattern of these cells. We
used the Wt1-GFP reporter mouse line (Hosen et al, 2007) where
Wt1+ neurons are labelled by GFP. In contrast to the restricted
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localization of Wt1 in the nucleus, GFP is distributed throughout the
cytoplasm and labels the soma and major processes (Fig 4A). In
combination with antibodies against particular vesicular synaptic
transporters, we observed that excitatory (VGLUT2), inhibitory
(VGAT), and modulatory (VMaT2) synapses contact the soma of Wt1+
dI6 neurons (Fig 4B). This shows that Wt1+ dI6 neurons receive
excitatory, inhibitory, and modulatory inputs, suggesting that Wt1+
neurons are positioned to receive a multitude of signals and could
act during locomotion to integrate different CPG signals.

Using the Wt1-GFP reporter mouse, we found GFP+ fibers crossing
the spinal cord midline beneath the central canal, suggesting that
Wt1+ neurons project commissural fibers (Fig 4C). Fluorescent dex-
tran amine retrograde tracing of contralateral projections confirmed
that at least part of the Wt1+ dI6 neurons project commissurally (Fig
S3). We analyzed spinal cord commissural neurons in control (Fig 4D,
left) and homozygous Wt1-mutant (Fig 4D, right) mice (P1–5) to de-
termine whether the deletion of Wt1 alters the total number of
commissural neurons and investigated ascending (aCIN), descending
(dCIN), and bifurcating (adCIN) subpopulations (Fig 4D and E). All
traced subpopulations were markedly reduced in Nes-Cre;Wt1fl/fl

spinal cords compared with controls (Fig 4F–H), which suggests that
Wt1 is crucial for proper axonal projection pattern.

Loss of Wt1 leads to altered interneuron composition

To assess the possible impact of Wt1 deletion for interneuron
development, we analyzed dI6 and non-dI6 populations situated in
the embryonic ventral spinal cord. The number of Dmrt3-expressing

cells, which constitutes a distinct but partly overlapping dI6 pop-
ulation (Andersson et al, 2012), was significantly decreased in the
embryos harboring a loss of Wt1 in the spinal cord already at E12.5
(Fig 5A) persisting throughout development (E16.5 and P1). At any
investigated time point, neurons co-expressing bothWt1 and Dmrt3
were not detected in Nes-Cre;Wt1fl/fl embryos and neonates.

Loss of the transcription factor Dbx1 that is involved in differen-
tiation of the V0 population results in a fate switch of some V0 neurons
to become dI6 interneuron-like cells (Lanuza et al, 2004). Thus, we
investigated whether populations flanking the dI6 population were
affected inNes-Cre;Wt1fl/flmice. The Lmx1b+ dI5 populationwas similar
in number when comparing Nes-Cre;Wt1fl/fl with wild-type embryos,
whereas the number of Evx1+ V0V neurons was significantly increased
already at E12.5 (Fig 5B). This increase was still detectable at E16.5. No
differences could be seen in Foxp2+ V1 neurons, Chx10 (V2a) and Gata3
(V2b) neurons, and Islet 1/2+ MNs between conditional Wt1 knockout
and control embryos at E12.5. However, at E16.5, Chx10+ V2a neurons
showed a significant decrease in cell number.

To verify the changes in interneuron composition found in the
developing Nes-Cre;Wt1fl/fl mice, we made use of a second mouse
line, namely, Lbx1-Cre;Wt1fl/fl mice. At embryonic stage E16.5, we
observed a decrease in the amount of dI6 neurons and an increase in
the cell number of Evx1+ neurons similar to Nes-Cre;Wt1fl/fl mice (Fig
5C). This decline in the number of dI6 neurons and the concomitant
increase in the amount of Evx1+ neurons might point to a change in
the developmental fate from dI6 neurons into V0 neurons prompted
by the deletion of Wt1. To test this hypothesis, we ablated the cells
destined to express Wt1. We used Lbx1-Cre;Wt1-GFP-DTA mice in

Figure 3. Locomotor activity is variable and
uncoordinated in Nes-Cre; Wt1fl/fl pups.
(A) Representative traces showing locomotor-like
activity during fictive locomotion from left and right
lumbar (L) 2 and right L5 ventral roots from control
(Nes-Cre;Wt1+/+) andWt1 conditional knockout (Nes-Cre;
Wt1fl/fl) mice. Rhythmic activity was induced by
application of NMDA, serotonin, and dopamine. Raw
traces in black; rectified, low-pass filtered signal of lL2
trace in blue; activity burst shown in green. Spinal cord
schematic depicts the attached suction electrodes to
the right (r) and left (l) L2 and rL5 ventral roots. Scale
bar: 5 s. (B) Phase analysis and associated coherence
power spectra of left/right (L2/L2) and flexor/extensor
(L2/L5) recordings. Regions of persistent coherence
emerge for control mice at 0.30 Hz, whereas spinal cords
from Nes-Cre;Wt1fl/fl mice show an intermittent
coherence region at 0.18 Hz. Color-graded scale
indicates normalized coherence. Scale bar: 125 s.
(C) Locomotor patterns, analyzed from 20 consecutive
bursts, reveal impaired and variable left/right and
flexor/extensor alternation in Nes-Cre;Wt1fl/fl mice
(black dots). Normal left/right and flexor/extensor
alternation is maintained in control (white dots) mice.
Each dot represents one cord; arrows represent the
mean phase. The length of the vector is a measure of
the statistical significance of the preferred phase;
dashed grey line indicates regions of significance and
high significance at 0.5 and 0.8, respectively (Rayleigh
test and Watson’s U2 test). n = 5 pups (control); n = 7
pups (Nes-Cre;Wt1fl/fl). (D) Nes-Cre;Wt1fl/fl mice have
a slower locomotor frequency than control mice. Data

are shown as mean ± SD. n = 5 pups (control); n = 7 pups (Nes-Cre;Wt1fl/fl). Significance was tested using two-tailed Mann–Whitney U test. (E, F) The slower locomotor
frequency in Nes-Cre;Wt1fl/fl mice is mirrored by an increased cycle period, and burst and interburst duration in both L2 (E) and L5 (F) roots. Data are shown as mean ± SD.
n = 5 pups (control); n = 7 pups (Nes-Cre;Wt1fl/fl). Significance was tested using two-tailed Mann–Whitney U test. Significance level: **P < 0.01, ***P < 0.001.
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which the diphtheria toxin subunit A (DTA) is expressed from the
endogenous Wt1 locus after Cre-mediated excision of a GFP
cassette harboring a translational STOP codon. Cre expression
driven by the Lbx1 promoter targets the dI4 to dI6 interneuron
populations (Müller et al, 2002). In Lbx1-Cre;Wt1-GFP-DTA embryos,
nearly all Wt1+ neurons were ablated at E16.5 (Fig 5D). The ablation
of Wt1+ neurons coincided with a significantly decreased number
of Dmrt3+ neurons in Lbx1-Cre;Wt1-GFP-DTA embryos, but did not
affect the number of Evx1+ neurons (Fig 5D). Taken together, the
results from the Wt1 deletion and the ablation of the Wt1 neurons
suggest that the fate switch from dI6 neurons into Evx1+ V0
neurons occurs because of the deletion of Wt1. A postnatal
phenotypic behavioral analysis of these mice was not possible

because neonates died immediately after birth because of serious
respiratory deficits (data not shown).

The analyses of the interneuron composition in developing
conditional Wt1 knockout mice and embryos with an ablation of
Wt1+ neurons suggest a fate switch within a specific subset of dI6
and V0V neurons that depends on the presence of the cells des-
tined to express Wt1.

The transition of dI6 neurons into Evx1+ V0V neurons upon loss of
Wt1 is not direct

To further investigate the cellular fate change upon deletion ofWt1,
we combined Wt1-GFP and Nes-Cre;Wt1fl/fl animals to generate

Figure 4. Innervation of Wt1+ neurons and number of
commissural neurons in neonatal mice.
(A) Spinal cords of Wt1-GFP embryos (stage E16.5) show
a Wt1+ interneuron immunopositive for GFP. Wt1 is
localized in the nucleus and GFP throughout the cell.
Scale bar: 2 μm. (B) Wt1+ neurons (green) receive
excitatory, inhibitory, and monoaminergic synaptic
contacts. Synaptic terminals are identified with
synaptophysin (blue). Glutamatergic terminals were
immunolabelled for VGLUT2, inhibitory synapses
immunolabelled for VGAT, and monoaminergic
terminals immunolabelled for VMAT2. Arrows point to
individual synaptic terminals (magenta) present on
Wt1+ neurons (green). Boxed areas show higher
magnification panels of separated channels. Scale bar:
2 μm. (C) GFP-immunolabelled dI6 neurons in the spinal
cord of E16.5 Wt1-GFP embryos. GFP antibody staining
(green; left panel) and merging with Hoechst (blue; right
panel) is shown. Boxed areas represent location of
higher magnification panels shown on the right of each
panel. Contralateral projections crossing the midline
(dashed line) of the spinal cord are visible (arrow heads
in magnified images). Scale bar: 20 μm for overview
images and 50 μm for magnified images. (D)
Photomicrographs of transverse, 60 μm, lumbar, spinal
cord sections with applied fluorescein dextran amine
(FDA, green) and rhodamine dextran amine (RDA, red)
tracers. Higher magnification images (insets) of wild-
type (Nes-Cre;Wt1+/+) and homozygous (Nes-Cre;Wt1fl/fl)
segments, showing intersegmental retrograde FDA
(white arrow), RDA (open arrow), and double-labelled
(triangle arrow) neurons. Scale bar: 200 μm. (E)
Schematic illustration of FDA (lumbar [L]1) and RDA
(L4/5) application sites tracing descending (green),
ascending (red), and bifurcating (yellow) neurons. The
area of analysis (L2/L3) is indicated by black dashed line.
(F–H)Quantification of descending FDA-labelled neurons
(F), ascending RDA-labelled neurons (G), and bifurcating,
double-labelled neurons per section (H). Descending,
ascending, and bifurcating CINs are significantly fewer
in homozygous spinal cords compared with control cords
(according to Kruskal–Wallis test and followed by
a Dunn’s post hoc test comparing all groups). Data
expressed asmean ± SEM (Wt1fl/fl control: 3,975 total cells,
215 sections, and nine spinal cords; Nes-Cre;Wt1fl/fl: 3,421
total cells, 228 sections, and seven spinal cords).
Significance level: *P < 0.05, **P < 0.01, ***P < 0.001.
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Nes-Cre;Wt1fl/GFP mice. These mice harbor a constitutive knockout
allele of Wt1 due to the insertion of a GFP-coding sequence and
another conditional Wt1 knockout allele. GFP and Wt1 were co-
localized in the ventral spinal cord of Wt1fl/GFP control animals at
E13.5, whereas GFP, but not Wt1, was detected in the spinal cords of
Nes-Cre;Wt1fl/GFP embryos of the same age (Fig 6A). Thus, Nes-Cre;
Wt1fl/GFP mice allowed us to inactivate Wt1, whereas the cells
destined to express Wt1 are labelled by GFP.

To investigate whether Wt1 deletion leads to apoptosis in
the respective cells, TUNEL was used. TUNEL+ cells were present
in the ventrolateral spinal cords of Wt1fl/GFP control and Nes-
Cre;Wt1fl/GFP embryos (Fig 6A). However, TUNEL signals never
overlapped with GFP+ dI6 neurons destined to express Wt1,

suggesting that Wt1 inactivation in dI6 neurons did not result in
cell death.

To find out whether cells destined to express Wt1 would directly
convert to V0V neurons upon Wt1 inactivation, we performed im-
munohistochemical analyses. The presence of Dmrt3 and Evx1 in
GFP+ dI6 neurons was analyzed in Wt1fl/GFP control and Nes-Cre;
Wt1fl/GFP embryos at E12.5 (Fig 6B). The number of GFP+ cells per
hemicord was determined and set to 100%. The proportion of
Dmrt3+ cells was approximately 13% of all GFP+ cells in the spinal
cord of E12.5 control embryos. WhenWt1 was absent, the amount of
Dmrt3+ GFP cells significantly decreased to 4%. In contrast, the
proportion of GFP+ dI6 neurons that also showed Evx1 staining
was not changed between Wt1fl/GFP control and Nes-Cre;Wt1fl/GFP

Figure 5. Alterations in the composition of ventral
neurons upon Wt1 knockout.
(A) Average cell number of Wt1, Dmrt3, and Wt1/Dmrt3
neurons per 12 μm spinal cord section from different
embryonic and postnatal stages of control (Wt1fl/fl) and
Wt1 conditional knockout (Nes-Cre;Wt1fl/fl) mice.
Number of Dmrt3 neurons significantly decrease inNes-
Cre;Wt1fl/fl. No Wt1/Dmrt3 neurons are detected in Nes-
Cre;Wt1fl/fl animals. Data expressed as mean ± SD. n = 3
embryos per developmental stage and genotype.
Significance determined by t test. (B) Average cell
number of Lmx1b, Evx1, Foxp2, Chx10, Gata3, and ventral
Islet1/2 neurons per 12 μm spinal cord section from
control (Wt1fl/fl) and homozygous (Nes-Cre;Wt1fl/fl) mice
at E12.5 and E16.5. Number of Evx1+ V0 neurons is
significantly increased. Data expressed as mean ± SD.
n = 3–4 embryos per developmental stage and
genotype. Significance determined by t test. (C) Average
cell number of Wt1, Dmrt3, and Wt1/Dmrt3 dI6 neurons
and Evx1 V0 neurons per 12 μm spinal cord section from
E16.5 control (Wt1fl/fl) and Wt1 conditional knockout
(Lbx1-Cre;Wt1fl/fl) mice. Lbx1-Cre–based conditional Wt1
knockouts show a decrease in the amount of dI6
neurons and an increase in the cell number of Evx1
neurons as for Nes-Cre;Wt1fl/fl animals. Data expressed
as mean ± SD. n = 3–5 embryos per genotype.
Significance determined by t test. (D) Schematic
illustration ofWt1-GFP-DTA allele. Cassette consisting of
loxP sites flanking GFP coding sequence upstream of
DTAwas inserted into theWt1 locus. This cassette allows
Cre-mediated ablation of Wt1+ neurons. Graph shows
average cell number of Wt1, Dmrt3, and Wt1/Dmrt3 dI6
neurons and Evx1+ V0 neurons per 12 μm spinal cord
section from E16.5 wild-type control and Lbx1-Cre;Wt1-
GFP-DTA mice. Nearly all Wt1+ neurons are absent. The
number of Dmrt3 neurons is significantly decreased.
Population size of Evx1 neurons is not altered after
ablation of Wt1+ neurons. Data expressed as mean ± SD.
n = 3 embryos per genotype. Significance determined by
t test. Significance level: *P < 0.05, **P < 0.01, ***P < 0.001.
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animals (below 1% for both). Thus, the increase in the amount of Evx1+
V0V neurons observed inmice lackingWt1 does not seem to result from
a direct transition of future Wt1+ dI6 neurons into Evx1+ V0V neurons.

Discussion

In this study, we have examined Wt1, which marks a subset of dI6
neurons. We found that Wt1 is required for proper differentiation of
spinal cord neurons during embryogenesis and that deletion ofWt1
results in locomotor aberrancies in neonates and adult mice.

Adult conditional Wt1 knockout animals (Nes-Cre;Wt1fl/fl) show
an increased stride length and a decreased stride frequency,
resulting in slower absolute walking speed. This supports a possible
role of the Wt1+ dI6 neurons in both timing and limitation of the
stride cycle. Although the CPG network is capable of producing
accurate timing and phasing, proprioceptive and supraspinal input
is needed to regulate the CPG activity (Pearson, 2004; Kiehn, 2016;
Danner et al, 2017). The integration of this sensory information
would require an integrative position in the locomotor CPGs, which
is compatible with the observed multisynaptic input to Wt1+ dI6
neurons. However, it still has to be determined whether these
various inputs come from proprioceptive sensors, supraspinal
regions, or other spinal cord interneurons.

The timing of hindlimb footfalls relative to forelimb footfalls
during walking differed between Wt1fl/fl and Nes-Cre;Wt1fl/fl mice,
particularly at the diagonal fore- and hindlimbs, suggesting that
Wt1 cells play a role in long-range coordination between various
spinal cord segments. We could show that at least a fraction of Wt1+
dI6 neurons possesses commissural projections, which is in ac-
cordance to very recent published data (Haque et al, 2018). Our
results further revealed that deletion of Wt1 leads to a decline in
the number of commissural neurons. This suggests not only an
involvement of Wt1 in establishing proper projections of the Wt1+
dI6 neurons, but might also explain the changes in the phase
coupling between contralateral limbs that might not be related to
the V0-based interlimb coordination between fore- and hindlimbs
(Talpalar et al, 2013; Danner et al, 2017).

The locomotor alterations observed in adult mice were more
subtle than the locomotion abnormalities seen in neonates, which
could be due to various compensatory adaptations during post-
natal maturation of neuronal circuits. Neonates lacking Wt1 in the
spinal cord increased the number of uncoordinated steps, which
was supported by a markedly slower and variable pattern of
locomotor-like activity in isolated Nes-Cre;Wt1fl/fl spinal cords. They
also exhibited a perturbed flexor–extensor and left–right alter-
nation that might be a consequence of the loss of commissural
and ipsilateral projections. The data from the fictive locomotion

Figure 6. Indirect trans-differentiation of Wt1+ dI6
neurons.
(A) Immunofluorescence staining of spinal cord sections
from E13.5Wt1+/GFP (control) andNes-cre;Wt1fl/GFP embryos.
GFP is depicted in green, Wt1 in red, TUNEL+ cells in
white, and Hoechst in blue. Orientation: dorsal at the
top and ventral at the bottom. Scale bar: 50 μm. (B)
Quantification of GFP+ cells harbouring the interneuron
markers Dmrt3 and Evx1. Analysis was performed using
E12.5Wt1+/GFP (control; n = 3) and Nes-cre;Wt1fl/GFP (n = 3)
embryos. The number of cells showing co-localization of
GFP and the respective markers was determined and
normalized to the total number of GFP+ cells, which was
set to 100%. Upon Wt1 knockout, the amount of GFP+
cells possessing Dmrt3 is significantly decreased. The
amount of GFP+ cells possessing Evx1 is not altered,
suggesting an indirect fate change of dI6 neurons
into Evx1+ V0V-like neurons upon Wt1 knockout. Data
expressed as mean ± SD. Significance determined
by t test. Significance level: **P < 0.01. (C) Scheme
represents various progenitor cell domains (pd5,
pd6, pV0, pV1, and pV2) that give rise to different
populations of spinal cord neurons (shown as circles)
in wild-type and tissue-specific Wt1 knockout. In wild-
type animals, progenitor cells leave these domains,
become postmitotic, and differentiate into distinct
interneuron populations that further subdivide. The
dI6 interneuron population consists of neurons either
positive for Dmrt3 (dI6D), Wt1 (dI6W), or both (dI6DW).
Because of the knockout of Wt1, no dI6W and dI6DW
are detectable and the number of dI6D neurons is
decreased. In contrast, the number of Evx1+ V0V neurons
increases, which is an indirect effect as potential dI6W

cells that lack Wt1 did not show a Evx1 signal. This effect might be explained by a hypothetical fate change of dI6 neurons into V0D-like neurons (dashed light grey circle).
The increased number of V0D neurons would thus prompt the pV0 progenitor cells to differentiate preferentially into V0V neurons, which would compensate the excess
amount of V0D neurons and lead to an increase in the population size of Evx1+ V0V neurons. As a secondary effect, the number of V2a neurons, which innervate the V0V
neurons, declines at later developmental stages when neurons start to connect to each other, potentially compensating the increased number of V0V neurons. Only the
subsets of interneuron populations are shown that are affected by the tissue-specificWt1 knockout. Red indicates decrease in population size and green indicates increase
in population size.
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showing that a locomotor rhythm is established when Wt1 is de-
leted suggested that Wt1+ dI6 neurons are unlikely to participate
directly in the kernel of neurons that generate the locomotor
rhythm (Dougherty et al, 2013). But because an increase in the
variability of bursts during fictive locomotion was observed, we
hypothesize that the Wt1+ dI6 neurons are involved in the mod-
ulation of this rhythm.

Lack of Wt1 in the spinal cord caused alterations in the differ-
entiation of dI6, V0, and V2a spinal cord neurons during embryo-
genesis (Fig 6C). The inverse alterations in the dI6 and V0
populations suggest a fate change from dI6 to V0-like neurons
when Wt1 is inactivated. The putative transition from dI6 to V0-like
neurons occurs at the time point when Wt1 expression would nor-
mally start. This instantaneous effect might be due to the derivation
of both interneuron populations from neighboring progenitor do-
mains sharing common transcription factors such as Dbx1 (Alaynick
et al, 2011). Thus, loss ofWt1might lead to a switch in developmental
programs that are normally repressed; whether this repression oc-
curs cell-autonomously or non–cell-autonomously still has to be
determined. In any case, when future Wt1+ cells are ablated, an
increase in V0-like neurons is no longer observed, suggesting that the
fate switch requires the cells about to express Wt1.

The fate change of prospective dI6 to V0-like neurons is complex
because dI6 neurons can be subdivided into at least three subsets
based on the expression of the transcription factor–encoding genes
Wt1 and Dmrt3 (Fig 6C). Loss of Wt1 affects not only the small
number of dI6 neurons that possess Wt1 and Dmrt3 but also the
number of neurons that only express Dmrt3. This population is
significantly decreased. The presence of Wt1+ dI6 neurons, there-
fore, is essential to maintain the character of a subset of Dmrt3+ dI6
neurons. If Wt1 is inactivated, in addition to the cells that are
programmed to expressWt1, possibly also Dmrt3+ dI6 neurons may
differentiate into V0-like neurons.

Two main subpopulations exist within the V0 population
(Alaynick et al, 2011): the Evx1+, more ventrally derived V0V, and the
Evx1 negative, more dorsally derived V0D population, for which no
distinct marker has yet been described. The knockout of Dbx1 re-
sults in trans-differentiation of the whole V0 population, whereby
Evx1+ V0V neurons acquire a more ventral fate and become V1
neurons, whereas Evx1-negative V0D neurons acquire character-
istics of dI6 neurons (Lanuza et al, 2004). This suggests that the V0D,
rather than the V0V, neurons closely resemble the dI6 neurons and
poses the question whether the fate change from Wt1+ dI6 neurons
to Evx1+ V0V-like neurons represents a direct or an indirect tran-
sition. The investigations using the Nes-Cre;Wt1fl/GFP mice suggest
that theWt1-deficient dI6 cells do not change their fate directly into
Evx1+ V0V-like neurons, suggesting an indirect transition. This
points to the possibility that the fate change might be achieved by
a transition of Wt1+ dI6 neurons into the more closely related Evx1-
negative V0D-like neurons, which leads to a putative increase in the
V0D population (Fig 6C). The Evx1+ V0V population might, in turn,
increase its number to compensate for a higher proportion of V0D-
like neurons.

In addition to the changes in the dI6 and V0 populations that
occur upon Wt1 deletion in the spinal cord, Chx10+ V2a neurons
show a slight but significant decrease in their cell number at E16.5
(Fig 6C). Thismight represent a secondary effect of the alterations in

the dI6 and V0 populations, which occur already at E12.5. It was
reported that V2a neurons directly innervate V0V neurons (Crone
et al, 2008). This secondary decrease in the number of these V2a
neurons might thus be due to a potential adaptation to the in-
creased number of V0V neurons.

The trans-differentiation of spinal cord neurons observed upon
Wt1 knockout might also have an effect on the locomotor phenotype
detected in adults and neonates. Excitatory V0V and inhibitory V0D
commissural neurons and the ipsilateral excitatory V2a interneurons
built up a dual-inhibitory commissural system that is involved in
left–right alternation of locomotion (Crone et al, 2008; Talpalar et al,
2013). This dual-inhibitory system works in a speed-dependent
manner and allows switching between different gaits. At low
speed, V0D neurons are active and cause walking and at higher speed,
V2a and V0v neurons become active and cause trotting (Talpalar et al,
2013; Bellardita & Kiehn, 2015; Kiehn, 2016). In Wt1 knockout animals,
the trans-differentiation of neurons probably interferes with this
system. This can be seen by the left–right perturbation observed in
neonates, suggesting that the increase in V0 neurons is not sufficient
to compensate for the loss of V2a neurons and commissural pro-
jections upon Wt1 deletion. On the other hand, adult Nes-Cre;Wt1fl/fl

animals refused to run even when they were forced to move faster by
increasing the speed of the treadmill. This suggests that they might
have difficulties to run at high speeds and to switch from walk to
other running gaits (Bellardita & Kiehn, 2015). However, their ability to
change between different gaits still has to be investigated to elu-
cidate the mechanism by which the increase in V0 neurons and the
decrease in V2a neurons act in particular on the CPG output.

The approach to ablate a gene to investigate the function of
a particular cell population in the spinal network comes with
limitations. As already observed for the V0 neurons, inactivating
a gene that is crucial for the differentiation of spinal cord neurons
might lead to trans-differentiation. This is often accompanied by
gain and loss of function of several neuron populations, which can
make it challenging to assign distinct functions to a particular
neuronal cell type (Lanuza et al, 2004; Talpalar et al, 2013). However,
we have chosen the knockout of Wt1 to investigate its role in the
differentiation of spinal cord neurons and its influence on loco-
motion. If the scope was to determine the position of Wt1+ neurons
in the locomotor CPG, silencing of the respective neurons would
have been a more direct way as very recently performed by Haque
et al (2018).. The authors report that acute silencing of these cells
revealed their role for appropriate left–right alternation during
locomotion (Haque et al, 2018). They also showed that Wt1+ dI6
neurons are inhibitory neurons with contralateral projecting axons
terminating in close proximity to other commissural interneuron
subtypes. Thus, our data and the results by Haque et al (2018) are
complementary. We could not only confirm that Wt1+ dI6 neurons
are commissural projecting but were also able to further show that
Wt1 is crucial for the formation of these projections. Although the
locomotor phenotype of the conditional Wt1 knockout is more
diverse than the altered left–right alternation seen in neonates
with functionally silenced Wt1+-positive cells, the analyses of the
locomotor behavior of adult Wt1 knockout mice revealed a further
involvement of Wt1+ dI6 neurons in modulating the gait rhythm.
This modulation may be achieved because of an integrative po-
sition of the Wt1+ dI6 neurons with multisynaptic input.
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In sum, the results obtained in this study shed light not only on
the so far undescribed necessity for Wt1 in the development of
spinal cord neurons but also on their functional implementation in
circuits responsible for locomotion.

Materials and Methods

Mouse husbandry

All mice were bred and maintained in the Animal Facility of the
Leibniz Institute on Aging—Fritz Lipmann Institute, Jena, Germany,
according to the rules of the German Animal Welfare Law. Sex- and
age-matched mice were used. Animals were housed under specific
pathogen-free conditions, maintained on a 12-h light/dark cycle,
and fed with mouse chow and tap water ad libitum. Mice used for
analysis of fictive locomotion and projection tracing were kept
according to the local guidelines of Swedish law. Wt1fl/fl mice were
maintained on a mixed C57B6/J × 129/Sv strain. Wt1-GFP mice
(Hosen et al, 2007) weremaintained on a C57B6/J strain. Conditional
Wt1 knockout mice were generated by breeding Wt1fl/fl females
(Gebeshuber et al, 2013) to Nes-Cre;Wt1fl/fl (Tronche et al, 1999) or
Lbx1-Cre;Wt1fl/flmice (Sieber et al, 2007). To generate mice with Wt1-
ablated cells, Wt1-GFP-DTA mice were bred with Lbx1-Cre mice.
Control mice were sex- and age-matched littermates (wild type or
Wt1fl/fl). For plug mating analysis, females of specific genotypes
were housed with males of specific genotypes and were checked
every morning for the presence of a plug. For embryo analysis,
pregnant mice were euthanized by CO2 inhalation at specific time
points during embryo development and embryos were dissected.
Typically, female mice between 2 and 6 mo were used.

Generation of Wt1-GFP-DTA mice

The Wt1-GFP-DTA mouse line bares an IRES-lox-GFP-lox-DTA cas-
sette that was inserted into intron 3 of the Wt1 locus. This cassette
consists of a GFP-encoding sequence that ends in a translational
STOP codon and is flanked by loxP sites. Downstream of GFP, the
coding sequence for the DTA was incorporated. Before Cre in-
duction, the internal ribosomal entry site (IRES) cassette ensures
the generation of a functional GFP protein. After Cre-mediated
excision of the floxed GFP sequence, the DTA is expressed from
the endogenous Wt1 promotor.

The Wt1-GFP-DTA model was generated by homologous re-
combination in embryonic stem (ES) cells. After ES cell screening
using PCR and Southern blot analyses, recombined ES cell clones
were injected into C57BL/6J blastocysts. The injected blastocysts
were reimplanted into OF1 pseudo-pregnant females and allowed
to develop to term. The generation of F1 animals was performed by
breeding of chimeras with wild-type C57BL/6 mice to generate
heterozygous mice carrying the Wt1 knockin allele.

Immunohistochemistry

Embryonic and postnatal spinal cords were dissected. They were
either frozen unfixed after 15-min dehydration with 20% sucrose (in

50% TissueTec/PBS) (postfix) or fixed for 75 min in 4% para-
formaldehyde in PBS (prefix). Prefixed tissue was cryoprotected in
10%, 20%, and 30% sucrose (in PBS) before freezing in cryoembedding
medium (Neg-50; Thermo Fisher Scientific). Post- and prefixed
samples were sectioned (12 μm). Postfixed samples were fixed for
10min after sectioning andwashedwith 2% Tween in PBS (PBS-T). For
prefixed samples, antigen retrieval was performed by incubation in
sub-boiling 10 mM sodium citrate buffer (pH 6.0) for 30 min. After
blocking with 10% goat serum and 2% BSA in PBS-T (postfix or prefix),
the sections were incubated with primary antibodies (in blocking
solution) using the following dilutions: gBhlhb5 1:50 (Santa Cruz
Biotechnology, Inc.), BrdU 1:100 (abcam), shChx10 1:100 (abcam),
gpDmrt3 1:5,000 (custom made [Andersson et al, 2012]), mEvx1 1:100
(1:3,000 prefix) (Developmental Studies Hybridoma Bank, University of
Iowa), chGFP 1:1,000 prefix (abcam), mGFP 1:100 (Santa Cruz Bio-
technology, Inc.), rFoxP2 1:800 (abcam), mIslet1/2 1:50 (Develop-
mental Studies Hybridoma Bank, University of Iowa), gpLbx1 1:20,000
(gift from C. Birchmeier, MDC), Lim1/2 1:50 (Developmental Studies
Hybridoma Bank, University of Iowa), NeuN 1:500 (Merck), rbPax2 1:50
(Thermo Fisher Scientific), rbLmx1b 1:100 (gift from R. Witzgall, Uni-
versity of Regensburg), and rbWt1 1:100 (Santa Cruz Biotechnology,
Inc.). Secondary antibodies were applied according to species
specificity of primary antibodies. Hoechst was used to stain nuclei.
Quantitative analysis of the antibody staining was statistically
analyzed using t test.

BrdU injection

To label proliferating cells in the embryonic spinal cord, pregnant
mice at E9.5, E10.5, and E11.5 were injected intraperitoneally with
100 μg/g of BrdU dissolved in 0.9% sodium chloride solution.
Embryos were harvested at E12.5 to isolate spinal cords and stain
for BrdU and Wt1. Spinal cords were frozen unfixed after 15-min
dehydration with 20% sucrose (in 50% TissueTec/PBS) and sec-
tioned (12 μm). After any of the following treatments, the sections
were washed with PBS. Antigen retrieval was performed by in-
cubation in 98°C sub-boiling 10 mM sodium citrate buffer (pH 6.0)
for 30 min. After treatment with 2N HCl at 37°C for 30 min, the
sections were incubated with primary antibodies using the di-
lutions mentioned above (see the Immunohistochemistry section).
Secondary antibodies were applied according to the species
specificity of primary antibodies.

RNA isolation and qRT–PCR analysis

Total RNA was isolated from E12.5 embryonic spinal cords using
Trizol (Invitrogen) according to the manufacturer’s protocol. Sub-
sequently, 0.5 μg of RNA was reverse transcribed with iScript cDNA
synthesis kit (Bio-Rad) and used for quantitative real-time PCR
(qRT–PCR). The primer sequences used for RT–PCR analyses are as
follows: TGT TAC CAA CTG GGA CGA CA (Act_for); GGG GTG TGG AAG
GTC TCA AA (Act_rev); AGT TCC CCA ACC ATT CCT TC (Wt1_qRT_for); TTC
AAG CTG GGA GGT CAT TT (Wt1_qRT_rev). Real-time PCR was carried
out in triplicates for each sample using SyberGreenER (Thermo
Fisher Scientific) and Bio-Rad iCycler (Bio-Rad). PCR efficiencies of
primer pairs were calculated by the linear regression method. Ct
values were normalized to the mean of the reference gene Actin.
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Relative expression was determined by comparing normalized Ct
values ofWt1 conditional knockout and control samples (Pfaffl et al,
2002). Significance was determined by using pairwise reallocation
randomisation test.

Analysis of locomotor behavior

To characterize gait parameters, 10 animals per sex and genotype
were used. Body masses of the mice varied considerably within the
groups and among the groups with significant differences between
the male Wt1fl/fl and Nes-Cre;Wt1fl/fl mice (Wt1fl/fl: 28 g ± 3 g versus
Nes-Cre;Wt1fl/fl: 23 g ± 3 g; Fs = 31.98; ts = 3.28, P > 0.001) andmoderate
differences between the female Wt1fl/fl and Nes-Cre;Wt1fl/fl mice
(Wt1fl/fl: 25 g ± 5 g versus Nes-Cre;Wt1fl/fl: 22 g ± 4 g; Fs = 3.80; ts = 1.62,
not significant). We recorded the voluntary walking performance of
this larger cohort using high-resolution X-ray fluoroscopy (biplanar
C-arm fluoroscope Neurostar; Siemens AG). Strides defined as
running gait according to the hindlimb duty factor (Hildebrand,
1985; Herbin et al, 2004) occasionally occur in some male Wt1fl/fl

mice and were excluded from the analysis. Because of body size
variation within and among groups, we adjusted treadmill speed
dynamically to the individual preferences and abilities of the mice.
This method of motion analysis has been described in detail in
several recent publications (e.g., Böttger et al, 2011; Andrada et al,
2015; and Niederschuh et al, 2015) and will be only briefly sum-
marized here. The X-ray system operates with high-speed cameras
and a maximum spatial resolution of 1,536 dpi × 1,024 dpi. A frame
frequency of 500 Hz was used. A normal-light camera operating at
the same frequency and synchronized to the X-ray fluoroscope was
used to document the entire trial from the lateral perspective.
Footfall sequences and spatiotemporal gait parameters were
quantified by manual tracking of the paw toe tips and two land-
marks on the trunk (occipital condyles, iliosacral joint) using
SimiMotion 3D. Speed, stride length, stride frequency, the durations
of stance and swing phases, and the distances that trunk or limb
covered during these phases were computed from the landmark
coordinates collected at touchdown and liftoff of each limb. The
phase relationships between the strides of left and right limbs as
well as fore- and hindlimbs were determined from footfall se-
quences as expression of temporal interlimb coordination (Fig S1F).
As the animals frequently accelerated or decelerated relative to the
treadmill speed, the actual animal speedwas obtained by offsetting
trunk movement against foot movement during the stance phase of
the limb. The resulting distance was divided by the duration of the
stance phase. Animal speed and all temporal and spatial gait
parameters were then scaled to body size following the formulas
published by Hof (1996): nondimensional speed = v/gl0, where v is
raw speed, g is gravitational acceleration, and l0 is the cube root of
body mass as characteristic linear dimension, which scales iso-
metrically to body mass; nondimensional frequency = f/gl0, where f
is raw frequency; and nondimensional stride length = l/l0, where l is
raw stride length. The scaled spatiotemporal gait parameters
change as a function of nondimensional speed. Therefore, linear
regression analyses were computed for each parameter in the male
and the female Wt1fl/fl group. The power formulas obtained from
regression computation (Y = a + bX) were then used to calculate the
expected value for a given nondimensional speed for each gait

parameter (baseline) in each animal of all four groups. The co-
efficient of determination r2 was computed. The deviations of the
measured values of Y from the expected values, the residuals, were
determined and are given in percent of deviation. Using these
residuals, one-way ANOVA was computed to establish the signifi-
cance of the differences between the means ofWt1fl/fl and Nes-Cre;
Wt1fl/fl in males and females. Group means were calculated from
the means of 10 animals. Sample size per mouse and limb ranged
between 5 and 41 stride cycles, with an average sample size of 22 ± 9.

Fictive locomotion

Animals (P0–P3) were euthanized and the spinal cords eviscerated
in ice-cold cutting solution containing (in mM) 130 K-gluconate,
15 KCl, 0.05 EGTA, 20 Hepes, and 25 glucose (pH adjusted to 7.4 by 1M
KOH) and then equilibrated in artificial cerebrospinal fluid (Perry
et al, 2015) for at least 30 min before the beginning of experimental
procedures. Suction electrodes were attached to left and right
lumbar (L) ventral roots 2 and 5 (L2 and L5). A combination of NMDA
(5 μM) + 5-HT (10 μM) + dopamine (50 μM) were added to the
perfusing artificial cerebrospinal fluid to induce stable locomotor-
like output. All chemicals were obtained from Sigma-Aldrich.
Recorded signals containing compound action potentials were
amplified 10,000 times and band-pass filtered (100–10 kHz) before
being digitized (Digidata 1322A; Axon Instruments Inc.) and recorded
using Axoscope 10.2 (Axon Instruments Inc.) for later off-line
analysis. The data were rectified and low-pass filtered using
a third-order Butterworth filter with a 5-Hz cutoff frequency before
further analysis. Coherence plots between L2 and L2/L5 traces were
analyzed using a mortlet wavelet transform in SpinalCore (Version
1.1). Preferential phase alignment across channels are shown in the
circular plots and burst parameters were analyzed for at least 20
sequential bursts, as previously described (Kiehn & Kjaerulff, 1996)
using an in-house designed program in Matlab (R2014b; Math-
Works). Ventral root recording preferential phase alignment was
assessed by means of circular statistics from five control cords and
seven Nes-Cre;Wt1fl/fl cords (Rayleigh test and Watson’s U2 test) for
20 consecutive cycles as described (Kiehn & Kjaerulff, 1996). Burst
parameters, including frequency, are presented as the mean ± SD.
Burst parameters from five control cords and seven Nes-Cre;Wt1fl/fl

cords were compared using the Mann–Whitney U test.

Tracing of commissural neurons

To examine whether the loss ofWt1 affects spinal cord populations,
tracing experiments were conducted as previously described (Rabe
et al, 2009; Andersson et al, 2012).Nes-Cre;Wt1fl/fl andNes-Cre;Wt1+/+

littermate control mice P0–P5 were prepared as described above
(fictive locomotion). Two horizontal cuts (intersegmental tracing
targeting commissural ascending/descending/bifurcating neu-
rons) were made in the ventral spinal cord at lumbar (L) level 1 and
between L4 and L5. Fluorescent dextran amine (FDA, 3,000 MW;
Invitrogen) was applied at L1 and rhodamine dextran amine (RDA,
3,000 MW; Invitrogen) was applied between the L4/L5 ventral roots.
Spinal cords were incubated overnight at room temperature,
subsequently fixed in 4% formaldehyde, and stored in the dark at
4°C until transverse sectioning (60 μm) on a vibratome (Leica).
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Fluorescent images were acquired on a fluorescencemicroscope
(Olympus BX61W1). For quantitative analyses of traced cords,
consecutive images were taken between the two tracer application
sites using Volocity software (Improvision). Captured images were
auto-leveled using Adobe Photoshop software. Only cords with an
intact midline, as assessed during imaging, were used for analysis.

Traced neurons in Wt1fl/fl control and Nes-Cre;Wt1fl/fl cords were
examined for significance using the Kruskal–Wallis analysis of
variance test followed by a Dunns post-test comparing all groups.
Tracing data are presented as themean ± SEM using 3,975 total cells,
215 sections, and nine spinal cords (Wt1fl/fl control); 3,421 total cells,
228 sections, and seven spinal cords (Nes-Cre;Wt1fl/fl).

TUNEL assay

To detect apoptosis in situ, the TUNEL assay was performed before
antibody binding. Slides were incubated with TUNEL reaction so-
lution (1× reaction buffer TdT and 15 U TdT in ddH2O from Thermo
Fisher Scientific; 1 mM dUTP-biotin from Roche) at 37°C for 1 h and
washed with PBS afterwards.

Imaging and picture processing

Fluorescent images were viewed in a Zeiss Axio Imager and a Zeiss
Observer Z1 equipped with an ApoTome slider for optical sectioning
(Zeiss). Images were analyzed using the ZEISS ZEN2 image analysis
software. For quantitative analyses of traced spinal cords, the
application sites were identified and consecutive photographs
were taken between the two application sites using the OptiGrid
Grid Scan Confocal Unit (Qioptiq) and Volocity software (Improvi-
sion). Confocal images were captured on a ZEISS LSM 710 ConfoCor 3
confocal microscope and analyzed using the ZEISS ZEN2 image
analysis software. Captured images were adjusted for brightness
and contrast using ZEN2 image analysis software and Adobe
Photoshop software.

Statistical analyses

Data are expressed as mean ± SD or as mean ± SEM. Groups were
compared using one-way ANOVA or two-tailed two-sample t test
depending on the number of groups and sample size. If normal
distribution of a sample was not confirmed, sample means are
compared by using nonparametric Mann–Whitney U test. All sta-
tistical analyses were performed using GraphPad Prism Software
(GraphPad Software Inc.), IBM SPSS Statistics 24 (IBM Corporation),
Microsoft Excel (Microsoft Corporation), or Matlab (R2014b; Math-
Works). Normal distribution was assessed using the D’Agostino-
Pearson normality test or Kolmogorov–Smirnov test. Significance
was determined as *P < 0.05, **P < 0.01, and ***P < 0.001.

Treadmill gait analyses

This approach involved two groups of mixed sexes of Wt1fl/fl and
Nes-Cre;Wt1fl/flmice (Wt1fl/fl: 10males and 10 females;Nes-Cre;Wt1fl/fl:
4 males and 8 females; age 24 wk). Locomotor performance was
investigated at the German Mouse Clinic—Helmholtz Center,
Munich, Germany (www.mouseclinic.de). Treadmill gait analysis was

performed with the DigiGait Imaging System (Mouse Specifics, Inc.),
which performs ventral plane videography to obtain digital foot-
prints of a mouse walking on a transparent treadmill at different
fixed speeds and subsequent analyses of gait patterns using
DigiGait software. The DigiGait software determines treadmill
contacts of individual paws that were used to quantify spatial
(stride length) and temporal indices of gait parameters (stride,
stance, and swing time) in walking or running animals. Paw
placement of each limb is monitored throughout the gait cycle at
up to 150 frames per second with a spatial resolution of more than
5,000 pixels per cm2. For statistical analysis, at least 10 strides for
each limb are included in the data set. The mean values for pairs of
fore- and hindlimbs were used. Each speed was analyzed sepa-
rately. Linear regression models using R (version 3.2.3) were used
to determine the statistical significance between the groups
(RCoreTeam, 2015). Because of strong influence of body weight and
body length on the gait performance, those factors are also in-
cluded into themodel to dissect their combined effects on the data.

Air-stepping analysis

P1 mice were used for air-stepping behavioral test according to
Andersson et al (2012) (n = 9 Wt1fl/fl control, n = 7 Nes-Cre;Wt1fl/fl) to
investigate limb movements in neonates. The hindlimb steps were
manually recorded for each animal over 20 s. The number of al-
ternating, synchronous, and uncoordinated hindlimb steps was
determined. Each parameter was then statistically tested using the
t test. The experimenter was blind to genotype while performing
and analyzing experiments.

Supplementary Information

Supplementary Information is available at https://doi.org/10.26508/lsa.
201800106.
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