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Abstract

Multigene families—immunity genes or sensory receptors, for instance—are often subject to diversifying selection. Allelic diversity may be
favored not only through balancing or frequency-dependent selection at individual loci but also by associating different alleles in multicopy
gene families. Using a combination of analytical calculations and simulations, we explored a population genetic model of epistatic selection
and unequal recombination, where a trade-off exists between the benefit of allelic diversity and the cost of copy abundance. Starting from
the neutral case, where we showed that gene copy number is Gamma distributed at equilibrium, we derived also the mean and shape of
the limiting distribution under selection. Considering a more general model, which includes variable population size and population sub-
structure, we explored by simulations mean fitness and some summary statistics of the copy number distribution. We determined the rela-
tive effects of selection, recombination, and demographic parameters in maintaining allelic diversity and shaping the mean fitness of a pop-
ulation. One way to control the variance of copy number is by lowering the rate of unequal recombination. Indeed, when encoding
recombination by a rate modifier locus, we observe exactly this prediction. Finally, we analyzed the empirical copy number distribution of 3
genes in human and estimated recombination and selection parameters of our model.
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Introduction
Multigene families occur in most, if not all, genomes of eukar-

yotes—in metazoans as well as in plants. They may be conserved

across large evolutionary distances, such as the histones or tRNA

gene families, or rapidly diversify in single species, such as the

nucleotide binding leucine rich domain (NLR) genes in Danio rerio

(Howe et al. 2016) or the leucine rich repeat (LRR) genes in

Arabidopsis thaliana (de Weyer et al. 2019).
Interspecies comparison of gene families derived from whole-

genome duplication has been used, for instance, to estimate rela-

tive rates of gene loss and functional divergence (Nadeau and

Sankoff 1997). On a shorter time scale, segmental duplication

and unequal recombination are perhaps the more important

mechanisms to explain gene family size differences between spe-

cies, populations, and individuals. Modeling gene family evolu-

tion has a quite long history (Smith 1974; Demuth and Hahn

2009; Innan 2009; Liu et al. 2011). The roadmap in a population ge-

netic framework was laid out in a series of contributions by Ohta

(1976, 1979, 1984, 1987, 1988, 2000). These models typically in-

clude forces such as selection and unequal recombination or

gene conversion. To describe the dynamics of copy number varia-

tion (CNV) generated by unequal recombination Takahata (1981)

introduced a general model based on the work of Krüger and

Vogel (1975). Fostered especially by the human genome diversity

projects, leading to the realization that structural variation is
more than abundant in human populations and observing ge-
nome size differences between individuals of 100 Mb and more
(Tuzun et al. 2005; Redon et al. 2006; Eichler 2008), we are witness-
ing revived interest in modeling and analyzing the evolution of
gene families and of the forces and mechanisms driving copy
number polymorphisms.

Tandem gene duplication may happen due to some form of
replication error, mispairing or segregation anomaly, notably un-
equal or—less frequently—nonhomologous recombination
(Silver 2001). A duplicated gene initially arises in a single individ-
ual, very much like a base mutation, and may be lost by drift or
be propagated to the offspring in subsequent generations. On its
way to fixation, or loss, such a duplication manifests itself as
CNV in a given population and—given sufficiently large popula-
tions—is sensed by the filter of natural selection. When benefi-
cial, directional selection will accelerate its fixation and
subsequent purifying selection will prevent it from loss.
Alternatively, when beneficial only in conjunction with other
alleles or other copies, balancing selection may force it to remain
at intermediate frequency. The best-known examples are per-
haps the alleles of pathogen receptors and immune genes, such
as those of the MHC complex in vertebrates. Balancing selection,
however, comes with a fitness cost in terms of segregation load.
Haldane (1937) had suggested that this effect may be alleviated
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or avoided when overdominant alleles are arrayed in tandem on
the same chromosome rather than be combined on homologous
chromosomes. Only recently, this fundamental idea has been ex-
perimentally tested—and confirmed—in populations of the mos-
quito Culex pipiens (Milesi et al. 2017).

Here, we designed a model of tandemly arrayed genes whose
evolution is driven by unequal recombination together with a
mixture of diversifying and negative selection. More precisely,
negative selection will keep copy number in check, while allelic
diversity is positively selected. We implement this via a product
of 2 multiplicative fitness components: one of them is decreasing
with copy number and the other one is increasing with allele
number [see equation (1)]. In its structure, this fitness function is
an old acquaintance. Very similar versions feature in the classical
model of Muller’s ratchet (Haigh 1978) and its epistatic relatives
(Kondrashov 1982; Chao 1988).

We discovered the following: first, in the absence of selection,
i.e. when diversity of alleles does not confer any fitness benefit
and additional copies do not provide any cost, the distribution of
copy numbers can be analytically expressed. It is a Gamma distri-
bution with shape a¼ 4 and with a scale, which depends only on
the mean copy number of the initial distribution. With selection,
the limiting distribution is still well approximated by a Gamma
distribution, but depends on the combination of selection coeffi-
cients and recombination rate, and not on the initial distribution.
Second, population size can have a stronger effect on mean fit-
ness and allelic diversity than the strength of selection itself.
Third, low recombination rates may be favorable to maintain al-
lelic diversity. Consistent with this, when recombination rates
are coded as alleles at a modifier locus and are allowed to evolve
over time, we observe a tendency toward recombination rate re-
duction.

Taken together, our model captures essential aspects of a
multigene family driven by a force of increasing allelic diversity
and, at the same time, an opposing force of maintaining genome
and chromosome integrity and of limiting both segregation and
recombination loads.

Based on the empirical copy number distribution in a set of 3
exemplary gene families in human, we estimated the strengths
of selection and (unequal) recombination rates in a natural popu-
lation.

Methods
Model
We consider a compound model in which the number of copies (y)
of a certain gene per individual, as well as the number of alleles
(x), is variable. When alleles are all considered distinct (but with-
out labeling their identities) and copy numbers remain variable,
we call this the y-only model.

In a diploid population of effective size N � 1 let individual i,
1 � i � N, carry yi ¼ ym

i
0 þ y0pi copies of a particular gene on its

maternal (m) and paternal (p) chromosomes. We use the notation
y0 for the number of copies per chromosome when neither the in-
dividual nor the parental status matter. If copies are distinguish-
able, we call them alleles and let x0; 1 � x0 � y0, be the number of
different alleles on a chromosome with y0 copies. By extension,
individual i has xi � xm

i
0 þ x0pi alleles (Fig. 1c, alleles indicated by

different colors). Fitness xi of individual i is determined by both
copy and allele numbers: xi ¼ xiðxi; yiÞ. We assume that increas-
ing the number of copies incurs a fitness cost, representing ad-
verse effects to genomic structure and integrity, while increasing
the number of alleles incurs a fitness benefit, representing

improved function such as recognition of a wider range of patho-
gens or stimuli. To fix ideas, we consider the following fitness
function:

xi ¼ xðxi; yiÞ ¼ ð1þ sxÞ
Pxi�1

k¼0
bk

x

� �
� ð1� syÞ

Pyi�3

k¼0
bk

y

� �
: (1)

The cost is only counted from the third copy, since the ground
state is a single-copy gene with exactly one copy on each chromo-
some. The selection coefficients 0 < sx; sy � 1 are positive and
the epistasis parameters 0 < bx � 1 � by are independent of i.
In the following, we omit index i unless required for clarity. The
way we define epistasis reflects the classical concepts of dimin-
ishing returns (bx) and synergistic epistasis (by): the benefit of
adding new alleles decreases with the number of already existing
alleles. Think of the physiological limit preventing perfect recog-
nition of an infinite number of possible pathogens or sensory
stimuli in nature. In contrast, the cost of adding more copies
increases with the number of already existing copies. This
reflects the growing threat to genome integrity by inserting more
and more copies.

For any fixed copy number y, fitness is maximized when x¼ y,
i.e. when every copy is a different allele (which is an assumption
in the y-only model). Whether fitness is maximized for small or
for large y depends on the relative magnitudes of sx and sy: as-
suming x¼ y and sx � sy, maximum fitness is achieved at the
lowest possible copy number, y¼ 2. Arguably, this situation rep-
resents the standard scenario for single-copy genes in nature: the
cost of adding copies would outweigh its benefit. In contrast,
when sx > sy, maximum fitness may be attained at values y> 2.
Without epistasis, and as a function of y, fitness is monotonically
increasing, with lowest fitness at y¼ 2. With epistasis, fitness has
a nontrivial maximum at y� (Fig. 1a). In this case, we have (see
Appendix):

y� ¼ 1

ln
by

bx

 ! 2lnðbyÞ þ ln
by � 1

1� bx

 !
þ ln � lnð1þ sxÞ

lnð1� syÞ

 !
þ ln � lnðbxÞ

lnðbyÞ

 !0
@

1
A:

(2)

Assuming further bx ¼ 1� e and by ¼ 1þ e for small e > 0, and
using lnð1þ eÞ � e; y� simplifies to

y� � 1þ
lnðsxÞ � lnðsyÞ

2e
¼ 1þ

ln sx
sy

� �
2e

: (3)

In finite populations, alleles are lost by drift. Although new
alleles are introduced by mutation, one generally has x< y at
mutation-drift equilibrium. We employ an infinite alleles model:
mutation occurs with rate l per copy per individual per genera-
tion and turns a given allele into a new, previously nonexisting
one. The more copies an individual has, the more likely a new al-
lele will be generated. Note that mutation does not change y or y0,
but it may increase x and x0. The y-only model can be interpreted
as the limiting scenario for large mutation rates such that any 2
copies are different. Therefore, mutation is explicitly required
only in the simulations of the compound model, but not for the
analytical results of the y-only model.

In both the compound and the y-only models, recombination
may be nonhomologous or unequal. As a consequence, copy num-
ber may change across generations. It is implemented as follows
(Fig. 1c): first, choose a pair of chromosomes and decide whether
recombination occurs (probability r) or not (1� r). In the first
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case, randomly mark a gene copy on both chromosomes. Then,

the “upstream” fragment including the marked copy of chromo-

some m (“head”), say, is fused with the “downstream” fragment

excluding the marked copy of chromosome p (“tail”). For simplic-

ity, we assume recombination break points to lie outside of genes

and exclude the possibility that genes may be disrupted by re-

combination. Only one recombination product is considered fur-

ther. If the last copy was marked on the tail chromosome, no

copy is added to the head fragment. Starting from 2 chromo-

somes with ym 0 and y0p copies, copy number in the offspring gam-

ete can range between 1 and ym 0 þ y0p � 1. More precisely, copy

number in the offspring chromosome is a sum of uniform ran-

dom variables with

Y0 ¼ B1 þ B2 � 1;

where B1 � Uðym 0Þ; B2 � Uðy0pÞ are uniform on the integers

f1; . . . ; ym 0g and f1; . . . ; y0pg, respectively. The sum Y0 is trapezoidal

with

P½Y0 ¼ y0 j ym 0; y0p	 ¼ Tðy0; ym 0; y0pÞ

¼ 1
ym 0 
 y0p

0; y0 � 0
y0; 1 � y0 � ðym 0 ^ y0pÞ
ðym 0 ^ y0pÞ; ðym 0 ^ y0pÞ � y0 � ðym 0 _ y0pÞ
ym 0 þ y0p � y0; ðym 0 _ y0pÞ � y0 � ym 0 þ y0p � 1
0; y0 � ym 0 þ y0p

;

8>>>>>><
>>>>>>:

where ^ denotes the minimum and _ the maximum. When no re-
combination occurs, only one of the 2 parental chromosomes is
propagated.

We also consider a version with recombination rate variation:
assume that each chromosome carries a recombination rate
modifier (RRM) locus, which encodes a chromosome-specific re-
combination rate. For a pair of chromosomes m and p, a recombi-

nation event occurs with rate r ¼ ro

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðqmqpÞ

q
for modifier “alleles”

qm, qp > 0, which are multipliers of the base recombination rate

ro. The modifier allele inherited to the recombination product is
the geometric mean ffiffiffiffiffiffiffiffiffiffiffiqmqp

p . Note that selection, operating on the

(a) (c)

(b)

Fig. 1. a) Fitness of an individual as a function of x (stacks) and y (bars). Parameters: sx ¼ 0:02; sy ¼ 0:005; bx ¼ 0:95; by ¼ 1:05. Each bar represents one
value of y with stacked fitness “layers” for x¼ 1 to x¼ y. b) Normalized fitness of an individual in the y-only model. Parameters: sx ¼ 0:02; sy ¼ 0:005;
e ¼ 0:05 (black) and its Taylor-approximated version T ðyÞ ¼ 1� ~sðy� y�Þ2, with ~s � 0:00047 (red). The vertical line marks y� � 14:86. c) Illustration of
individual genotype unequal recombination. Recombination occurs in an individual with y ¼ 7 ¼ 4þ 3 gene copies and x ¼ 5 < 4þ 3 different alleles
(colors). The black bullet on each chromosome represents the RRM locus (see text).
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genotype, exerts an indirect force on the recombination rate.

Symbolically, the modifier locus is represented by a black bullet

in Fig. 1c. It is itself not subject to recombination, but attached to

the first gene copy. We set ro ¼ 0:01 in all simulations.

Simulations
For all simulations, we used an in-house developed R program

(https://github.com/y-zheng/Recombination-gene-family) imple-

menting a Wright–Fisher type model with discrete generations

and multinomial sampling of gametes. Simulation raw data can

be downloaded from the same repository. Simulations consisted of

a burn-in phase and an observation phase in which the statistics

shown in Table 1 were recorded at certain time intervals. We con-

sidered 4 basic scenarios:

a) single population with constant size N;
b) single population with bottleneck;
c) two subpopulations with reciprocal migration; and
d) single population of constant size with RRM.

Simulations for scenario (a) were started with y¼ 10 and x¼ 1

for all i and run for an initial burn-in phase of 20,000 generations.

A run was restarted in case it entered the (absorbing) state y¼ 2

during burn-in, i.e. when all individuals have only a single copy

on each chromosome. To start simulations in scenarios (b)–(d),

we used the final state, which was reached at the end of scenario

(a). To reduce standard error of the mean of this final sampling

point, we ran 500 replicates for scenario (a) and 200 replicates for

scenarios (b)–(d). For the simulations, we selected parameter

ranges which we considered realistic and which turned out to be

compatible with the estimates for sx, sy, and r and the mean copy

number obtained from empirical data (see below). The parame-

ters used in the different scenarios are listed in Table A1 in the

Appendix.

Empirical data
Based on data from the pilot phase of the 1000 Genomes project,

Brahmachary et al. (2014) analyzed CNV in 193 gene families and

microsatellite loci in 3 human populations (CEU, CHB, and YRI).

We chose 3 representative examples [pregnancy-specific glyco-

protein 3 (PSG3), Mucin 12 (MUC12), and proline-rich protein 20A

(PRR20A)], which satisfied the following criteria:

• genes tandemly arrayed;
• genes autosomal;
• mean copy number between 10 and 20; and
• one example each with small, intermediate and large copy

number variance.
PSG3 is located on the long arm of the particularly gene-rich

chromosome 19 (Grimwood et al. 2004). It is a member of the car-
cinoembryonic antigen gene family and of the immunoglobulin
superfamily and is involved in pregnancy maintenance. MUC12 is
a membrane glycoprotein of the mucin family. Mucins are in-
volved in mucous protection, epithelial cell differentiation, and
intracellular signaling and have been recognized having similar
evolutionary features as HLA genes (Vahdati and Wagner 2016).
PRR20A is a predicted gene located on the long arm of chromo-
some 13. It has low Uniprot annotation score with experimental
evidence only at transcript level (https://www.uniprot.org/uni
prot/P86496).

The available empirical data from this data set can be ana-
lyzed in the context of the y-only model. To estimate the underly-
ing parameters (sx, sy, and r) of the y-only model that best
describe the empirical copy number distribution, we imple-
mented an EM-like grid search as follows: we use the data from
the African (YRI) population, assuming that it is closest to
recombination-selection-drift equilibrium and least affected by a
recent population bottleneck (e.g. Rafajlovi�c et al. 2014; Schiffels
and Durbin 2014; Spence and Song 2019). Individual copy num-
bers are derived from the data published by Brahmachary et al.
(2014) and calculated by dividing the individual read
(“nanostring,” in the authors’ terminology) counts by the average
read count per copy (https://github.com/y-zheng/Recombination-
gene-family). This way, we found for MUC12, PSG3, and PRR20A
mean numbers of, respectively, 11:85; 14:94; and 19:85 copies
per individual in the YRI population (diploid sample size n¼ 60).
To compare these results with our model, we uniformly sampled
5,000 parameter combinations of independently chosen sx, sy,
and r from the product of initial intervals ½1e� 6; 5e� 2	3. For
each parameter combination, we calculate the Gamma approxi-
mation of the equilibrium distribution of the y-only model (see
Results) and use the Kolmogorov–Smirnov (KS) test to calculate
the probability that the data are sampled from this distribution.
We choose the top 100 (¼ 2%) parameter combinations to define
the range of the new parameter intervals to sample from. In each

Table 1. Summary statistics recorded in simulations.

Meana Std. Dev. Min. Max.

Individual statistics
Copies y ¼ ð

P
i yiÞ=Ne ry miny maxy

Alleles x ¼ ð
P

i xiÞ=Ne rx minx maxx

Ratio x=y ¼ ð
P

i
xi
yi
Þ=Ne rx=y minx=y maxx=y

Fitness x ¼ ð
P

i xiÞ=Ne rx minx maxx

Population statistics
Total number of copies in populationb jyj
Total number of different allelesb jxj
Absolute frequency of allelesc mj, j ¼ 1; . . . ; jxj
Relative frequency of alleles nj ¼

mj

2Ne
; j ¼ 1; . . . ; jxj

Effective number of allelesd jxjeff ¼
Pjxj
j¼1

mj

jyj

� �2
 !�1

a Sums are taken across all individuals i ¼ 1; . . . ;Ne.
b Note that jyj ¼ Ney ¼

P
i yi . In contrast, jxj � Nex ¼

P
i xi . The inequality is strict as soon as different individuals share alleles.

c That is, mj is the number of occurrences of allele j in the entire population. We assume that alleles are labeled in decreasing frequency: mj � mk for all j< k.
d Note that jxjeff is the inverse Simpson index of diversity.
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iteration, parameter intervals are shrinking and we terminate
this process after 10 iterations to obtain a possibly small range of
the final parameter combinations with highest KS P-value. We
then chose the best parameter combinations for further analysis.
The range of these parameters is shown in Supplementary Fig. 1.
Epistasis is kept fixed at e ¼ 0:05 during the entire search.

Results
y-only model
Consider first the y-only model. Each copy is considered a unique
and distinct allele. Therefore, at any time, xi ¼ yi 8i, and fitness of
an individual is a function only of y:

x ¼ xðyiÞ ¼ ð1þ sxÞ
Pyi�1

k¼0
bk

x

� �
� ð1� syÞ

Pyi�3

k¼0
bk

y

� �
:

for all individuals i.
Let y0 be the number of gene copies on a single chromosome,

without regard of parental status, and let ptðy0Þ be the frequency
of chromosomes with y0 copies in an infinitely large population in
generation t.

Choosing parental chromosomes according to their fitness
xðy ¼ ym 0 þ y0pÞ, the frequency of y0 changes to

ptþ1ðy0Þ ¼ ð1� rÞ
X
y0p

qtðy0; y0pÞ þ r
X

ym 0 ;y0p
qtðym 0; y0pÞTðy0; ym 0; y0pÞ; (4)

where T denotes the trapezoidal distribution and

qtðym 0; y0pÞ ¼ ptðym 0Þptðy0pÞ 
 xðym 0 þ y0pÞ
xt

is the frequency of the pair ðym 0; y0pÞ after selection. In the last
equation, xt is mean population fitness at time t, i.e.

xt ¼
X

ym 0 ;y0p
ptðym 0Þptðy0pÞ 
 xðym 0 þ y0pÞ;

where the sum runs over all possible pairs ðym 0; y0pÞ 2 N� N.
Therefore, this process can be thought of as an irreducible aperi-
odic Markov chain on the state space f1; 2; . . .g, which converges
to its unique stationary distribution. Under neutrality (x � 1),
this simplifies to

Proposition 1. Under (unequal) recombination and under neutrality
it holds that

• the expected value of copy number remains constant over time, i.e. 8t

X1
y0¼1

y0 
 ptþ1ðy0Þ ¼
X1
y0¼1

y0 
 ptðy0Þ ¼ 
 
 
 ¼
X1
y0¼1

y0 
 p0ðy0Þ ¼: EY0

• the stationary distribution is given by the discrete kernel of the
Gamma distribution with shape parameter a ¼ 2 and expected
value EY0 , i.e.

pstatðy0Þ ¼ y0 
 exp � 2
EY0

y0
� �


 1
Z
; (5)

where Z is the normalization constant given by

Z ¼
X

y0
y0 
 exp � 2

EY0
y0

� �
¼ exp

2
EY0

n o
exp 2

EY0

n o
� 1
�2
:

	

The proof is given in the Appendix.
Hence, the neutral equilibrium distribution of copy numbers

on individuals is given by the convolution

~pstatðyÞ ¼
X

y01þy02¼y

pstatðy01Þpstatðy02Þ

¼ 1
6
ðy3 � yÞ exp � 1

EY
y

� �

 1
Z2 ;

which is the discrete kernel of the Gamma distribution with

shape parameter a¼ 4 and expected value EY ¼ 2EY0 .
Adding selection to the process makes the analysis less

straightforward. We note that the process described by equation

(4) is still an irreducible Markov chain, which has a stationary dis-

tribution. However, determining a closed formula of pstat is not

easily feasible and we resorted to the following approximation.
We choose x as defined in equation (1), assume that jxj ¼ jyj

(y-only model) and that bx ¼ 1� e and by ¼ 1þ e for some e > 0.

Thus, the fitness function simplifies to

xðyÞ ¼ exp ff ðyÞg; where

f ðyÞ ¼
sx þ sy

e
� sx

e

 e�ey �

sy

e

 eeðy�2Þ:

(6)

The Taylor expansion up to order 2, evaluated at y� and scaled

with xðy�Þ�1 is

T ðf ðyÞÞ ¼ 1
xðy�Þ xðy�Þ þ d

dy
xðy�Þðy� y�Þ þ 1

2
d2

dy2 xðy�Þðy� y�Þ2
 !

¼ 1þ 1
2

d2f
dy2 ðy

�Þ 
 ðy� y�Þ2

¼ 1� ee�e ffiffiffiffiffiffiffiffiffi
sxsy
p 
 ðy� y�Þ2:

Note, that this coincides with the fitness function introduced

by Krüger and Vogel (1975)

~xðyÞ ¼ 1� ~sðy� y�Þ2; (7)

when substituting

~s ¼ ee�e ffiffiffiffiffiffiffiffiffi
sxsy

p
:

Hence, the quadratic distance of y from the optimal copy

number y� determines fitness. It fits well with our definition of

synergistic epistasis when y is not too far from y� (see Fig. 1b) and

yields a threshold yo ¼ y� þ 1=
ffiffiffi
~s
p

with T ðf ðyÞÞ < 0 for y > yo.
Therefore, with this quadratic approximation of the fitness

function, equation (4) becomes a finite system of equations,

which can be numerically solved with standard iteration algo-

rithms. Starting with an arbitrary initial distribution we iterate

until

jjptþ1 � ptjjTV :¼
X

y0
jptþ1ðy0Þ � ptðy0Þj < 0:001;

where jj 
 jjTV denotes the total variation and the sum runs from 1

to the maximal y0 given by yo. After convergence, we calculate the
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copy number distribution on individuals as convolution of the
copy number distribution on chromosomes.

For fixed parameters, the process converges to the same limit-
ing distribution, independently of initial conditions. Varying the
recombination rate leads to different limiting distributions: it is
close to the neutral stationary distribution when r is large; it is
sharply peaked, and centered at y�, when r is small. The variance
is almost vanishing when r < 0:01 sx. Increasing selection shifts y
toward y�. Generally, the stationary distribution is determined by
a balance of recombination and selection and the relative magni-
tudes of r, sx, and sy. Visual inspection of the limiting distribution
for various parameter choices suggests that it is well approxi-
mated by a Gamma distribution also in the non-neutral case (see,
for instance, the 3 examples shown in Fig. 3, lines in blue). We es-
timate its parameters as follows.

We numerically solved the system of equations [equation (4)]
for about 50,000 random parameter combinations. We kept e ¼
0:05 constant and chose r 2 ½0; 0:01	; sx 2 ½0; 0:05	 and sy such that
sx=sy 2 ½2:5; 18	, producing an optimal copy number y� between 10
and 30. Then, we calculated mean and variance of the equilib-
rium distribution for all parameter combinations. Assuming that
the expectation (EY) of the limiting Gamma distribution is deter-
mined by equation (3), we set

ÊY ¼ y� ¼
lnðsxÞ � lnðsyÞ

2 
 0:05
þ 1:

Assuming r > 0:01 
 sx and that its standard deviation scaled
by the mean (r=EY) depends on recombination–selection balance,
lnðr=sxÞ, we obtain by linear fitting (Fig. 2a):

r̂ ¼ y� 
 ð0:046 
 lnðr=sxÞ þ 0:26Þ:

Furthermore, ðEY=rÞ2 converges toward the shape parameter
(a¼ 4) of the Gamma distribution under neutrality, when selec-
tion becomes small or recombination becomes large (Fig. 2b).
Therefore, for given parameters r, sx, sy, and e ¼ 0:05, we use the
discrete kernel of the Gamma distribution with shape parameter
a ¼ ðy�=r̂Þ2 and expected value y� as an approximation of the
equilibrium distribution of the y-only process with selection.
Note that the distribution is uniquely determined by its shape
and mean.

Application of the y-only model to empirical data
To estimate selection coefficients and rates of unequal recombi-
nation for the 3 gene families PSG3, MUC12, and PRR20A, we used
the EM-like grid search described above. We calculated the KS-
test P-value for 3 distributions: (1) a neutral equilibrium distribu-
tion ~pstat with mean value given by the arithmetic mean of the
data, (2) one of the best-fitting Gamma distributions with param-
eters given by the EM-like grid search, and (3) the equilibrium dis-
tribution of the y-only process with the same recombination and
selection coefficients as obtained from the grid search.
Sufficiently, small P-values indicate a significant difference from
any of the 3 models, whereas a P-value close to one can be inter-
preted as a good approximation of the data. The results are given
in Table 2 and Fig. 3. Distributions of the 100 best parameter com-
binations for each gene are shown in Supplementary Fig. 1. For
PSG3, the empirical distribution of copy numbers (histogram in
Fig. 3, top) is well approximated by a Gamma distribution (red
line) yielding a KS-test P-value of 0.99. The limiting distribution
under the y-only model still fits fairly well with P ¼ 0.82 (blue
line). In contrast, the hypothesis of neutrality can be clearly
rejected: the neutral Gamma distribution [equation (5)] produces
a P-value of 1:4e� 9 (black line). The parameter estimates sug-
gest a small recombination rate of about 0.1% per generation per
gamete and strong selection (sx ¼ 0:04 and sy ¼ 0:01), maintaining
copy number close to its optimal value. Although the gene family
PRR20A is much more variable than MUC12 (Fig. 3, middle and
bottom), we estimate the same recombination rate of about 0.8%
for both families. However, the difference in their distributions
can be explained by different selection strengths. The estimates
in MUC12 are sx ¼ 0:017 and sy ¼ 0:006—about half as strong as
in PSG3. In contrast, the estimates in PRR20A are sx ¼ 0:001 and
sy ¼ 0:00028, lower by roughly a factor of 40 than in PSG3. While
neutrality can still be clearly rejected in MUC12 (P ¼ 0.0012), it
cannot be rejected in PRR20A. Still, also for this gene family, pure
neutrality has a much lower explanatory power than do have
models with selection (P ¼ 0.217 vs P ¼ 0.98). One should keep in
mind, however, that the above estimates depend on our choice of
the epistasis parameter e ¼ 0:05. From equation (3), it is clear that
the ratios sx=sy and e are inversely related. In work dedicated to
data analysis, rather than model development, one may want to
include e (or even bx and by separately) among the parameters to
be estimated.

Simulation results of the compound model
In scenario (a), we analyzed the effect of different population
sizes, selection strengths (a1) and recombination rates (a2) on the
statistics of Table 1 at equilibrium. In scenario (a1), we used
sx ¼ 0:01, 0.02, 0.04 (weak, medium, and strong selection), with
sx=sy ¼ 4 and e ¼ 0:05. These parameters were chosen such that
the optimal genotype for an individual is x ¼ y ¼ 15 in all 3 selec-
tion regimes. Population size varied from Ne ¼ 500, 1,000, 2,000 to

Fig. 2. a) Linear fit of r=EY on lnðr=sxÞ (for details see text). Note the
strong correlation of lnðr=sxÞ and r=EY , with a Pearson correlation
coefficient of q ¼ 0:97. The estimated regression line
r=y� ¼ 0:046 
 lnðr=sxÞ þ 0:26 is shown in red. b) Convergence of the
Gamma shape parameter a ¼ ðEY=rÞ2 toward the value a¼ 4, expected
under neutrality, when r is increasing or sx is decreasing.
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Fig. 3. Copy number distribution of 3 different human genes and their approximations. Black: Copy number distribution under neutrality ~pstat with
EY ¼14.94, 11.85, and 19.85 for PSG3, MUC12, and PRR20A, respectively. Red: Gamma distribution with parameters given in Table 2, resulting in best KS-
test P-value. Blue: Equilibrium distribution of the y-only model generated from equation (4) with parameters as in Table 2.

Table 2. Parameter estimates for empirical data obtained by EM grid search, with fixed e ¼ 0:05, that returned the best KS P-value for the
Gamma approximation.

Gene family Estimated parameters
P-value of KS-test

Neutral Gamma y-only

PSG3 r¼ 0.001
sx ¼ 0.04
sy ¼ 0.01

1:4e� 9 0.99 0.82

MUC12 r¼ 0.008
sx ¼ 0.017
sy ¼ 0.006

0.0012 0.99 0.98

PRR20A r¼ 0.008
sx ¼ 0.001

sy ¼ 0.00028

0.217 0.98 0.98
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(a) (b)

(c) (d)

(e) (f)

Fig. 4. Scenario (a1)—constant population size. Population statistics at equilibrium: population mean x (a); population mean y (b); x=y ratio (c);
population mean fitness (d); total number (e), and effective number of alleles jxjeff (f). Varying parameters: population size Ne and selection coefficient
sx. Mutation (l ¼ 0:0005) and recombination rate (r¼ 0.01) are kept fixed. Boxplots based on 500 independent replicates. Box colored in purple indicates
a parameter combination (Ne ¼ 2,000, r¼ 0.01, sx ¼ 0:02; sy ¼ 0:005) shared by scenarios (a), (b), (c), and (d). Horizontal lines in a–c indicate the optimal
copy number in the y-only model. Horizontal lines in D indicate optimal fitness.
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4,000 and recombination rate was kept constant at r¼ 0.01.
Results are shown in Fig. 4.

Both larger population sizes and stronger selection lead to an
increase in population means x and y (Fig. 4, a and b). Note, that
the demographic effect (decrease of drift by increase of popula-
tion size) on these quantities is much stronger than the effect by
increasing selection. Both x and y are always below the optimal
value of 15. However, doubling Ne has a stronger effect than dou-
bling selection strength in bringing the population closer to the
optimal value. Essentially the same pattern is observed for the ra-
tio x=y (Fig. 4c). For example, Ne ¼ 1,000, 2,000, 4,000 with low se-
lection leads to a higher ratio x=y than Ne ¼ 500, 1,000, 2,000 with
intermediate selection. The total (Fig. 4e) and the effective
(Fig. 4f) number of alleles scale roughly linearly with Ne. Again,
both quantities depend more strongly on population size than on
selection strength. This effect is more pronounced in the total
number of alleles than in jxjeff , which is explained by drift: alleles
at low frequency, in particular newly generated alleles (Nely per
generation), are prone to loss when drift is strong. They count for
the total number, but contribute little to jxjeff . In contrast, mean
fitness is more affected by the strength of selection than by Ne.
This is because mean fitness depends on 2 ingredients: the equi-
librium distribution y itself and the weights xi of its components.
Both are altered by selection. Finally, the frequencies of the most
common alleles (Supplementary Fig. 2) are negatively correlated
both with Ne and sx. In summary, allelic diversity at population
scale appears to be driven mainly by Ne.

In scenario (a2), we kept selection at intermediate level
(sx ¼ 0:02; sy ¼ 0:005) and varied the rate of (unequal) recombina-
tion from r¼ 0.002 to 0.05. Results are shown in Fig. 5. Increasing
recombination decreases x and y, as well as the ratio x=y.
Therefore, it also decreases mean fitness x. Recombination acts
here in a similar way as drift: doubling the recombination rate
has the same effect on fitness as halving the population size.
This observation can be interpreted as a recombination load: fre-
quent recombination can generate chromosomes whose copy
number is far away from the optimum. Deviation from the opti-
mal copy number has an asymmetric effect because of epistasis:
a surplus of copies is more harmful than a deficit (Fig. 1b),
explaining the somewhat counter-intuitive effect that increasing
the recombination rate decreases both total and effective number
of alleles in the population.

In scenario (b), we explored the impact of a single instanta-
neous and short bottleneck. Starting with an equilibrated pan-
mictic population of constant size N¼ 2,000, population size was
reduced to 1% (¼ 20) for 5, 10, or 20 generations, then restored to
its original value N and the generation counter reset to t¼ 0. After
that, simulations are carried on for another 10,000 generations
during which the recovery process of the 6 summary statistics
mentioned above is recorded. Results for different selection
strengths are summarized in Fig. 6. A longer period of population
size reduction results in populations with lower x and lower x. In
contrast, length of the reduction period hardly affects y.
Recovery time correlates positively with the length of the reduc-
tion period.

We observed that y and, to a lesser extent, x experience a de-
crease after the restoration of population size, and before it
returns to its constant equilibrium value. Furthermore, the total
number of alleles recovers much faster than the effective num-
ber. The reason is that new alleles are quickly created by muta-
tion, but—while rare—they continue to bias the effective number
of alleles, before equilibrium frequencies are restored. By seg-
mental regression, we found that mean fitness recovers faster

than jxjeff (Supplementary Fig. 3, a and b). Furthermore, popula-
tions under stronger selection recover faster. The variation of
these statistics among replicates is shown in Supplementary Fig.
4. Except for total and effective number of alleles, all other statis-
tics show little among-replicate-variation after about 500 to 1,000
generations after the bottleneck. Variation of the total number of
alleles reaches a plateau and then gradually decreases, while
among-replicate-variation of jxjeff is generally small.

In scenario (c), we studied the effect of population subdivision
and migration. We simulated reciprocal migration with 2 subpo-
pulations of equal size, small (N¼ 500) and intermediate
(N¼ 1,000), starting from pairs of independent equilibrated repli-
cates from scenario (a). Then, time was reset to t¼ 0 and migra-
tion was turned on with rates Nm¼ 0.1, 1, or 10 individuals per
generation per direction. Summary statistics x; y, mean fitness
x, total number of alleles, and jxjeff in the combined super-
population were recorded over time. After about 1,500 to 2,000
generations, these statistics approached a migration-drift-
selection equilibrium, which is between the means for the pan-
mictic populations of size Ne ¼ 1,000 and Ne ¼ 2,000. While the
scenario with high migration (Nm¼ 10) is almost indistinguish-
able from the panmictic population with respect to x; y and x

(Fig. 7, a–d), there is still a clear deficit in the total and effective
number of alleles compared to the panmictic population, even
when the migration rate is high (Fig. 7, e and f). Note also in this
case, the initial overshooting of the panmictic equilibrium in the
statistics x=y; x and jxjeff at about 100–200 generations, which is
reminiscent of transient “hybrid vigour.” Variation of these statis-
tics among population replicates does not change appreciably
with time (Supplementary Fig. 5). Similar results are observed for
small populations Ne ¼ 500 (Supplementary Figs. 6 and 7).

In scenario (a2), we observed that lower recombination rates
lead to an equilibrium of x and y which are closer to the opti-
mum. A natural question to ask is whether the recombination
rate itself maybe subject to selection. Therefore, in scenario (d),
an RRM was added to the simple model. Given an equilibrated
population which was reached with r¼ 0.01 as described in sce-
nario (a), recombination rate modification was switched on, and
time reset to t¼ 0. Recombination rate was coded by an RRM al-
lele, which can increase or decrease the current recombination
rate by a factor e60:05 when mutated. Modification happens per
chromosome per generation each with probability P ¼ 0.002 for
increase or for decrease. The RRM locus is thought to reside on
the tip of a chromosome without itself being affected by recombi-
nation (Fig. 1). Simulations were carried on for 50,000 generations
and runs for each parameter setting of (sx and sy) were replicated
200 times. The results show that the mean recombination rate
(average across all RRM alleles in the population) is continuously
decreasing (Fig. 8). It decreases more and faster when selection
(sx and sy) is strong. When simulations terminated, the recombi-
nation rate was reduced—on average—to 56%, 41%, and 31% of
its original value (r¼ 0.01) and it showed a strongly negative cor-
relation with population mean fitness (Pearson’s r ¼ �0:75, –0.83,
–0.78) for weak, intermediate, and strong selection, respectively.

Discussion
We considered here a model in which 2 mechanisms, unequal re-
combination and mutation, may generate chromosomal diver-
sity. While mutation leads to genetic diversity sensu strictu, by
unequal recombination a chromosome may receive additional, or
lose existing gene copies. Therefore, it is similar, but not identi-
cal, to segmental duplication or loss: copies gained by unequal
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(a) (b)

(c) (d)

(e) (d)

Fig. 5. Scenario (a2)—constant population size. Population statistics at equilibrium: population mean x (a); population mean y (b); x=y ratio (c);
population mean fitness (d); total (e), and effective number jxjeff (f) of alleles. Varying parameters: population size Ne ¼ 1,000, 2,000 and recombination
rate (r¼ 0.01 times the factor indicated on the abscissa). Mutation rate (l ¼ 0:0005) and selection strength (ðsx; syÞ ¼ ð0:02; 0:005Þ) are kept fixed. Boxplots
based on 500 independent replicates. Box colored in purple indicates the parameter combination (see Fig 4) shared by scenarios (a), (b), (c), and (d).
Horizontal lines as explained in Fig. 4.
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(a) (b)

(c) (d)

(e) (f)

Fig. 6. Scenario (b)—recovery after a bottleneck. Equilibrium populations with N¼ 2,000 are reduced to Nred ¼ 20 for a period of 5, 10, or 20 generations
and then restored. During recovery, 6 statistics are traced. a) population mean x; (b) population mean y; (c) ratio x=y; (d) mean fitness x; (e) total
number of alleles; and (f) jxjeff . Red, orange, and yellow indicate strong, intermediate, and weak selection. Solid, dashed, and dotted lines indicate
bottleneck durations of 5, 10, and 20 generations. Each curve is an average across 200 replicates. Horizontal black lines are equilibria under constant
population size.
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(a) (b)

(c) (d)

(e) (f)

Fig. 7. Scenario (c)—migration. Two separated and equilibrated subpopulations of size N¼ 1,000 start to exchange migrants at time t¼ 0. Medium
strength of selection (sx ¼ 0:02; sy ¼ 0:005). Migration rate: 2Nm ¼ 0:1 (green), 1 (cyan), or 10 (blue) migrants per generation in each direction. (a)
population mean x; (b) population mean y; (c) ratio x=y; (d) population mean fitness x; (e) total, and (f) effective number of alleles in the combined
super-population. Shown are mean values across 100 replicates. Black lines indicate mean values (across 500 replicates) in panmictic populations of
size Ne ¼ 1,000 (lower line) and Ne ¼ 2,000 (upper line).
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recombination have their origin in a pairing haplotype, hence
may be genetically diverse upon arrival, while those gained by
duplication have their origin in the same haplotype, hence are ge-
netically identical upon arrival. However, this distinction is negli-
gible, since a single mutation event already suffices to make 2
identical copies distinct from each other when working in the
context of the infinite alleles model. Another feature of our
model is the 2 overlaid components of the fitness function: it
decreases with copy number, but increases with allele number,
entailing a subtle and very interesting interaction of recombina-
tion and selection.

To gain some analytical insight into copy number dynamics
under recombination, we first considered the neutral case in an
infinitely large population. We find copy number of individuals to
be distributed according to the discrete kernel of a Gamma distri-
bution with an equilibrium mean which is identical to the initial
mean at time t¼ 0 and remains constant over time. The limiting
shape parameter is a¼ 4, which is identical for all initial configu-
rations. These 2 properties together uniquely determine the limit-
ing distribution, which is independent of the shape of the initial
distribution and of the recombination and mutation rates.

Adding selection changes the game. The limiting distribution
becomes dependent on both the recombination rate and the
strength of selection, but independent from the initial configura-
tion. Still, it is well approximated by a Gamma distribution. The
distribution that results from low selection strength or high re-
combination converges to the neutral equilibrium.

We inferred selection and recombination parameters for 3 dif-
ferent human genes, under the assumption of fixed epistasis
e ¼ 0:05. Our analysis shows that observed copy number distribu-
tions can be well approximated within the framework of our
model. Different means and variances of the distributions can be
explained in terms of higher or lower recombination rates and
stronger or weaker selection.

Note, that compound fitness, in which allele diversity is cred-
ited, contains a component of balancing selection: an individual
which is heterozygous at any given locus has a higher fitness
than one which is homozygous at the same locus. An important
difference between the model considered here and one-locus

models of balancing selection is the existence of gene CNV and
unequal recombination. Note that allelic diversity in the popula-
tion can be stably maintained even in the case of allele fixation
at single loci. The possibility to maintain allelic diversity through
gene duplication, or unequal recombination, has been suggested
by Haldane (1937). It is somewhat surprising that Haldane’s idea
has received only little attention in classical population genetics
theory nor in experimental work. To our knowledge, tests con-
firming Haldane’s hypothesis were conducted only a few years
ago (Milesi et al. 2017).

We have shown that a high recombination rate has a negative
effect on allelic diversity and resultant mean fitness. There are
two reasons: (1) a higher rate of unequal recombination produces
individuals with much higher or lower copy number than the op-
timum, which have reduced fitness; (2) low recombination
increases the likelihood for highly unfit homozygotes to appear,
thus improving the efficiency of selection.

Populations that experienced strong bottlenecks are at risk of
inbreeding depression, and loci under balancing selection are
particularly affected (Frankham et al. 2014). Random loss of
alleles increases homozygosity and consequently reduces fitness.
This can affect and delay the recovery of genetic diversity even
after population size has recovered (Miller and Lambert 2004). In
this study, we explored the effect of some parameters on the
speed and process of bottleneck recovery at loci under diversify-
ing selection. Both selection strength and bottleneck length influ-
ence the process. Relatively, longer bottlenecks produce a
temporary reduction in x; y and mean fitness. The most likely
reason is that high homozygosity results in selection toward hap-
lotypes with fewer copies. Selection is more powerful after, than
during, the bottleneck, when population size has recovered, but
copy number recovery may lag behind. However, this somewhat
paradoxical effect of fitness reduction at the initial phase of bot-
tleneck recovery is only a short-term effect, and—at least in
part—due to the instantaneous, rather than gradual, restoration
of population size in our model. Compared to fitness, jxjeff is re-
covering even more slowly: for fitness to recover it suffices that
new alleles appear and survive. But jxjeff has recovered only
when allele frequencies have reached their equilibrium values.

0000500003 0000400002000010
Generations

0000500003 0000400002000010
Generations

0000500003 0000400002000010
Generations

0.05

0.10

0.20

0.50

1.00

2.00

R
ec

om
bi

na
tio

n 
ra

te
 re

la
tiv

e 
to

 d
ef

au
lt

0.05

0.10

0.20

0.50

1.00

2.00

0.05

0.10

0.20

0.50

1.00

2.00

Weak selection Medium selection Strong selection

Fig. 8. Scenario (d)—RRM: recombination rate modification. Populations, which have reached equilibrium without RRM, are carried on for 50,000
generations during which the recombination rate, encoded at a modifier locus, may change under the influence of selection. For all iterations: Ne ¼
2,000, r¼ 0.01. Left: weak ðsx; syÞ ¼ ð0:01; 0:0025Þ; middle: intermediate ð0:02; 0:005Þ; right: strong selection ð0:04; 0:01Þ. Shown are trajectories of the
recombination rate (in percentage of its original value r¼ 0.01) for 200 replicates each. The mean across all 200 replicates is shown as a black line.
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Therefore, jxjeff is a more sensitive statistic to test for deviation
from equilibrium.

Simulations of scenario (c) show that fitness under population
subdivision with moderate migration reaches an equilibrium that
is intermediate between those under panmixis on the one hand
and complete isolation on the other. While a short boost of hybrid
vigor exists, we do not see a positive effect from limiting migra-
tion compared to panmixis. An earlier simulation study
(Schierup et al. 2000) showed that the allelic diversity is largely in-
sensitive to migration rates, but low-migration scenarios result in
alleles with more divergent sequences. Additionally, balancing
selection in the form of heterosis could increase the effective mi-
gration rate because migrant haplotypes are more likely to be
successful in this case than under neutrality (Ingvarsson and
Whitlock 2000). Diversifying selection on MHC alleles has been
shown to increase divergence between subpopulations, while di-
versity within subpopulations is still mostly governed by drift
(Herdegen et al. 2014). MHC alleles and genes are also known to
be shared among species through introgression, leading to resto-
ration of diversity previously lost by drift (Dudek et al. 2019). In
addition to generic balancing selection also local adaptation, i.e.
the fixation of alleles that are adapted to specific subpopulations,
may increase allelic diversity between populations (Ekblom et al.
2007). However, this effect is not considered in the model pre-
sented here, where selection operates only on the number of dis-
tinct alleles.

When the recombination rate is allowed to change over time,
we observe a trend toward lower rates. It is driven by selection
and happens on a realistic population genetic timescale of some
thousand generations. However, there is little empirical knowl-
edge about (unequal) recombination rates in multigene families.
For example, in the human MHC locus, the recombination rate is
only about a third of the average genomic background rate (de
Bakker et al. 2006; Traherne 2008). On the other hand, studies on
bovids (Schaschl et al. 2006) and horse (Beeson et al. 2019) show
the opposite: high recombination in the MHC and olfactory recep-
tor loci. In contrast again, the values reported for chicken seem
to depend on mapping methodology (Fulton et al. 2016). Results
from sheep (Petit et al. 2017) suggest a high “historical” (estimated
from population data), but a low “meiotic” (from pedigree data)
recombination rate, which suggests a recent change in time.
From humans again, it is well known that recombination hot-
spots have a very fast turn-over time and are distinct in different
subpopulations (Lam et al. 2013). Also, recombination rates may
substantially differ in females and males—one example is the
long arm of human chromosome 19 (Grimwood et al. 2004).
Additionally, the presence of gene conversion makes the estima-
tion of (reciprocal) recombination rates difficult (Martinsohn et al.
1999; Hosomichi et al. 2008). Anyway, current experimental
results do not reveal a consistent picture as to whether there is a
benefit, or trend, to suppress recombination in large multigene
families.

Caveats and future direction
While our model has incorporated multiple genetic processes, it
is likely still far away from the details of how multigene families
evolve in real-life populations. One issue, not considered here, is
gene conversion where an allele, or a fragment thereof, over-
writes another one in a pairing chromosome. For example, gene
conversion is known to play an important role in maintaining
MHC diversity (Högstrand and Böhme 1999; Martinsohn et al.
1999; Wiehe et al. 2000; Bahr and Wilson 2012).

Also, our selection model assumes time-independent fitness

and each allele provides the same selective benefit. This corre-

sponds to an ideal situation where external factors are ubiqui-

tous and stable. In practice, however, the selective benefits of

certain alleles do change together with a changing environment.

Evolving pathogens, for instance, leads to arbitrarily complex co-

evolution dynamics (Ejsmond and Radwan 2011; Tellier et al.

2014). Furthermore, population structure may interact with di-

versifying selection in a complex or even counter-intuitive way.

In humans, it is known that different populations harbor differ-

ent MHC alleles, likely driven by pathogen diversity (Manczinger

et al. 2019). A hypothesis is that multiple subpopulations act as

reservoirs of alleles and backups for each other, allowing for

quick response against new pathogens (Lenz et al. 2009;

Linnenbrink et al. 2018). Interaction between population structure

and local adaptation needs to take into account subpopulation

sizes and migration networks. For instance, it was shown that

subpopulation sizes can affect local allelic diversity (Mason et al.

2011).
Finally, and perhaps most importantly, gene function decides

on fitness. On population genetic time scales pseudogenization

plays an important role for the evolution of multigene families

(Hess 2000; Menashe et al. 2006). Although eventually removed by

selection, pseudogenes can persist in real-life populations with

high frequency. Conditions under which pseudogenes appear and

persist can be identified in accordingly modified models.

Structural and functional aspects being included together with

gene conversion, temporally or locally varying selection strengths

into theoretical models will help to address open questions, but

remains to be considered in future work.

Data availability
Results from simulation experiments, as well as copy number

counts in empirical data, are available at https://github.com/y-

zheng/Recombination-gene-family.
Supplemental material is available at GENETICS online.
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Appendix
Proof of (2). Using the closed-form formula of the geometric series

and the fact that x¼ y, we can write the fitness function x ¼

ð1þ sxÞ
Px�1

i¼0
bi

x

� �
� ð1� syÞ

Py�3

j¼0
bj

y

� �
as a function of y that equals

f ðyÞ ¼ ð1þ sxÞ
1�b

y
x

1�bx � ð1� syÞ
1�b

y�2
y

1�by :

Defining

a :¼ ð1þ sxÞ
1

1�bx ; b :¼ ð1� syÞ
1

1�by ;

we find that

f 0ðyÞ ¼ �
�

lnðaÞlnðbxÞ 
 by
x þ lnðbÞlnðbyÞ 
 by�2

y

�

 a1�by

x 
 b1�by�2
y :

Setting f 0ðy�Þ ¼ 0 leads us to

�lnðaÞlnðbxÞ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
:¼p1


by�
x ¼ lnðbÞlnðbyÞ

1

b2
y|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
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y

) p1b
y�
x ¼ p2b

y�
y

) y� ¼ lnðp1Þ � lnðp2Þ
lnðbyÞ � lnðbxÞ

;

and inserting the expressions for p1; p2; a; b gives the result. h

Proof of Proposition 1. We note that the parental status of the chro-
mosomes does not matter in the following calculations.
Therefore, we use the notation y0ð
Þ instead of ym 0 and y0p. Since the
T describes the distribution of the sum of 2 uniform random vari-
ables, we observe that the expected value is given by

X
y0

y0 
 Tðy0; y01; y02Þ ¼ E½B1 þ B2 � 1	 ¼ y01 þ 1
2
þ y02 þ 1

2
� 1 ¼ y01 þ y02

2
;

and therefore conclude that
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¼ ð1� rÞ
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y0 y
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y01 ;y
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2

ptðy01Þptðy02ÞTðy0; y01; y02Þ

¼ ð1� rÞ
P

y0 y
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y0 y
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We define a ¼ 2=EY0 and note that the stationary distribution is

independent from the recombination rate r> 0, i.e.

pstatðy0Þ ¼ ð1� rÞpstatðy0Þ þ r 
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0
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Therefore, we find that
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where the detailed calculations of ð�Þ are shown below. h

Proof of (*). Using the substitution k ¼ ðy01 þ y02 � y0Þ we find that
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Table A1. Parameters used in simulations of the compound model.

Scenario (a) Single population of constant size Ne

Ne 500, 1,000, 2,000, 4,000

l 0.0005

(a1)
ðsx; syÞ : ð0:01; 0:0025Þ; ð0:02; 0:005Þ; ð0:04; 0:01Þa
r : 0:01

8<
:

(a2)
ðsx; syÞ : ð0:02; 0:005Þ

r : 0:002; 0:005; 0:01; 0:02; 0:05

8<
:

Replicates 500 per parameter combination
Recording every 100-th for 20,000 generations

Scenario (b) Instantaneous bottleneck

Nb
0 1,000, 2,000

Nc
b : 20

duration : 5; 10; 20 generations

�

l 0.0005
(sx, sy) ð0:01;0:0025Þ; ð0:02; 0:005Þ; ð0:04; 0:01Þ
r 0.01
Replicates 200 per parameter combination
Recording Every 10-th for 5,000 generations after bottleneck

Scenario (c) Two populations of constant size Ne with 2-way migrationd

Ne 500, 1,000
Nem 0:1; 1; 10
l 0.0005
(sx, sy) ð0:01;0:0025Þ; ð0:02; 0:005Þ; ð0:04; 0:01Þ
r 0.01
Replicates 100 pairs per parameter combination
Recording Every 10-th for 2,000 generations

Scenario (d) Single population of constant size Ne with recomb. rate modifier q

Ne 1,000, 2,000
l 0.0005
(sx, sy) ð0:01;0:0025Þ; ð0:02; 0:005Þ; ð0:04; 0:01Þ
Base rate ro 0.01
Initial q0 1 for all chromosomes
Modificatione of r ¼ ro 
 q according to

qtþ1 ¼ qt ðp ¼ 0:996Þ
qtþ1 ¼ qt 
 e0:05 ðp ¼ 0:002Þ
qtþ1 ¼ qt 
 e�0:05 ðp ¼ 0:002Þ

8<
:

Replicates 200 per parameter combination
Recording Every 100-th for 50,000 generations

a The 3 levels of selection strengths are referred to as “weak,” “intermediate,” and “strong” in the text.
b Population size before and after bottleneck.
c Population size during bottleneck.
d At rate m per individual per generation per direction.
e q Changes from qt to qtþ1 per generation per chromosome with probability P.
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