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Abstract: To address the problem of model error and tracking dependence in the process of intelligent
vehicle motion planning, an intelligent vehicle model transfer trajectory planning method based
on deep reinforcement learning is proposed, which is able to obtain an effective control action
sequence directly. Firstly, an abstract model of the real environment is extracted. On this basis,
a deep deterministic policy gradient (DDPG) and a vehicle dynamic model are adopted to jointly
train a reinforcement learning model, and to decide the optimal intelligent driving maneuver.
Secondly, the actual scene is transferred to an equivalent virtual abstract scene using a transfer
model. Furthermore, the control action and trajectory sequences are calculated according to the
trained deep reinforcement learning model. Thirdly, the optimal trajectory sequence is selected
according to an evaluation function in the real environment. Finally, the results demonstrate
that the proposed method can deal with the problem of intelligent vehicle trajectory planning
for continuous input and continuous output. The model transfer method improves the model’s
generalization performance. Compared with traditional trajectory planning, the proposed method
outputs continuous rotation-angle control sequences. Moreover, the lateral control errors are
also reduced.

Keywords: intelligent driving vehicle; trajectory planning; end-to-end; deep reinforcement learning;
model transfer

1. Introduction

Although intelligent driving technology is developing rapidly, some new problems are emerging
during development. In 2016, the first major accident of Tesla happened in the field of automatic driving.
Meanwhile, Uber suffered an incident of automation driving hitting pedestrians on 28 March 2018.
These problems greatly aroused worldwide attention on the safety of intelligent driving. Therefore,
there is still a long way for intelligent driving to improve its innovative and stable safety. As the key to
its technology, trajectory planning technology is attracting more and more attention and exploration by
researchers at home and abroad.

Trajectory planning is not only applied to intelligent vehicles, but also widely used in the field of
robotics and unmanned aerial vehicles [1,2]. There are various ways of trajectory generation in trajectory
planning, including the Nelson polynomial, spiral curve equation, spline curve, Bezier curve, etc. [3].
For example, a fourth-order polynomial and dynamic bicycle model were utilized to describe a vehicles
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kinematics model [4], considering the overtaking and chasing behavior of different cost functions in
each case. However, it assumes that the vehicle velocity is a constant, which conflicts with most actual
situations. Yu, L et al. [5] put forward a technique of trajectory smoothing and stitching based on
a Bezier Curve. Sahingoz, O.K. [6] proposed trajectory planning based on a Bezier Curve that takes into
consideration the kinematics constraint, initial state constraint, target state constraint, and curvature
continuous constraint.

With the rapid development of deep learning, vision-based control methods acquired great
achievements [7]. Hotz [8] adopted a variational auto-encoder (VAE) and a generative adversarial
network (GAN) to achieve image coding, road tracking, and intelligent driving vehicle potential
space decoding. Low-level control strategy and advanced prior action were learned through a neural
network, and multi-level strategies were taken as heuristic search algorithms to realize complex
motion planning tasks [9]. Deep learning models were adopted to establish the mapping relationship
between lidar distance, target position, and control instruction [10]. To realize the motion planning of
an intelligent vehicle, Liu, W et al. [11] and Lin, Y.L et al. [12] proposed deep learning to establish the
mapping relationship between the control sequence and the corresponding trajectory.

In recent years, reinforcement learning was applied to robot control tasks. A deep Q network (DQN)
was proposed to deal with a discrete action continuous state, which aimed to combine a deep neural
network with reinforcement learning [13]. Subsequently, Lillicrap, T.P et al. [14] and Gu, S et al. [15]
offered an offline depth reinforcement learning algorithm based on a deep Q network and extended it to
continuous high-dimensional state space. Schaul, T et al. [16] and Metz, L et al. [17] made it possible to
achieve multiple targets by extending the DQN. Schaul, T et al. [18] proposed prior experience replay
technology to improve the performance of the DQN. Andrychowicz, M et al. [19] exposited experience
to improve sample collection efficiency. The Ornstein–Uhlenbeck (OU) process [20] was used to add
noise after an action strategy to improve network exploration ability. Plappert, M et al. [21] introduced
network parameter hierarchy with noise to improve network performance. Gu, S et al. [22] showed the
possibility of learning complex manipulation strategies without demonstrations. Genders, W et al. [23]
adopted a deep reinforcement learning model to establish a traffic signal agent, while Isele, D et al. [24]
solved the problem of a complex traffic intersection without traffic signals. Tai, L et al. [25] proposed
a motion planning method without a map. The sparse sensor ranging information and target position
were utilized as input, while the continuous steering command was taken as output, and verification was
conducted in practical experiments. Data efficiency and task performance were improved by addressing
the problem of maximizing cumulative rewards for reinforcement learning (RL), and considering
supervised/unsupervised learning styles, so as to achieve navigational capabilities [26].

When the model is known, a strategy iteration and value iterative algorithm based on dynamic
programming (DP) [27] is able to update value functions after each step of the strategy, which is
efficient. The intelligent vehicle driving problem is a model-free problem. The Monte Carlo (MC) [28]
reinforcement learning algorithm overcomes the difficulties caused by the unknown model estimation
by considering the sampling trajectories. This algorithm updates the value estimate of the strategy after
completing a sampling trajectory, which is inefficient compared to the algorithm based on dynamic
programming. Temporal difference (TD) learning [29] combines dynamic programming and Monte
Carlo reinforcement learning for more efficient model-free learning.

As known, Q-learning solves the low-dimensional problem of discrete space, which is a classic case
of temporal difference learning. The DQN improves the processing ability of high-dimensional state
space, but it is still unable to cope with high-dimensional continuous action space. The Actor-Critic (AC)
method [30] is able to handle continuous action space, but the randomness strategy makes it difficult
for the network to converge. To this end, the deep deterministic policy gradient (DDPG) [31] adopts the
Actor-Critic framework to combine the advantages of DQN to solve the problem of continuous state
space and continuous action space. Moreover, it adopts a deterministic policy to ensure the network
is more convergent. Since traditional motion cannot eliminate the model error, an end-to-end model
transfer trajectory planning method based on depth reinforcement learning is proposed in this study.
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Furthermore, DDPG is a deep reinforcement learning method, and it is utilized to train the model in
a simple virtual environment which is constructed independently, thereby reducing its dependence on
the sample data. Additionally, it can deal with the model training of continuous input and continuous
output, thus directly outputting the control action and trajectory sequence. The complexity is lower
than that of the optimal control calculation, and the model transfer method was applied to improve the
model’s generalization performance. Compared with traditional planning and end-to-end planning,
the proposed method has more continuous corner control sequences and smaller lateral errors while
the vehicle is driving.

2. Reinforcement Learning and Description of the Driving Environment

2.1. Reinforcement Learning Method

The basic principle of reinforcement learning is presented in Figure 1. When the agent is required
to achieve a task, it first interacts with environment (Env) via action (a); then, the impact of the action
on the environment brings the agent into a new state (s). At the same time, the agent receives reward
feedback (Reward) from the environment. The agent and environment generate a large amount
of data through a continuous loop and interaction. Reinforcement learning utilizes these sample
data to adjust the strategy π. Afterward, it interacts with Env to enter a new state, generating new
data = (st, at, rt, st+1). Subsequently, the new samples are adopted to modify the strategy π for several
iterations. After a great deal of iterative learning, the agent finally learns the optimal strategy π∗ to
complete the corresponding task.
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Figure 1. The principle of reinforcement learning.

Strategy π refers to the agent’s selection of action a under state s, which is the key problem in
reinforcement learning. Strategy π is a map from the agent, which is aware of environmental state s to
action a. The random strategy selects the corresponding action according to the probability π(a|s) of
each action, while deterministic policy selects action a = π(s) directly according to s.

stochastic Policy : ∑ π(a|s) = 1
deterministic Policy : π(s) : S→ A

. (1)

Cumulative rewards or returns are calculated when a strategy π is given. The definition of
cumulative returns is as follows:

Gt = Rt+1 + γRt+2 + · · · = ∑∞
k=0 γkRt+k+1, (2)

where 0 < γ < 1 is the discount factor of long-term income. The state function is defined as the
cumulative return benefit corresponding to state s under a strategy π:

υπ(s) = Eπ

[
∞

∑
k=0

γkRt+k+1

∣∣∣St = s

]
. (3)
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The corresponding state-action value function is defined as

qπ(s, a) = Eπ

[
∞

∑
k=0

γkRt+k+1

∣∣∣St = s, At = a

]
. (4)

2.2. Virtual Driving Environment Model Design

According to the description of the intelligent vehicle driving scene, intelligent driving behavior
decision tasks include normal driving, changing/overtaking, curve/ramp driving, and so on. Here,
the environment model was built as a circular map with three lanes, as shown in Figure 2. Specifically,
the green area and outer lane boundary are deemed insurmountable obstacles, while the others are
free travel space. The light-blue lines indicate the desired path with rewards, pathd = (Xd, Yd, φd).
The intelligent vehicle, Car = (xc, yc, ϕc, v), drives in a circular map and learns intelligent driving
maneuvers, including straight, changing, and curving driving behavior. Lastly, xc, yc, ϕc represents the
current position and posture information of the intelligent vehicle.
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To simplify the environment model Env, the intelligent vehicle has n ranging beams Sensor.
Furthermore, the farthest distance dMax of each ranging beam is the same. Each ranging beam supports
feedback information Sensori = (di, xend, yend) to the intelligent vehicle when it encounters obstacles.
Here, di is the length that the ranging beam is blocked by obstacles or boundaries, and xend, yend are
the position coordinates of the beam in contact with obstacles or boundaries. The intelligent vehicle
speed keeps a constant v, and the angle control output is −δmin ≤ δt ≤ δmax. Thus, the key return
function Reward for the environment model Env is as follows:

Reward =

{
−1 when contacts with obstacles or boundaries
Raction + Rmoney else

, (5)


Raction = −λ1 × ‖δold − δ‖2

Rmoney =

{
0 get_money = False
0.1 get_money = True

, (6)

get_money =

{
True i f |∆x| ≤ ε1 & |∆y| ≤ ε2 & |∆ϕ| ≤ ε3

False other else
, (7)

where λ1 is the positive penalty coefficient, and Raction represents the difference penalty between
the front and rear successive front wheel angles δold, δ of an intelligent vehicle. The smaller the
change is between successive actions, the smaller the penalty. Rmoney represents the reward for an
intelligent vehicle driving on the desired path, (∆x, ∆y, ∆ϕ) is the difference between the current
posture (xc, yc, ϕc) and the desired path pathd = (Xd, Yd, φd), and ε1, ε2, ε3 is the fault-tolerant error.

Intelligent vehicles randomize their initial position (x0, y0, ϕ0) according to the given policies πreset

to ensure a more adequate exploration of the environment and the stability of the result. Intelligent
vehicle termination conditions at each epoch include 1) contact with obstacles or boundaries; 2) meeting
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the maximum number of driving steps, nstep = Nummax. The optimal intelligent driving maneuver for
intelligent vehicle learning is π; therefore, the strategy space of the model is πall = {πreset, π}.

πreset :


x0 ∈ [Xmin, Xmax]

y0 ∈ [Ymin, Ymax]

ϕ0 ∈ [φmin, φmax]

. (8)

State space is assumed as ∑(Sensor) = {d0, d1, . . . , dn}, and motion space is assumed as ∑(δ) = {δnew}.
For the intelligent vehicle and environment model Env, an abstract model M is constructed.

M =
{

Env, Car, ∑(Sensor), ∑(δ), πall , Reward
}

.

3. Model Transfer Trajectory Planning Based on Deep Reinforcement Learning (DRL-MTTP)

3.1. DDPG Network Structure and Algorithm Flow

For complex continuous state space ∑(Sensor) and continuous action space ∑(δ), it is necessary to
train the deep reinforcement learning model Mθ in a virtual environment M using the DDPG algorithm.
The DDPG algorithm consists of an Actor policy network and a Critic evaluation network, as shown in
Figure 3.
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Q
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Figure 3. Deep deterministic policy gradient (DDPG) network structure.

The state ssensor ∈ ∑(Sensor), speed v, and action δold of the final moment are combined as
sa = (ssensor, v, δold). They are adopted as the input to the Actor policy network; therefore, the number
of Actor policy network input-layer neurons is 11. Meanwhile, the policy network’s hidden layer
utilizes three full connected networks; each layer contains 512 neurons. The fully connected layer is
followed by batch normalization (BN), before the ReLU (a type of activation function) is adopted as
the activation function. At the same time, the last layer of the network chooses tanh as the activation
function to map the network output between the interval [−1, 1]. The network output is action
δ ∈ ∑(δ). After the state sa and action δ are merged as sc = (sa, δ), then they become the input to the
Critic evaluation network. The number of Critic policy network input-layer neurons is 12. Meanwhile,
the policy network’s hidden layer utilizes three full connected networks; each layer contains 512
neurons. The fully connected layer is followed by BN. Although the hidden layer of the evaluation
network and the policy network hold the same structure, its last layer is activated by a linear function
such as that in Equation (9). Thus, the network output is the corresponding Q-value, Q(sa, δ), of sc.

y = kx + b, (9)
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where x is the input of the last layer, y is the predicted Q-value, and k, b are the weight and bias for
network training.

DDPG adopts the Actor-Critic framework, including the Actor and Critic structure. Here, the Actor
part includes the online policy network and the target policy network, which adopt the deterministic
policy to get a definite action from the current state. The Critic part includes an online Q network
and a target Q network, in which the Bellman equation of the action–state function Q is utilized to
measure the quality of action. The pseudo code of the DDPG algorithm is shown in Algorithm 1 and
the DDPG algorithm flow is shown in Figure 4. The input state (d1, . . . , d9, v, δold) and output action
δ are represented accordingly. The DDPG algorithm adopts a deterministic policy, and the policy
output is an action. Therefore, it needs less sampled data to maximize efficiency. However, this results
in the environment not being explored. In order to improve the algorithm’s exploration ability, the
OU stochastic process was added to the deterministic policy action. Furthermore, the environmental
execution was carried out after sampling from a random process of the action. Due to its good correlation
over a time series, the OU stochastic process is able to explore environments with momentum properties
by the agent.

Algorithm 1. Pseudo code of the deep deterministic policy gradient (DDPG) algorithm.
OU—Ornstein–Uhlenbeck process.

1. Randomly initialize Critic online Q network parameters θQ and Actor′s online policy
network parameters θµ.

2. Initialize Critic target Q network parameters θQ′ ← θQ and Actor′s target policy
network parameters θµ′ ← θµ.

3. Initialize experience replay memory (R).
4. for episode = 1, M do
5. Initialize the OU random process D for the exploration of action.
6. Input initial observation state s1.
7. for t = 1, T do
8. Choose action at based on current strategy µ(st) and exploring noise Dt:

at = µ(st) + Dt

9. Perform the action at, get the reward rt, and observe the new state st+1.
10. Store the process (st, at, rt, st+1) in R.
11. Sampling from R to get the process (si, ai, ri, si+1) of batch N.
12. Set yi = ri + γQ′

(
si+1, µ′

(
si+1

∣∣θµ′
)∣∣θQ′)// Q′ is the state–action value calculated

by the target Q network, and µ′ is the current strategy obtained by the target
policy network.

13. Update Critic′s online Q network by minimizing the loss function:

L = 1
N ∑i

(
yi −Q

(
si, ai

∣∣θQ)2
)

14. Update the Actor′s online policy network with sampling gradient:
∇θµ µ|si ≈ 1

N ∑
i
∇aQ

(
s, a|θQ)|s=si ,a=µ(si)∇θµ µ(s|θµ)|si

15. Update Critic′s target Q network : θQ′ ← τθQ + (1− τ)θQ′

16. Update Actor′s target policy network : θµ′ ← τθµ + (1− τ)θµ′

17. end for
18. end for
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3.2. Model Transfer Strategy

The intelligent vehicle Car obtains the optimal intelligent driving strategy π from the environment
model M through deep reinforcement learning training. The real environment M* is obviously different
from the virtual environment model M; the former usually tends to be more complex and time-varying.
Therefore, if the training model of virtual environment M is directly applied to real environment M*,
it brings numerous predictable or unpredictable problems.

The decision tasks of intelligent vehicles include driving straight, changing lanes, crossing corners,
ramp driving, etc. Thus, the model of intelligent driving tasks is abstracted from the real environment
M* and migrated to the virtual environment M, which maps onto a location area corresponding to
the ring map in M. Then, the optimal driving strategy π is adopted to plan the control-trajectory
sequence C = {δ, ζ} to achieve the driving task, including the control sequence δ = {δ1, δ2, . . . , δt}
and its corresponding trajectory ζ = {p1, p2, . . . , pt}. Finally, the intelligent vehicles carry out the task
δ to complete the driving task in the real environment M*.

According to a different sub-task Z, such as lane keeping, lane changing, and overtaking, the fixed
reference points Pre f

∣∣Z =
(

xre f , yre f , ϕre f

)
in M are set as a reference target or local tasks. In terms of

the driving task’s endpoint goal Ptar = (xtar, ytar, ϕtar) of path planning and intelligent vehicle posture
CarM∗ =

(
xc|M∗, yc|M∗, ϕc|M∗

)
in the real environment M*, the model transfer strategy < is mapped

to M using Equation (10). Finally, the intelligent parking posture is obtained as Car = (xc, yc, ϕc).

< :



θ = ϕtar − ϕre f

(x′, y′, ϕ′) =
(

xc|M∗ cos θ − yc|M∗ sin θ, xc|M∗ sin θ + yc|M∗ cos θ, ϕc|M∗ − θ
)

(xtar
′, ytar

′, ϕtar
′) =

(
xtar cos θ − ytar sin θ, xtar sin θ + ytar cos θ, ϕre f

)
(∆x, ∆y, ∆ϕ) = (x′ − xtar

′, y′ − ytar
′, θ)

(xc, yc, ϕc) =
(

xre f + ∆x, yre f + ∆y, ϕre f + ∆ϕ
)

, (10)

where θ is the difference between target heading angle ϕtar of the vehicle’s driving destination and
heading angle ϕtar of the reference point. In order to keep the heading angle of the target point
Ptar in the real environment coinciding with the heading angle of reference point Pre f in the virtual
environment, the real environment coordinate system is rotated by (x′, y′, ϕ′), which is the pose
corresponding to the ego vehicle in the rotated coordinate system, and (xtar

′, ytar
′, ϕtar

′), which is the
pose corresponding to the target point P in the rotated coordinate system. (∆x, ∆y, ∆ϕ) is the difference
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in pose between the ego vehicle and the target point in the rotated coordinate system, and (xc, yc, ϕc)

is the corresponding pose of the ego vehicle in the virtual environment after the model transfer.
From Figure 2, the virtual environment seems to contain only two curves, but this is inaccurate.

After the training is completed, the vehicle can not only complete straight and turning tasks, but
also complete lane-changing operations. Trajectories generated in the lane-changing phase contain
different curvatures; thus, mapping ramps to the lane-changing phase in stages can solve the problem
of ramp driving.

However, the virtual simulation environment does not consider turning around; thus, when the
actual road curvature is very large, the proposed method is not applicable.

Figure 5a–c show the model transfer process of a lane change. Figure 5a shows the real-world M*
scene. The road condition information is composed of invariants and variables. The invariants include
the number of lanes and the width of lanes. The variables are the information regarding obstacles,
which is fed back to the distance beam of the intelligent vehicle. The initial planning process is to
travel along the current driving lane. When it is detected that there is a vehicle with lower speed than
the ego vehicle ahead of it in the current lane, the left lane is taken as a desired path. The driving task
is to switch to the left lane based on behavioral decision planning.

Figure 5d–f show the model transfer process of a ramp. Figure 5d shows the real-world M* scene.
The green vehicle is the current vehicle position, x = [x, y, ϕ, v, ω]T, and the pose information is

CarM∗ = (x, y, ϕ). The green dot in the center of left lane is the scattered point of path planning. Here,
the red point is the destination of current driving task Ptar = (xtar, ytar, ϕtar). Figure 5b,e show the
scene after CarM∗ , Ptar is migrated to < through the model. Mapping to the virtual environment M,
the intelligent vehicle pose is Car = (xc, yc, ϕc). ∑(Sensor) is acquired according to the distance beam in
M; then, δold is merged into state s, and the control sequence δ = {δ1, δ2, . . . , δt} and trajectory sequence
ζ = {p1, p2, . . . , pt} are obtained by the model Mθ . Figure 5c,f show the corresponding scene of control
sequence δ = {δ1, δ2, . . . , δt} and track sequence ζ = {p1, p2, . . . , pt} in the real environment M*.
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3.3. Algorithm Framework of Model Transfer Based on Deep Reinforcement Learning

DRL-MTTP aims to abstract the complex real environment and transfer it to a simple virtual
environment through the model. Furthermore, the optimal intelligent driving strategy is applied
to the virtual environment, which is trained by the agent after deep reinforcement learning. Thus,
the optimal trajectory control sequence is obtained to realize the end-to-end trajectory planning in the
real environment. Figure 6 shows a technical diagram of DRL-MTTP.

The framework of DRL-MTTP is shown in Algorithm 2. Firstly, sub-task γ and path-planning
datasets are initialized according to upper data streams. Afterward, the trajectory-planning stage
begins. Then, an appropriate target point Ptarget is selected as the local goal based on the sub-task γ.
Thus, the selection process is shown in Equation (11).

st−1,t =
√
(xt − xt−1)

2 + (yt − yt−1)
2

l2 =
target

∑
t=1

st−1,t
, (11)

where (xi, yi) are the corresponding coordinates of Pi, st−1,t is the straight-line distance between Pt−1

and Pt, l is the arc length threshold of path scatter points which is determined by sub-task γ, and Ptarget

is the target point that satisfies the threshold requirement. Subsequently, the target set is obtained by
adding noise to the target point Ptarget, and

(
εx, εy, εϕ

)
satisfies a Gaussian distribution. Furthermore,

the corresponding position Car of the intelligent vehicle in the virtual environment M is calculated
by a model transfer for each target point Ptarget. The status of the environment s and the status of the
intelligent vehicle x are gained by observing its ranging light beam in M.

During the planning time T, the deep reinforcement learning model Mθ is utilized in each unit of
time t to analyze state s and predict the action δt. At the same time, the dynamic model is adopted to
simulate the prediction action. Meanwhile, the environment state s and intelligent vehicle state x are
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updated, and the track ζt is recorded. Finally, the control-trajectory sequence pair C = {δ, ζ} under
real environment M* is acquired by model transfer.

The second stage is about optimal trajectory selection. In this stage, the evaluation function of
each control-trajectory pair is calculated. At the same time, the collision probability of the trajectory ζ

is also judged. The control-trajectory pair with minimum J and no collision trajectory are taken as the
optimal trajectory.

min J = κ1

∫ T

0

(
∆δ2

)
dt + κ2

[
h(ζT)− h

(
ζtarget

)]
, (12)

where T is the termination time, ∆δ is the difference of continuous action, κ1, κ2 is the weight coefficient,
and h represents the rectangular area of the vehicle outline at the end of its trajectory.

Finally, the result of planning is executed. The intelligent vehicle implements the first τ steps of
control sequence δ, and the model reference control is utilized to enhance the robustness and to reduce
the influence of system error by the model error. If the task is not terminated, planning action of the
first two phases is repeated to realize the intelligent vehicle dynamic trajectory planning.

Algorithm 2. Model transfer trajectory planning based on deep reinforcement learning
(DRL-MTTP) frame.

1. initialize terminal, S1 : {P1, P2, . . . , Pm}; //receive tasks and data from the top
2. while terminal = f alse
3. //trajectory planning stage
4. Ptarget ← S1 : {P1, P2, . . . , Pm}; //select a target from a path planning scatter set S1

based on a task
5. for i = 0, N do
6. Ptarget,i = Ptarget + ξnoise; //add noise to generate target sets

7. Cari
<
←−−

(
Ptarget, Pre f , CarM∗

)
; //calculate the corresponding position and pose of

the intelligent vehicle by model transfer

8. s, x
M
←−− (Cari, Sensor); //calculate state based on ranging light beam

9. for t = 0, T do

10. δt
Mθ

←−− s; //calculate action by deep reinforcement learning model

11. x =
∫ ∆t

0 f (x, δi); //dynamic model simulation
12. ζi ←−− x ; //record track
13. end for

14. Ci : {δ, ζ∗}
<
←−− (δ, Cari, CarM∗ , ζ); //calculate control-trajectory sequence pair by

model transfer
15. end for //optimal trajectory selection stage
16. Jmin = ∞;
17. for i = 0, N do

18. J = κ1
∫ T

0
(
∆δ2)dt + κ2

[
h(ζT)− h

(
ζtarget

)]
; //calculate and obtain evaluation function

19. if J < Jmin and no collision //select the control-trajectory pair with minimum J
value and no collision as the optimal trajectory

20. Jmin = J;
21. Coptimal = Ci;

22. end if
23. end for
24. //stage of execute the planning result
25. δoptimal : {δ1, δ2, , , , δτ}, τ ≤ T; //get the results of the first τ steps

26. update terminal; //whether the task ends or not
27. end while
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4. Simulation Test on Trajectory Planning of Intelligent Vehicle

4.1. Deep Reinforcement Learning Model Training

In the virtual simulation environment Env, the circle map was 100 m long and 50 m wide. The
driveway was 3.4 m wide. Here, the speed was v = 36 km/h, which was kept constant. The dimension
of the ranging light beam was n = 9, and the farthest range was dMax = 20 m, while the largest output
of angle was δmax = 0.3 rad. The desired pathd was the centerline of middle lane. The errors were
ε1 = ε2 = 0.1m, ε3 = 0.5236, the continuous action penalty coefficient was λ1 = 0.01, and the random
initial position was x0 ∈ [10, 980], y0 ∈ [10, 50], ϕ0 ∈ [−π/2, π/2]. The maximum step number was
Nummax = 600, and the step gap was 0.1 s. The software environment was a Linux operating system
with 16 Gb of memory, and the graphics card was a GTX1080 Ti (NVIDIA, Santa Clara, CA, USA). The
system took advantage of the deep learning framework TensorFlow.

The greater the learning rate is, the lower the effect of previous training being retained. Similarly,
the greater the discount factor is, the more emphasis is placed on experience. The smaller the discount
factor is, the more attention is paid to the current return. If the numbers of hidden layers and hidden
layer neurons are too little, then the data cannot be fitted well. Conversely, if the numbers of hidden
layers and hidden layer neurons are too large, this can easily lead to over-fitting. Therefore, a better
network structure and network parameters were designed after several trials. The hyper parameters
in the deep reinforcement learning model Mθ were set as follows: the discount factor was γ = 0.9, the
learning rates of the Actor and Critic networks were both 10−4, the optimization method of Adam [32]
was adopted, the soft update rate was τ = 0.001, the number of hidden layer neurons was 512, the
size of the experience replay pool was 104, the size of the batch was 64, the error was generated by
a Gaussian process, the initial variance was varmax = 2, the minimum variance was varmin = 0.01, and
the attenuation rate was 10−4.
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At low speed, the vehicle dynamic model can be approximated as a bicycle model with two
degrees of freedom [4]. The vehicle dynamics model is described in Equation (13).

.
x = U cos ϕ− v sin ϕ
.
y = U sin ϕ + v cos ϕ

.
ϕ = ω

.
v = −C f +Cr

mU v−
( aC f−bCr

mU + U
)

ω +
C f
m δ

.
ω =

bCr−aC f
IZU v− a2C f +b2Cr

IZU ω +
aC f
IZ

δ

, (13)

where (x, y) is the location of the vehicle, ϕ is the yaw angle, ω is the yaw rate, δ is the front-wheel
steering angle, U is the longitudinal velocity, and v is the lateral velocity. The definitions and values of
the vehicle parameters in Equation (13) are shown in Table 1.

The vehicle status is represented by x = [x, y, ϕ, v, ω]T , and thus, Equation (13) can be expressed
as Equation (14).

.
x = f (x, δ). (14)

Table 1. Vehicle parameters.

Features Symbols Parameters

Complete vehicle kerb mass /kg m 17,800
Length l 11,950
Width h 2540

Vehicle yaw moment of inertia /kg·m2 IZ 20,000
Distance from center of mass to front axle /m a 2.795
Distance from center of mass to rear axle /m b 3.105

Wheel base /m d 5.9
Cornering stiffness of front wheel /N·rad−1 C f 6500
Cornering stiffness of rear wheel /N·rad−1 Cr 5200

Figure 7 shows the changes in parameters during training. Figure 7a has an abscissa of “step” and
an ordinate of “action”. Figure 7b has an abscissa of “epoch” and an ordinate of “cumulative reward”.
Figure 7c has an abscissa of “step” and an ordinate of “average Q-value”. Figure 7d has an abscissa of
“step” and an ordinate of “gradient”. Figure 7e has an abscissa of “epoch” and an ordinate of “noise”.
Figure 7f has an abscissa of “step” and an ordinate of “loss”.

As shown in Figure 7, the rewards and the average Q-value of the agent gradually increased
with the number of iterations during the training process. Finally, it tended to be stable. On the other
hand, the loss gradually decreased to 0 with the increase in the number of iterations, indicating the
evaluation of the network becoming more and more effective. The noise decreased as the number
of iterations increased, providing sufficient exploration capability in the early stages and sufficient
exploitation capability in the late stages. Figure 7 shows that the model learned from experience, and
continuously approached the optimal strategy.
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The vehicle status is represented by [ ,  ,  ,  ,  ]Tx y vϕ ω=x , and thus, Equation (13) can be 
expressed as Equation (14). 

( , )f δ=x x .                                  (14) 

Table 1. Vehicle parameters. 

Features Symbols Parameters 
Complete vehicle kerb mass /kg m 17,800 

Length l 11,950 
Width h 2540 

Vehicle yaw moment of inertia /kg·m2 ZI  20,000 
Distance from center of mass to front axle /m a 2.795 
Distance from center of mass to rear axle /m b 3.105 

Wheel base /m d 5.9 
Cornering stiffness of front wheel /N·rad-1 fC  6500 
Cornering stiffness of rear wheel /N·rad-1 rC  5200 

Figure 7 shows the changes in parameters during training. Figure 7a has an abscissa of “step” 
and an ordinate of “action”. Figure 7b has an abscissa of “epoch” and an ordinate of “cumulative 
reward”. Figure 7c has an abscissa of “step” and an ordinate of “average Q-value”. Figure 7d has an 
abscissa of “step” and an ordinate of “gradient”. Figure 7e has an abscissa of “epoch” and an ordinate 
of “noise”. Figure 7f has an abscissa of “step” and an ordinate of “loss”. 
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Figure 7. Training results of the deep reinforcement learning model. 

4.2. Verification of Intelligent Vehicle Trajectory Planning Based on DRL-MTTP 

4.2.1. Trajectory Planning of Lane Keeping 

During the simulation test, the intelligent vehicle speed was set as 10 m/s (36 km/h). The 
intelligent vehicle started from the center position of the middle lane at a 30° yaw angle and a −30° 
yaw angle, which are shown in Figure 8a,e, respectively. Figure 8b,f have abscissas of "X/m" and 
ordinates of "Y/m". Figure 8c,g have abscissas of "time/0.1 s" and ordinates of "heading angle/rad". 
Figure 8d,h have abscissas of "time/0.1 s" and ordinates of "steering-wheel angle/°". 

Through the algorithm model, the steering-wheel control sequence is adjusted to keep in its lane. 
In the beginning, the intelligent vehicle had a deviation from the initial position, and it then corrected 
itself to keep to the lane. The average value of front-wheel angle across the three experiments was 

0.0001635−  rad ( 0.009367− ° ). Therefore, the steering angle was stable around 0°, with a mean value 
of 0.1562− ° . The average lateral deviation after stabilization was 0.04 cm. 
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4.2. Verification of Intelligent Vehicle Trajectory Planning Based on DRL-MTTP

4.2.1. Trajectory Planning of Lane Keeping

During the simulation test, the intelligent vehicle speed was set as 10 m/s (36 km/h). The
intelligent vehicle started from the center position of the middle lane at a 30◦ yaw angle and a −30◦

yaw angle, which are shown in Figure 8a,e, respectively. Figure 8b,f have abscissas of “X/m” and
ordinates of “Y/m”. Figure 8c,g have abscissas of “time/0.1 s” and ordinates of “heading angle/rad”.
Figure 8d,h have abscissas of “time/0.1 s” and ordinates of “steering-wheel angle/◦”.

Through the algorithm model, the steering-wheel control sequence is adjusted to keep in its lane.
In the beginning, the intelligent vehicle had a deviation from the initial position, and it then corrected
itself to keep to the lane. The average value of front-wheel angle across the three experiments was
−0.0001635 rad (−0.009367◦). Therefore, the steering angle was stable around 0◦, with a mean value of
−0.1562◦. The average lateral deviation after stabilization was 0.04 cm.
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4.2.2. Curve Track Planning

During the simulation test, the intelligent vehicle set out with different yaw angles, which are shown
in Figure 9. Figure 9b,f have abscissas of “X/m” and ordinates of “Y/m”. Figure 9c,g have abscissas
of “time/0.1 s” and ordinates of “heading angle/rad”. Figure 9d,h have abscissas of “time/0.1 s” and
ordinates of “steering-wheel angle/◦”. Figure 9i,j have abscissas of “time point” and ordinates of “lateral
error/m”. Figure 9i,j show the lateral error from the center of the lane at each time point. When the
vehicle was on the left side of the lane, the lateral error was negative. As shown in Figure 9i, the lateral
error was nearly 0 when going straight. When the vehicle turned, the lateral error increased to about
0.2 m. After turning, the lateral error decreased to nearly 0. As shown in Figure 9j, as the initial heading
angle was 0.5 rad, and the absolute value of the vehicle lateral error increased first before decreasing to
nearly 0. The following trend was the same as that in Figure 9i.

Although there was a shock in the curve, the intelligent vehicle still ultimately navigated the
curve successfully. Meanwhile, the curve of the control sequence and the change rate of the yaw angle
were relatively smooth.
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Figure 9. Curve driving experiment.

4.3. Experimental Comparison and Analysis of the Three Trajectory Planning Methods

Currently, there are three trajectory-planning methods comparisons and experimental analyses,
as described in this section. These trajectory-planning methods are called the optimal trajectory-planning
method based on a cubic polynomial [33], the end-to-end trajectory-planning method [9,10], and the
model transfer trajectory-planning method based on deep reinforcement learning. The intelligent vehicle
drove following the planning results in each simulation step with the same tracking control error.
Here, the experiments only compare and analyze the performance of the planning. The traditional
trajectory-planning method adopts the angle control sequence based on a preview window. However,
the end-to-end trajectory planning method outputs the angle control sequence directly. The period of the
trajectory planning was 100 ms. In other words, the intelligent vehicle was reprogrammed after keeping
the same deflection angle for 100 ms.

4.3.1. Arc Straight Track Scene

The arc shown in Figure 10 had a radius of 300 m; thus, it was large enough to be considered as
a straight line in a small range. However, the curvature was not equal to zero. The contrast experiment
is shown in Figure 11. Figure 11a–c are the experimental results based on the cubic-polynomial
dynamic optimal trajectory-planning method. Figure 11d–f are the experimental results of the
end-to-end trajectory-planning method. Figure 11g–i are the experimental results of the model
transfer trajectory-planning method based on deep reinforcement learning. Figure 11j shows the lateral
error from the center of the lane at each time point. Figure 11a,d,g have abscissas of “X/m” and
ordinates of “Y/m”. The blue dotted lines in the figures represent the “expected path” and the red
solid lines represent the “actual trajectory”. Figure 11b,e,h have abscissas of “time/0.1 s” and ordinates
of “heading angle/rad”. Figure 11c,f,i have abscissas of "time/0.1 s" and ordinates of “steering-wheel
angle/◦”. Figure 11j has an abscissa of "time point" and an ordinate of "lateral error/m".

The actual trajectories, represented by the solid line, in the three methods were basically the
same as the expected trajectory, represented by the dotted line. However, the rotation-angle control
sequence of the first two methods oscillated continuously in the small range. The control sequence of
our proposed method showed a periodic and continuous variation. The experimental results verified
that the model transfer trajectory-planning method based on deep reinforcement learning performs
well, and the control action is continuous when driving nearly straight. As shown in Figure 11j, when
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adopting the optimal trajectory-planning method based on the cubic polynomial, the trajectory of the
vehicle was prone to oscillation. There was a medium mean lateral error when adopting the end-to-end
trajectory-planning method, while there was a minimum mean lateral error when adopting the method
based on MTTP/DDPG.
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4.3.2. S-type Ramp Scene

Figure 12 is the schematic diagram of the S ramp. The intelligent vehicle was initially situated in
the left lane of the lower right corner. After driving at a yaw angle from the north, the vehicle turned
left and entered a 45◦ ramp. After driving a distance, it turned right in the middle lane and completed
the intelligent driving maneuver. The experiment results are shown in Figure 13. Figure 13a–c are the
experimental results based on the cubic polynomial dynamic optimal trajectory planning. Figure 13d–f
are the experimental results of the end-to-end trajectory planning. Figure 13g–i are the experimental
results of the model transfer trajectory-planning method based on deep reinforcement learning. Figure 13j
shows the lateral error from the center of the lane at each time point. The abscissas of Figure 13a,d,g are
“X/m”, and the ordinates are “Y/m”. The blue dotted line in Figure 13a represents the “expected path”
and the red solid line represents the “actual trajectory”. Figure 13b,e,h have abscissas of “time/0.1 s” and
ordinates of “heading angle/rad”. The abscissas of Figure 13c,f,i are “time/0.1 s”, and their ordinates are
“steering-wheel angle/◦”. Figure 13j has an abscissa of "time point" and an ordinate of "lateral error/m".

According to the comparison results between actual trajectory and desired path based on the
three planning methods, the results show that the proposed method allowed the intelligent vehicle to
maintain a better turning performance, especially in the combination of straight and curved roads.
Finally, the lateral deviation of our proposed method was the least, and the it outperformed the other
two methods. When entering the ramp or leaving the ramp, there was a greater lateral error. In general,
the average lateral error adopting the MTTP/DDPG method was the minimum.
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5. Real Vehicle Verification of Dynamic Trajectory Planning

The vehicle’s real-time position was collected using the GPS (Global Positioning System) and
IMU (Inertial Measurement Unit). The sensory data of the surroundings were acquired using a camera,
lidar, and millimeter-wave radar, which were mounted on the driverless vehicle.

The camera was adopted to detect lane lines. The identification of obstacles depended mainly on
the radar and lidar. The fusion process of obstacle information detected by multiple sensors was as
follows: firstly, each sensor extracted obstacles accordingly. Then, the Hungarian algorithm (HA) [34]
was adopted to match each object extracted by each sensor. Finally, the matched data were fused with
the Kalman filter (KF) [35] to get the fusion data.

The lane’s centerline was taken as the desired path based on the lane line detected by the camera.
Different points on the desired path were taken as Ptarget. After the model transfer strategy, a set of
trajectories was obtained. Considering the constraints of the fused obstacle information, the optimal
trajectory with no collisions was selected according to the cost function.

Figure 14 shows the actual vehicle’s dynamic trajectory planning process. Figure 14a–i were
captured when the vehicle was turning in different scenes. Here, Figure 14a–f are the outside view,
while Figure 14g–i are the inside view of the driverless vehicle. Figure 14 shows that the driverless
performance of the intelligent vehicle was stable and efficient when turning around 90◦. Figure 14j–o
were captured when the driverless vehicle was overtaking and lane changing. Figure 14j–l show the
outside view and Figure 14m–o show the internal view. They indicate that the intelligent vehicle
achieved self-overtaking and lane-changing driving behaviors safely and stably. Figure 14p–r are
real-time screenshots and the interface of the intelligent driving trajectory planning. Figure 14r is the
tracking result when the actual vehicle verified the curve driving.
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6. Conclusions

It is difficult for traditional trajectory-planning method to eliminate errors due to vehicle models
and road conditions. Furthermore, there are no vehicle dynamics constraints. A model transfer
trajectory-planning method based on deep reinforcement learning was proposed in this paper. At first,
the complex real environment was abstracted using MTTP, then the abstracted model was transferred
into a simple virtual environment through the transfer model. Secondly, the optimal intelligent
driving maneuver after deep reinforcement learning training was applied to obtain the optimal
control-trajectory sequence in the virtual environment. Thereby, the end-to-end trajectory planning
of the intelligent vehicle in a real environment was realized. Moreover, an evaluation function was
designed to estimate the planning validity of the control-trajectory sequences, and to judge the risk of
collision in a real environment. Furthermore, an optimal control-trajectory sequence was decided and
executed by the intelligent land vehicle. Finally, the comparison analysis of multiple driving scenes and
multiple trajectory-planning methods verified the better optimization performance of MTTP, showing
that it achieved a more continuous rotation-angle control sequence and a smaller lateral error for the
intelligent land vehicle. However, the speed of the vehicles was assumed as a constant, and that they
were driving in a typical structured environment. Because the virtual simulation environment in this
paper did not consider turning around, the proposed method is not applicable when the actual road
curvature is very large. The next stage will be to further consider variable-speed driving and more
complex environments.
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Nomenclature

VAE Variational auto-encoder
GAN Generative adversarial network
end-to-end Algorithm for inputting original data and outputting result
DQN Deep Q network
OU Ornstein–Uhlenbeck
DRL Deep reinforcement learning
MC Monte Carlo
TD Temporal difference
AC Actor-Critic
DDPG Deep deterministic policy gradient
MTTP Model transfer trajectory planning
BN Batch normalization
HA Hungarian algorithm
KF Kalman filter
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