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The identification of Receptor activator of nuclear factor kappa B ligand (RANKL) and its

cognate receptor Receptor activator of nuclear factor kappa B (RANK) during a search

for novel tumor necrosis factor receptor (TNFR) superfamily members has dramatically

changed the scenario of bone biology by providing the functional and biochemical proof

that RANKL signaling via RANK is the master factor for osteoclastogenesis. In parallel,

two independent studies reported the identification of mouse RANKL on activated T cells

and of a ligand for osteoprotegerin on a murine bone marrow-derived stromal cell line.

After these seminal findings, accumulating data indicated RANKL and RANK not only

as essential players for the development and activation of osteoclasts, but also for the

correct differentiation of medullary thymic epithelial cells (mTECs) that act as mediators of

the central tolerance process by which self-reactive T cells are eliminated while regulatory

T cells are generated. In light of the RANKL-RANK multi-task function, an antibody

targeting this pathway, denosumab, is now commonly used in the therapy of bone loss

diseases including chronic inflammatory bone disorders and osteolytic bone metastases;

furthermore, preclinical data support the therapeutic application of denosumab in the

framework of a broader spectrum of tumors. Here, we discuss advances in cellular and

molecular mechanisms elicited by RANKL-RANK pathway in the bone and thymus, and

the extent to which its inhibition or augmentation can be translated in the clinical arena.
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INTRODUCTION

Receptor activator of nuclear factor kappa B (RANK) and its ligand (RANKL), encoded,
respectively, by the Tumor necrosis factor receptor superfamily member 11A (Tnfrsf11a) and the
Tumor necrosis factor ligand superfamily member 11 (Tnfsf11) genes, constitute a receptor-ligand
pair initiating a signaling pathway of paramount relevance in many pathophysiological contexts
(1). They have been described in the context of T cell-dendritic cell interactions (2), in bone and
in the immune system (3, 4), thus triggering the start of the osteoimmunology era. This axis has
revealed an unexpected role in the thermoregulation by the central nervous system (5) and in
mammary epithelium development during pregnancy and progesterone-driven breast cancer (3, 6).
The RANKL-RANK axis has also been involved in diverse immune-mediated diseases affecting
the bone (7–9) as well as other tissues (10), and in cancer settings (11). Overall, this pathway has
emerged as a potential target of therapy in a wide range of conditions; which at the same time
implies monitoring many different physiological functions when interfering with this axis.
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As schematically depicted in Figure 1, here we focus
on advances in cellular and molecular mechanisms elicited
by RANKL-RANK signaling in two functionally related
compartments: the bone and the thymus. Moreover, we review
novel perspectives to translate inhibition or enhancement of this
pathway in the clinic.

RANKL-RANK AXIS IN THE BONE

The identification of RANKL-RANK signaling in bone represents
a milestone in bone biology (12, 13). Its indispensable role in
osteoclast formation is clearly demonstrated by the complete
absence of osteoclasts in the Rankl−/− and Rank−/− murine
models (3, 4, 14, 15), as well as in their human counterpart,
i.e., patients affected by RANKL-deficient and RANK-
deficient osteoclast-poor Autosomal Recessive Osteopetrosis
(16, 17). Nonetheless, the possibility of RANKL-independent
osteoclastogenesis, particularly in pathologic conditions, has
been a matter of a long-lasting debate (18–22) and a general
consensus in the field has not been reached, yet.

RANKL is mainly produced by stromal cells in bone, in
normal conditions, and primarily by osteocytes (23–25). RANKL
is mostly membrane-bound and can be shed to form a soluble
protein; the former is sufficient for most functions, while the
latter contributes to physiological bone remodeling, as recently
demonstrated in mice expressing a sheddase-resistant form of
RANKL (26).

Themembrane functional receptor RANK ismainly expressed
by cells of hematopoietic origin, including also osteoclasts
and their precursors, and has been recently detected also
in Mesenchymal Stem Cells (MSCs) (27, 28), raising the
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intriguing hypothesis of an autocrine/paracrine loop in these
cells (Figure 1A).

The RANKL-RANK signaling pathway in the osteoclast
lineage comprises a plethora of molecules (29). Essentially,
upon engagement by its ligand, RANK recruits a number of
adaptors (most importantly, TNF Receptor-Associated Factor 6,
TRAF6) (30), which converge on kinases activation, including
Phosphoinositide-3-Kinase (PI3K) and Mitogen Activated
Protein (MAP) kinases. This promotes nuclear translocation and
activation of transcription factors, Nuclear Factor of Activated
T cell 1 (NFATc1) (31), c-fos (32), and Nuclear Factor kappa B
(NF-κB) (33), comprising the master regulator of the osteoclast-
specific transcriptional program. The RANKL-RANK pathway
interacts with costimulatory signals from immunoreceptor
tyrosine based activation (ITAM)-motif containing proteins,
further regulating NFATc1 activation (34, 35).

RANKL signaling during osteoclastogenesis results in the
generation of reactive oxygen species (ROS), which further
stimulate osteoclast formation and bone resorption (36). On the
other hand, a variety of antioxidant mechanisms monitors ROS
levels and the reciprocal control between these opposite functions
(i.e., ROS production and scavenging) importantly impacts on
bone homeostasis (37–39).

The RANKL-RANK axis is counterbalanced by the soluble
decoy receptor osteoprotegerin (OPG) (40), which is itself
controlled by many ligands, including the TNF-Related
Apoptosis Inducing Ligand (TRAIL), von Willebrand factor
(vWF), and glycosaminoglycans (GAGs) (41). Moreover, the
Leucine-rich repeat-containing G protein-coupled receptor
4 (LGR4) is an additional membrane receptor for RANKL,
competing with RANK for ligand binding and negatively
regulating osteoclastogenesis through the inhibition of
NFATc1 activation (42). LGR4 acts also as an R-spondin
receptor in bone marrow MSCs and has been recently
demonstrated as a key molecule in mesoderm-derived
tissue development and MSC differentiation (43), whether
RANKL might be involved in this specific context has to be
investigated (Figure 1A).

The recognition of the crucial role of RANKL-RANK
signaling in osteoclast biology led to the development of the anti-
RANKL antibody denosumab, a fully human Immunoglobulin
(Ig) G2monoclonal antibody with high affinity and specificity for
human soluble and membrane-bound RANKL (44). Specifically,
denosumab binds to the DE loop region of the ligand, which is
one of the surface loop structures interacting with the functional
receptor on responding cells (44). Denosumab is used as an
antiresorptive drug for diverse indications, such as osteoporosis
(45), primary bone tumors (46), and osteolytic bone metastases
(47). Its use is under evaluation also in other fields, such as
solid tumors (11) and Rheumatoid Arthritis (48), and has been
very recently proposed in the prevention of BRCA1-associated
breast cancer (49). Finally, denosumab administration has been
considered in the field of rare diseases too, for example for the
treatment of persistent severe hypercalcemia after hematopoietic
stem cell transplantation in patients affected by Autosomal
Recessive Osteopetrosis (50), in patients affected by Fibrous
Dysplasia (51), or by Osteogenesis Imperfecta, even though
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FIGURE 1 | Schematic representation of cellular and molecular players involved in RANKL-RANK signaling axis in the bone and thymus in physiological and in

pathological conditions. (A) Membrane-bound and soluble RANKL produced by cells of the osteoblast lineage and by immune cells induce osteoclastogenesis upon

its binding to RANK on osteoclast precursors. OPG is the soluble decoy receptor for RANKL. Moreover, RANKL binding to LGR4 on osteoclasts hinders their

maturation. RANK expression by MSC and osteoblasts points to a potential RANKL autoregulatory mechanism affecting bone formation. In addition,

osteoclast-derived RANK-expressing extracellular vesicles (EV) trigger a reverse signaling on osteoblast. (B) The inflammatory bone environment in pathological

condition, such as osteoporosis and rheumatoid arthritis, results in increased production of RANKL by immune cells, osteoblastic cells and synovial fibroblasts. This

exacerbates osteoclast generation and bone loss, which are target of denosumab treatment. (C) In the thymus, RANKL produced by resident and recirculating T cells,

invariant NKT and LTi cells fosters mTEC AIRE expression and maturation via RANK receptor, allowing correct establishment of central tolerance. (D) In the presence

of thymic dysfunction, pharmacological sRANKL administration boosts thymic regeneration, and T cell reconstitution. Similarly, in the early phases of thymic

regeneration after body irradiation, CD4+ and LTi cells upregulate RANKL. This results in increased expression of LTα in LTi cells. OBs, osteoblasts; OCs, osteoclasts;

OCYs, osteocytes.

some variability in the clinical outcome has been reported
(52) (Figure 1B).

Clinical case series and a recent analysis of the FREEDOM
and FREEDOM Extension Trials about osteoporosis treatment
with the anti-RANKL antibody have pointed to an increased risk
of multiple vertebral fractures after denosumab discontinuation
due to a rebound in bone resorption (53, 54), thus raising

a note of caution. In an attempt to identify potential
alternative antiresorptive therapies, scientific interest about
natural compounds possibly interfering with the RANKL-
RANK axis (e.g., flavonoids, alkaloid compounds, triterpenoids,
polysaccharides as well as monomeric sugars) has been growing
exponentially, as demonstrated by the number of publications
evaluating this kind of approach (55–58).
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In parallel, recent papers pointed to an unexpected osteogenic
function of RANKL through (at least) two different, not
mutually exclusive mechanisms: an autocrine-paracrine loop
activated by RANKL binding to its receptor(s) on MSCs (27);
and a reverse signaling elicited by osteoclast-derived RANK-
expressing extracellular vesicles, which might induce membrane-
RANKL clustering on osteoblasts (59, 60). This might represent
an additional means for osteoblast-osteoclast crosstalk. As a
perspective, it might be exploited by means of a new drug
with two simultaneous activities: dampening of bone resorption
by preventing RANKL binding to RANK receptors on the
osteoclasts, and stimulating osteogenesis by triggering RANKL
signaling in the osteoblasts (Figure 1A).

Actually, the biological relevance of these new findings in
the framework of the overall bone homeostasis has to be clearly
defined; for the sake of completeness, opposite results have
been reported by others (28). Nevertheless, the possibility of an
osteogenic function of RANKL is worth further investigations
since it could pave the way to the development of new therapeutic
strategies, thus fulfilling a medical need.

RANKL-RANK AXIS IN THE THYMUS

The thymus is a primary lymphoid organ responsible for the
development of T lymphocytes expressing a T cell repertoire
capable of responding to a diverse array of foreign antigens but
tolerant to self-antigens (61, 62). Migrant lymphoid progenitors,
arising in the liver during embryonic life and in the bone
marrow in postnatal life, enter the thymus where they undergo
different phases of differentiation throughout a complex journey
from the cortical region to the medullary compartment (63).
The early phases of thymocyte differentiation strictly depend
on stromal derived signals mediated by the interaction of
CD4+CD8+ double positive (DP) T cell precursors with
cortical thymic epithelial cells (cTECs) and indirectly by the
production of soluble factors (Figure 1C). cTECs foster lineage
commitment during the early stages of T cell differentiation
(double negative, DN, stage) through the expression of Notch
ligand Delta-like 4 (64, 65) and mediate positive selection of DP
T cells by presenting a broad array of self-peptides via major
histocompatibility complex (MHC) class I and II molecules. This
process results in the survival of thymocytes, which migrate into
the thymic medulla where T cells are negatively selected to single
positive (SP) CD4+CD8− and CD8+CD4− T cells (66). Mature
medullary thymic epithelial cells (mTECs) mediate central
tolerance process by expressing the transcriptional coactivator
AutoImmune Regulator (AIRE), which drives the expression of
self-antigens, including tissue restricted antigens (TRAs) leading
to the clonal deletion of autoreactive T cells, while inducing
the generation of regulatory T cells (67, 68), and the intra-
thymic positioning of X-C Motif Chemokine Ligand 1 (XCL1)+

dendritic cells (69).
Various factors modulate the development and maturation

of the thymic epithelial compartment, including several signal
transducers regulating NF-κB pathway and the NF-κB family
member RelB (70–76). Signaling mediated by four receptors
of the tumor necrosis factor family [RANK, OPG, CD40, and
lymphotoxin (LT) β receptor] acts as important modulator of

thymic microenvironment along with the cross talk between
thymocytes and TECs (77–79). In addition, the Ets transcription
factor family member Spi-B, which was found to be associated
with autoimmune phenomena (80), mediates OPG expression
via a negative feedback regulatory loop thus limiting the
development of mature TECs (81). RANKL is mainly produced
by CD4+ cells, a small subset of CD8+ cells, invariant (Natural
Killer T) NKT cells and CD4+CD3− lymphoid tissue inducer
(LTi) cells (82, 83). Of note, during embryonic life at the
initial stages of thymus development, invariant Vγ5+ dendritic
epidermal T cells (DETCs) and Vγ5+ γδ T cells T cells contribute
to central tolerance establishment by promoting CD80−Aire−

mTECs to become CD80+Aire+ mTECs (84–86) thus supporting
a critical role for RANK signaling in the interaction between
fetal γδ T cell progenitors and mTECs (87, 88). Of note, these
immune cell subsets provide different physiological levels of
RANKL and CD40 Ligand (CD40L) during ontogeny. During
fetal life, mTEC development is controlled by the expression of
RANKL by LTi and invariant Vγ5+ DETC progenitors, while
after birth is controlled by RANKL and CD40L produced by αβ

T Cell Receptor (TCR)high CD4+ thymocytes (89).
Transgenic mice expressing Venus, a fluorescent protein to

track RANK expression, showed that this receptor is mainly
expressed by mTECs at different stages of differentiation
(90). Moreover, activated T cells recirculating to the thymus
further contribute to the production of RANKL (91). Thus,
it is tempting to speculate that the increased production of
RANKL may support the skewing toward mTEC lineage, with
consequent maturation of T cells leading to the exhaustion
of the progenitor pool. These observations might explain the
age-related changes observed in thymic epithelium during
aging or thymic dysmorphology found in some pathological
conditions (92, 93).

Extensive in vitro and in vivo studies have further confirmed
the relevant role of the RANKL-RANK axis in the establishment
and maintenance of the central tolerance process. In vitro
stimulation of fetal thymic organ culture (FTOC) with
recombinant RANKL or agonistic anti-RANK antibody results
in the upregulation of CD80 and Aire expression by mTECs
(87, 94). In parallel, mice deficient in TCRα or murine models
with a reduced number of CD4+ T cells for instance lacking
molecules of the MHC II complex have a dramatic reduction
in Aire+ cells and decreased mTEC compartment (95, 96).
Other molecular players contribute to TEC differentiation and
among them a peculiar role is played by the interferon regulatory
factor 7/interferon β/ interferon-α/β receptor/signal transducer
and activator of transcription 1 (IRF7/IFNβ/IFNAR/STAT1)
pathway (97). During embryonic life, the absence of RANK
or RANKL severely affects mTEC maturation resulting in the
complete loss of Aire+ mTECs (87, 94, 98). However, after
birth other factors compensate the absence of RANK signaling
allowing the maturation of few Aire+ mTECs (94). Furthermore,
OPG is expressed by mTECs and genetically deletion in mice
causes enlargement of the medulla area (82, 90). Overall, these
data indicate that the RANKL-RANK axis is essential for the
correct differentiation and development of mTECs and for the
formation of the thymic medulla and consequent establishment
of self-tolerance (Figure 1C). Consistently with the role of
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RANKL as a potent mTEC inducer and indirectly as a key player
in the control of central tolerance, systemic administration
of soluble RANKL (sRANKL) can be considered to treat
primary or secondary thymic dysfunction (99). Transgenic mice
constitutively overexpressing human sRANKL displayed thymic
medulla enlargement (100) and increased number of Aire+

mTECs (101). Interestingly, during in vivo administration of
recombinant soluble RANKL (sRANKL) to cure the bone defect
in Rankl−/− mice, we observed a dramatic effect of the cytokine
on thymic architecture (102) further confirming data reported
in literature. Pharmacological sRANKL treatment induced
expansion of the medulla in Rankl−/− mice and increase of
Aire+ mTECs. Improvement of thymic epithelium resulted in
higher frequency of CD4+ and CD8+ SP and reduction of double
positive thymocytes (102). These data suggest that the exogenous
administration of RANKL may be a new therapeutic strategy to
boost thymic regeneration. In line with this, compelling evidence
indicate that upon body irradiation CD4+ cells and LTi cells
up-regulate RANKL in the early phase of thymic regeneration.
Upon tissue damage, RANKL mediates the increased expression
of LTα by LTi cells and reduces the expression of pro-apoptotic
genes while increases the expression of the B-cell lymphoma-
extra large (Bcl-xl) anti-apoptotic gene (103). The administration
of RANKL to wild-type animals confirmed its crucial role in
thymic recovery by enhancing TECs, thymocyte numbers, and in
parallel increasing vasculature. Improved T cell reconstitution is
also mediated by the increased expression of adhesion molecules
and chemokines, which foster thymus homing of lymphoid
progenitors. Remarkably, since RANKL is the master gene of
osteoclastogenesis, it is tempting to speculate that the increased
osteoclast activity may also boost hematopoiesis and consequent
migration of thymic progenitors. Overall, these in vivo findings
confirm the therapeutic effect of RANKL suggesting its putative
use to boost immune reconstitution in transplanted elderly
patients or in patients affected by primary thymic epithelial
defects (104–106) (Figure 1D). Conversely, transient inhibition
of RANKL in murine models indicate its effect on thymic
negative selection of self-reactive T cells specific for tumor
antigens, and resulting in an improvement of antitumor immune
response (107, 108). However, in vivo inhibition of RANKL
during prenatal life in rats and mice or long-life inhibition
after birth did not show gross effects on innate or humoral
immune response (109), thus supporting a possible repurposing
of denosumab as anti-tumoral agent in combinatorial treatments
and extending its use in the clinical arena.

T CELLS AND RANKL-RANK SIGNALING
IN BONE PATHOLOGY

The overall picture described highlighted the importance of the
RANKL-RANK axis in the bone and thymus compartments:
in the former, RANKL-RANK signaling influences the bone
remodeling process regulating bone cells activities; in the latter,
it is pivotal in thymic cell development and T cell maturation
and functioning.

After maturation, T cells exert their function centrally and
in all the other peripheral organs, going back also to the
bone. Although T cell levels represent about 3–8% of total
nucleated bone marrow cells in homeostatic conditions (110),
in pathological settings T cell recruitment from the periphery
may occur and induce molecular and metabolic changes in bone
cells, contributing to the bone loss phenotype associated with
various conditions such as post-menopausal osteoporosis and
Rheumatoid Arthritis (RA) (Figure 1B).

In post-menopausal osteoporotic patients an increase in
RANKL production by activated T cells (and B cells, too), alone
or in combination with TNFα, has been reported (111, 112).
A similar finding has been shown in surgically ovariectomized
(OVX) pre-menopausal women (113), further confirming the
causative link between estrogen deprivation, T cell activation
and RANKL-mediated bone loss previously observed in the
murine model (114). Accordingly, 17β-estradiol inhibits thymic
expansion after OVX in mice and T cell development, and
protects against bone loss, while selective estrogen receptor
modulators exhibit agonistic activity on bone but do not affect
T lymphopoiesis (115). Of note, a study in thymectomized
pre-menopausal women showed a drop in T cell counts after
surgery, as expected, with enhanced activation and production
of osteoclastogenic factors by the remaining T cells (116). On
the other hand, the authors of the study hypothesized that the
establishment of not clarified compensatory mechanisms could
be responsible for maintaining bone density at levels similar to
euthymic age-matched controls.

Another example of bone-thymus interplay is RA, a
chronic inflammatory autoimmune disease characterized by
joint inflammation, involving mainly synovial membranes, and
bone and cartilage destruction (117, 118). In this condition,
the synovium and articular tissues are highly enriched in
inflammatory leukocytes, likely due to cell recruitment in the
inflamed tissue (119), sustained by resident stromal cells of
mesenchymal origin (120). The inflammatory process in the
joints is suggested to enhance bone loss in patients with
RA, in particular when Anti-Citrullinated Protein Antibodies
(ACPA), Rheumatoid Factor (RF) and anti-Carbamylated
Protein Antibodies (anti-CarP) are present (121, 122). Most
of the T cells recruited from the circulation are T helper
1 (Th1), Th17, and Treg cells (123), which express C-X-C
Motif Chemokine Receptor 3 (CXCR3), CXCR4, C-C chemokine
receptor type 5 (CCR5), and CCR6 (mainly on Th17 cells)
receptors that permit their entry into the inflammatory site
upon attraction by the high levels of chemokines (e.g., CCL20)
found in arthritic joints (124–126). The relevant presence of
these cells exacerbates bone erosion by osteoclasts located at
the interface between the synovial membrane and bone (48).
The pathological bone loss is not compensated by osteoblast-
repairing activity since this process is inhibited by synovial
inflammation (127). Pro-inflammatory cytokines, such as IL-1,
IL-6, and more importantly TNFα and IL-17 are produced in
the inflamed synovium and strongly induce RANKL production
through the activation of NF-κB pathway in synovial cells and
T cells, which in turn massively activate osteoclasts (22, 48,
128). In patients with early RA, RANKL plasma levels have
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been associated with bone destruction and with radiological
progression of the disease after 24 months of follow-up (129).
Moreover, the combined presence of increased RANKL levels and
the positivity for anti-Cyclic Citrullinated Peptide 2 (anti-CCP2)
antibodies correlated with a more destructive process. These data
were confirmed in a case-control study conducted in RA pre-
symptomatic patients, where RANKL plasma levels were higher
in pre-symptomatic individuals as compared to control subjects,
increased over time until the onset of RA symptoms and were
associated with levels of inflammatory cytokines. However, the
positivity for ACPA/RF/anti-CarP preceded the rise of RANKL
plasma levels (129).

Based on this, preventing bone erosion by targeting RANKL-
RANK axis could be an effective strategy for intervention (130).
In fact, taking into account that RANKL-RANK axis is a
pivotal immune modulator in DC development and function, in
memory B cells, Th17, and Treg cells (131), RANKL blockade
might modulate the immune response thus contributing to limit
pathological bone erosion and joint damage occurring in RA.

In a phase II trial (Denosumab in patients with RheumatoId
arthritis on methotrexate to Validate inhibitory effect on bone
Erosion -DRIVE- study) on Japanese RA patients treated with
methotrexate, denosumab significantly inhibited the progression
of bone erosion at 12 months, and preserved the bone mineral
density (132). In addition, in a retrospective cohort trial, the
decrease of bone erosion in patients treated with denosumab in
combination with biological disease-modifying anti-rheumatic
drugs (bDMARDs), at 12 months was significantly higher
as compared to denosumab alone, with no adverse effects.
Therefore, blocking RANKL-RANK signaling in RA patients by
the addition of denosumab to conventional treatment agents may
represent a potential new therapeutic option for patients to limits
RA pathological outcome (Figure 1B).

Importantly, RA is primarily an autoimmune disease, in which
defects in central and peripheral T cell tolerance are involved.
Altered intra-thymic selection for the removal of autoreactive T
cells may have a great impact on the onset of T cell mediated
autoimmune disease (133). In the SKG strain murine model
of autoimmune arthritis, bearing a spontaneous point mutation
in Zeta Chain of T Cell Receptor Associated Protein Kinase
70 (ZAP-70), alterations in αβ TCR signaling in the thymus
have been linked to the escape of autoreactive T cells from
negative selection, playing an essential role in immune response
in the periphery (134). In turn, the onset of RA may be due
to impaired peripheral tolerance mechanisms, mainly elicited
by Treg cells, in controlling autoreactive T cells (135, 136). In
addition, recirculation of peripheral T cells back to the thymus
has been described, and the re-entering cells (mainly Treg cells)
might alter central tolerance and induce the deletion of thymic
antigen presenting cell populations. This could be considered a
mechanism for silencing autoreactive T cells in an RA setting
where impaired thymic functions are present (133). Whether
alteration of this process may be linked to T cell mediated
autoimmunity is still not clear and how T cell production
in the thymus and their effector functions in the periphery
regulate tolerance maintenance needs further investigation from
a therapeutic point of view.

Overall, although targeting RANKL-RANK axis in RA with
a RANKL antagonist can improve bone and joints pathological
features, it remains to be defined whether an effect on central
tolerance and autoimmune reactions is achieved too, because of
RANKL requirement for the correct thymic development and
production of functional T cells.

Finally, interest has recently grown in another field, i.e.,
regarding the possibility to exploit immune-related mechanisms
based on RANKL-RANK signaling in cancer settings for
therapeutic purposes (11). In malignancies with enhanced
RANKL expression, such as Multiple Myeloma, denosumab
alone is well-known to be effective in terms of overall survival
and skeletal-related events (137). In different tumor types that
usually have low expression of RANKL, denosumab treatment
combined with immune check-point inhibitors might lead to
a cross-modulation of antitumor immunity (138, 139). The
mechanisms proposed are various: denosumab might act on
RANKL-expressing tumor infiltrating lymphocytes and relieve
their anticancer activity that is otherwise blocked by engagement
of the ligand with RANK receptor on cells of the tumor
microenvironment (138, 139). Moreover, RANKL antagonists
might put a break on central tolerance by transiently inhibiting
negative selection in the thymus, resulting in the release of self-
specific T cells in the periphery (108). Finally, the activation
of reverse-signaling pathways might be proposed (140, 141), in
line with mechanisms described in bone (142). At present, all
these possibilities require further investigations; their elucidation
might shed light on novel therapeutic perspectives.

CONCLUSIONS

The RANKL-RANK axis exerts pleiotropic effects and
consistently involves an ever-increasing number of molecular
and cellular players. In the bone and thymus compartments,
where the crucial role of RANKL signaling was recognized
first, novel functions have recently been discovered. This
extends our understanding of the basic biology of these tissues
and has translational implications in terms of current therapies
monitoring. In particular, opposite effects are expected in the case
of blocking or activating the RANKL-RANK pathway on bone
and immune tolerance: while used as an antiresorptive drug, the
anti-RANKL antibody denosumab might have adverse effects
on the establishment of central tolerance, which would deserve
attention. On the other hand, recent advances might support
efforts toward drug repurposing strategies and development of
new medicines, based on limitations of those currently available.
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