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Dynamic changes in protein phosphorylation govern the transitions between different

phases of the cell division cycle. A “tug of war” between highly conserved protein kinases

and the family of phosphoprotein phosphatases (PPP) establishes the phosphorylation

state of proteins, which controls their function. More than three-quarters of all proteins

are phosphorylated at one or more sites in human cells, with the highest occupancy of

phosphorylation sites seen in mitosis. Spatial and temporal regulation of opposing kinase

and PPP activities is crucial for accurate execution of the mitotic program. The role of

mitotic kinases has been the focus of many studies, while the contribution of PPPs was

for a long time underappreciated and is just emerging. Misconceptions regarding the

specificity and activity of protein phosphatases led to the belief that protein kinases are

the primary determinants of mitotic regulation, leaving PPPs out of the limelight. Recent

studies have shown that protein phosphatases are specific and selective enzymes, and

that their activity is tightly regulated. In this review, we discuss the emerging roles of

PPPs in mitosis and their regulation of and by mitotic kinases, as well as mechanisms

that determine PPP substrate recognition and specificity.
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INTRODUCTION

Transitions between distinct phases of the cell cycle are governed by post-translational
modifications of proteins. Protein phosphorylation is the most prevalent post-translational
modification, with more than three-quarters of the human proteome being phosphorylated
(Sharma et al., 2014). The highest occupancy of phosphorylation sites is observed in mitosis, where
transcription and translation are repressed. Entry into, progression through, and exit from mitosis
are tightly regulated by the highly dynamic phosphorylation of cell cycle-specific proteins.

Entry intomitosis is characterized by a peak in protein phosphorylation. This increase in protein
phosphorylation is not only the consequence of increased kinase activity but is accompanied by a
concurrent decrease in phosphoprotein phosphatase activity. Indeed, inhibition of phosphoprotein
phosphatase activities in interphase cells is sufficient to induce a pseudo-mitotic state characterized
by an increase in Cyclin-dependent kinase 1 (Cdk1) activity, chromosome condensation, and
microtubule aster formation (Yamashita et al., 1990; Gowdy et al., 1998). Cdk1 is the major force
for protein phosphorylation in mitosis and its activation triggers a switch-like and irreversible
transition from interphase into mitosis. Pioneering work from genetic analyses of budding and
fission yeasts and biochemical analyses in frog and clam egg extracts showed that cyclins form a
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stoichiometric complex with Cdk1, activate it, and drive cell
cycle transitions (Masui and Markert, 1971; Rosenthal et al.,
1980; Gerhart et al., 1984; Morgan, 1995; Nurse et al., 1998).
Furthermore, once activated, Cdk1 controls phosphorylation-
dependent feedback loops involving kinases and phosphatases
generating a bistable switch which promotes transition from
interphase to mitosis and protecting the cell from either
premature entry into mitosis or slippage back into interphase
(Morgan, 2007; Salaun et al., 2008). Once activated, Cdk1 with its
partner cyclin B, directly and indirectly, regulates most mitotic
phosphorylation events (Salaun et al., 2008; Wurzenberger and
Gerlich, 2011; Qian et al., 2013b). Analyses of Cdk1 substrates
in different yeast strains and in human cells have identified
several hundred proteins that are phosphorylated by Cdk1 in
mitosis (Ubersax et al., 2003; Blethrow et al., 2008; Holt et al.,
2009; Petrone et al., 2016; Swaffer et al., 2016). In addition,
mitotic kinases including Polo like kinase 1 (Plk1), Aurora A/B
(AURKA/B), Greatwall kinase (Gwl), Wee1, Mps1, Haspin, and
NIMA-related kinases are activated in mitosis and contribute to
the marked increase in protein phosphorylation in mitosis (Nigg,
2001; O’Farrell, 2001; Kettenbach et al., 2011; Oppermann et al.,
2012; Maiolica et al., 2014; Cundell et al., 2016; Lera et al., 2016;
Cullati et al., 2017; Maciejowski et al., 2017).

Exit from mitosis and re-establishment of lower interphase
phosphorylation levels is accomplished by degradation of mitotic
phosphoproteins and reversal of mitotic phosphorylation.
Currently, it is estimated that approximately 170 human proteins
are being degraded during mitotic exit (Min et al., 2014). Protein
degradation is essential for mitotic exit, as it ensures uni-
directionality, and reduces the activities of mitotic kinases such
as Cdk1/cyclin B, AURKA/B, and Plk1 (Draetta et al., 1989; King
et al., 1995; Littlepage and Ruderman, 2002; Lindon and Pines,
2004; Stewart and Fang, 2005). However, protein degradation
and consequently the decline of mitotic kinase activities is not
sufficient to trigger mitotic exit (Queralt and Uhlmann, 2008).
In addition, to ensure safe passage through and exit from
mitosis, as well as reinstatement of interphase phosphorylation
levels, ordered and controlled dephosphorylation of mitotic
phosphoproteins is essential.

Here, we review recent findings on the roles of
phosphoprotein phosphatases as specific and selective regulators
of mitosis, their different mechanisms of substrate recognition,
and their inter- and counter-actions with mitotic kinases.

PROTEIN PHOSPHATASES

Protein phosphatases have been classified into four major
classes based on their substrate preference, inhibitor
sensitivity and catalytic mechanism. These classes include
phosphoprotein phosphatases (PPP), Mg2+/Mn2+-dependent
protein phosphatases (PPM), phosphotyrosine phosphatases
(PTP), and aspartate-based protein phosphatases (Kerk et al.,
2008). There are 189 known and predicted protein phosphatase
genes and 539 protein kinase genes encoded in the human
genome (Chen et al., 2017). While the majority of protein
kinases (∼400) specifically phosphorylate serine and threonine

amino acids, only ∼30 protein phosphatases are serine and
threonine specific. Furthermore, the majority of cellular
serine/threonine dephosphorylation has been attributed to two
members of the PPP family: Protein Phosphatase 1 (PP1) and
2A (PP2A) (Moorhead et al., 2007; Virshup and Shenolikar,
2009; Bollen et al., 2010). This imbalance in the number of
protein kinases and phosphatases as well as the observation that
protein kinases, but not PPPs, exhibit site specificity in vitro,
led to the belief that PPPs are unspecific, constitutively active
“housekeeping” enzymes while protein kinases are the primary
determinants of phosphorylation signaling (Brautigan, 2013).
However, it has recently become clear that protein phosphatases
are specific, selective, and tightly regulated enzymes. For
the PPP family, specificity, distinct cellular localization, and
regulation is achieved when catalytic subunits associate with
non-catalytic subunits to form multimeric holoenzymes. Each
of these holoenzymes functions as a distinct signaling entity
by modulating the activity of PPP catalytic subunits and
establishing their substrate specificity. Combinatorially, PPPs
are efficient holoenzymes, and expand the number of functional
phosphatases to several hundred by associating with partner
regulatory proteins.

PHOSPHOPROTEIN PHOSPHATASES
(PPP)–MULTIMERIC HOLOENZYMES

The PPP family of protein phosphatases consists of PP1, PP2A,
PP2B (also known as calcineurin or PP3), PP4, PP5, PP6, and
PP7 (Table 1). All members of the PPP family are defined by
three highly conserved signature sequence motifs (GDXHG-, -
GDXVDRG-, and -GNHE-), which establish the catalytic active
site (Cohen, 2002; Wang et al., 2008). These amino acids
coordinate two divalent metal ions (either Mn2+, Fe2+, and
Zn2+ ions) in the catalytic center. The metal ions in the catalytic
center of PPPs are crucial for the activation of a water molecule
which triggers a nucleophilic attack on the phosphorous atom of
the substrate phosphate group to hydrolyze the phosphate ester
bond, thereby dephosphorylating the substrate (Barford et al.,
1998).

Among the PPP family members, we will focus on PP1,
PP2A, PP4, and PP6, and their roles in the regulation of mitosis
in mammalian cells. There are four PP1 genes in the human
genome, which encode the four isoforms of the catalytic subunit:
PP1α, PP1β, PP1γ1, and PP1γ2. The four PP1 isoforms share
high sequence identity (>90%), but differ in tissue expression
and have specific functions by associating with isoform-specific
partners (Uhlen et al., 2015). PP1 achieves substrate specificity
through the formation of heterodimers consisting of the catalytic
subunit with diverse set of about 200 regulatory proteins (Bollen
et al., 2010). Within the PPP family, PP2A, PP4, and PP6 catalytic
subunits share the highest degree of sequence identity ranging
from 60 to 65% and are classified as the PP2A-like subfamily
of PPPs. PP2A forms heterotrimers consisting of a catalytic
subunit, a scaffolding A subunit, and a regulatory B subunit.
The PP2A catalytic subunit has two isoforms (PP2ACα and
PP2ACβ), which share 97% sequence identity with each other.
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TABLE 1 | Human phosphoprotein phosphatase (PPP) catalytic, regulatory, and scaffolding subunit genes and their isoforms.

PPP catalytic subunit genes Regulatory genes Scaffold genes

Family Isoforms Family Isoforms Family Isoforms

Protein phosphatase 1

(PPP1C)

PPP1CA

PPP1CB

PPP1CG

>200 None

Protein phosphatase

2A (PPP2C)

PPP2CA

PPP2CB

B (B55)

B′ (B56)

B′′ (B72)

B′′′ (Striatin)

PPP2R2A (B55α)

PPP2R2B (B55β)

PPP2R2C (B55γ)

PPP2R2D (B55δ)

PPP2R5A (B56α)

PPP2R5B (B56β)

PPP2R5C (B56γ)

PPP2R5D (B56δ)

PPP2R5E (B56ε)

PPP2R3A (PR72)

PPP2R3B (PR70)

PPP2R3C (GSPR)

PPP2R3D (PR59)

STRN (Striatin)

STRN3 (SG2NA)

STRN4

A

(PR65)

PPP2R1A

PPP2R1B

Protein phosphatase

2B (PPP3C)

None

PPP3CA

PPP3CB

PPP3CC

B PPP3R1

PPP3R2

Protein phosphatase 4 (PPP4C) PPP4R1

PPP4R2

PPP4R3A

PPP4R3B

PPP4R4

Protein phosphatase 5 (PPP5C)

Protein phosphatase 6 (PPP6C) PPP6R1

PPP6R2

PPP6R3

ANKRD28

ANKRD44

ANKRD52

Protein phosphatase 7 (PPP7C)

The PP2A scaffolding subunit A also has two isoforms (PP2AAα

and PP2AAβ), which share about 87% sequence identity with
each other. The catalytic and scaffolding subunit assemble into
a core dimer which is joined by a regulatory B subunit to form
the heterotrimeric PP2A holoenzyme. In the human genome
there are 16 genes encoding regulatory B subunits. The B
subunits are classified into four subfamilies: B55 (PR55/B), B56
(PR61/B′), B72 (PR72/B′′), and Striatin (PR93/B′′′) (Table 1;
Seshacharyulu et al., 2013). Theoretically, combinations of these
subunits can generate ∼100 different PP2A holoenzymes, each
with potentially distinct substrate specificity. In mitosis, the

B55 and B56 subfamily of PP2A regulatory proteins play the
most prominent role and dictate the localization and activity
of the PP2A holoenzyme (Foley et al., 2011; Funabiki and
Wynne, 2013). PP4 and PP6, the other two members of the
PP2A subfamily can form heterodimers or heterotrimers. For
PP4, the catalytic subunit PP4C binds either the regulatory
subunits PP4R1 or PP4R4 resulting in heterodimers, or PP4R2
and PP4R3α/β to form heterotrimers (Table 1). In human
cells, PP6 exists in heterotrimeric form. The PP6 catalytic
subunit, PP6C, interacts with one of three regulatory ankyrin-
repeat containing proteins, ANR28, ANR44 and ANR52, as
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FIGURE 1 | Fine tuning between the mitotic protein kinases and protein phosphatases regulates mitotic progression. The relative activities of major mitotic protein

kinases including Cdk1, AURKA, AURKB, and Plk1, indicated in blue spectrum, increase as the cells enter mitosis. This increase is accompanied by a relative decrease

in the activities of major mitotic phosphatases including PP1, PP2A-B56 and PP2A-B55. While PP2A-B55 activity is completely inhibited by binding of its inhibitors

ENSA and ARPP-19 at mitotic entry, PP2A-B56 is still active at localized complexes and regulates mitotic progression. Similarly, most of the PP1 activity is inhibited by

Cdk1 dependent phosphorylation of its C-terminal Thr-320 residue at mitotic entry, but localized PP1 complexes remain active during mitosis. PP1 regains complete

activity after the degradation of cyclin B and consequent decline of Cdk1 activity at metaphase-anaphase transition and controls the exit of cells from mitosis.

well as one of three highly conserved regulatory SAPS (Sit4-
Associated Proteins) domain containing proteins, PP6R1, PP6R2
and PP6R3 (Table 1). In yeast, PP6 forms heterodimers with the
catalytic subunit only bound to one SAPS-domain containing
regulatory subunit homologs. This difference introduces an
intriguing dichotomy into the structure and function of PP6
that does not exist for other PPP members and requires further
exploration.

MITOSIS ENTRY AND EXIT–MORE THAN
“BULK” PHOSPHORYLATION AND “BULK”
DEPHOSPHORYLATION

Entry into mitosis is often characterized as a dramatic increase
in “bulk” phosphorylation that needs to be reversed by
“bulk” dephosphorylation to allow cells to exit mitosis.
These changes in protein phosphorylation are in general
thought to be accompanied by a rise in kinase activity,
most importantly Cdk1 activity, and a reduction in PP1
and PP2A phosphatase activities early in mitosis, followed
by a reversal of the respective activities as cells start
to exit mitosis. However, regulation of phosphorylation
signaling in all phases of mitosis is highly dynamic requiring
coordination of opposing kinase and PPP activities in a specific
temporal and spatial manner to ensure orderly and accurate
progression through mitosis to generate identical daughter cells
(Figure 1).

Evidence for extensive regulation of PPP activity during
mitosis comes from recent advances in mass spectrometry-
based proteomics that have enabled the global analysis of the
phosphoproteome (Beausoleil et al., 2004; Zhang et al., 2005;
Cantin et al., 2006; Kruger et al., 2008; Holt et al., 2009;
Olsen et al., 2010; Swaffer et al., 2016). In combination with
small molecule kinase inhibitors, these studies have revealed
many kinase-substrate relationships and provided insights into
complex phosphorylation signaling pathways (Carlson and
White, 2011; Kettenbach et al., 2011, 2015; Oppermann et al.,
2012; Stuart et al., 2015; Petrone et al., 2016; Maciejowski et al.,
2017). A common experimental strategy for these experiments is
the quantitative comparison of two cell populations: one treated
with kinase inhibitor for a short period of time to avoid changes
in protein abundance, and the other control-treated, followed
by the comparison of the dynamic changes of phosphorylation
site occupancy between them by mass spectrometry. While
highly effective, one caveat of this experimental strategy is that
upon cessation of kinase activity, the activity of an opposing
protein phosphatase is necessary to reduce phosphorylation site
occupancy. In other words, in the absence of a counteracting
phosphatase, phosphorylation site occupancy will not change
even in the presence of inhibitors targeting the responsible
kinase. When performed in mitosis or in mitotic arrest induced
by microtubule stabilizers such as Taxol or destabilizers such as
nocodazole, this strategy has led to the linkage of hundreds to
thousands of phosphorylation sites to specific mitotic kinases,
suggesting that protein phosphatases are indeed active during
mitosis (Figure 1). Too little PPP activity arrests cells in mitosis
and prevents their exit, while too much PPP activity results in
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mitotic defects (Ishida et al., 1992; Burgess et al., 2010; Álvarez-
Fernández et al., 2013). This leads to the following questions:
How does a cell get the balance of these opposing activities just
right? And how are protein kinase and phosphatase activities
regulated by each other and on their shared substrates to achieve
the balance of phosphorylation?

Cdk1–THE MASTER REGULATOR OF
MITOTIC PHOSPHATASES?

Entry into mitosis is marked by a stark increase in kinase
activity. In late G2, mitotic kinases including Cdk1/cyclin B,
Plk1, AURKA, AURKB, and Gwl are activated (Cdk1 activation
is in detail described in Morgan, 1995, 2007), resulting in a net
increase in substrate phosphorylation (Figure 1). However, this
increase in protein kinase activity and consequently substrate
phosphorylation is not sufficient to drive entry into mitosis.
Along with increased protein kinase activity, the inhibition of
specific phosphoprotein phosphatase activities is necessary for
a cell to enter mitosis. Timely inhibition of PP2A-B55 by Gwl
(discussed in more detail below) is essential for the switch-like
and irreversible transition into mitosis (Castilho et al., 2009;
Gharbi-Ayachi et al., 2010; Lorca et al., 2010;Mochida et al., 2010;
Krasinska et al., 2011). Reduction of PP2A activity in interphase
Xenopus laevis egg extract was found to be sufficient to trigger
premature entry into mitosis at low Cdk activity (Krasinska et al.,
2011). Inhibition of PP2A/B55 as well as other members of the
PPP family is directly or indirectly controlled by Cdk1/cyclin B
itself (Figure 2).

In case of PP1, Cdk1/cyclin B phosphorylates Thr-320 close
to the carboxyl-terminus of PP1α/β/γ, which has an inhibitory
effect on the catalytic activity of PP1 during mitosis (Dohadwala
et al., 1994; Kwon et al., 1997). Phosphoproteomic analyses of
protein phosphorylation in a population of nocodazole arrested
(“early mitotic”) HeLa cells have determined the occupancy of
Thr-320 with a mean of 60% (Olsen et al., 2010), suggesting
not all the PP1 in the cell is inactive during mitosis (Figure 1).
Reversal of this inhibitory phosphorylation is achieved through
auto-catalysis by PP1. A small decrease in Cdk1/cyclin B
activity at metaphase-anaphase transition is sufficient for PP1
to auto-dephosphorylate Thr-320 (Wu et al., 2009). Besides the
direct post-translational modification of the catalytic subunit,
Cdk1/cyclin B also regulates PP1 activity by phosphorylating PP1
regulatory subunits and preventing their binding to the catalytic
subunit. This is specifically important for the local regulation
of PP1 activity. For instance, Cdk1/cyclin B phosphorylates
Repo-Man, preventing PP1 targeting to chromosomes before
metaphase-anaphase transition (Vagnarelli et al., 2011). PP1
activity is also modulated through the binding of small, heat
stable inhibitory proteins called Inhibitor 1 and 2 (Brautigan,
2013). Phosphorylation of Inhibitor-1 and Inhibitor-2 by PKA
(Ceulemans and Bollen, 2004) and Cdk1/cyclin B (Leach et al.,
2003), respectively, regulates their binding to the catalytic subunit
of PP1. Together these mechanisms account for the reduction,
but not complete inhibition of PP1 activity in mitosis.

FIGURE 2 | Protein kinases and protein phosphatases regulate each other

during mitosis. Protein kinases and protein phosphatases coordinate with

each other through underlying dynamic phosphorylation changes within

kinase/phosphatase catalytic or regulatory subunits. Cdk1/cyclin B, directly or

indirectly, inhibits the phosphatase activity of PP1, PP2A-B55, and PP4.

Conversely, PP1 suppresses the kinase activity of AURKB through its

regulatory protein Sds22 (PPP1R7), Plk1 through Mypt1 (PPP1R12A) and Gwl

through PPP1R3B. Phosphorylation by Cdk1/cyclin B within or near the

PP2A-B56 binding LxxIxE motif in substrates increases the affinity of

PP2A-B56 interactions. PP2A-B55 activity is inhibited during mitosis by Gwl

phosphorylation of the inhibitory proteins ENSA and ARPP-19. PP1 inactivates

Gwl at mitotic exit, thereby activating PP2A-B55. PP6 is the T-loop

phosphatase for AURKA, thereby decreasing its activity directly.

The Cdk1/cyclin B-dependent inhibition of PP2A-B55
complex is indirect. Upon mitotic entry, Cdk1/cyclin B
phosphorylates and activates Gwl kinase, which in turn inhibits
PP2A-B55 activity (Castilho et al., 2009; Vigneron et al.,
2009). The depletion of Gwl activity in Xenopus egg extracts
results in dephosphorylation of mitotic phosphoproteins and
exit from mitosis, even in the presence of high Cdk1/cyclin
B activity, suggesting a crucial role for Gwl in delaying the
dephosphorylation of mitotic substrates (Vigneron et al., 2009).
Furthermore, addition of okadaic acid, an inhibitor of PP1,
PP2A, PP4, PP5, and PP6 phosphatase activities, mitigated
the effects of Gwl depletion, supporting the notion that Gwl
inhibits a phosphatase activity in cells. Gwl does not directly
inhibit PP2A-B55 activity, but phosphorylates two homologous,
heat-stable proteins ENSA (α-Endosulfine) and ARPP19 (cyclic
adenosine monophosphate–regulated phosphoprotein 19) at a
highly conserved serine residue (Mochida et al., 2010; Mochida,
2014). It is the phosphorylated forms of ENSA and ARPP19
that specifically bind and inhibit PP2A-B55 (Lorca and Castro,
2013). This process is regulated in a spatial as well as temporal
manner. In G2, Cdk1/cyclin B and PP2A-B55 are localized in
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the cytoplasm, while Gwl is in the nucleus. In late G2, active
Cdk1/cyclin B shuttles into the nucleus, where it phosphorylates
Gwl at not only the activation loop resulting in Gwl activation,
but also within a nuclear localization sequence resulting in the
cytoplasmic translocation of Gwl (Wang et al., 2016). In the
cytoplasm, Gwl phosphorylates ENSA and ARPP19, resulting in
the inactivation of PP2A-B55, tipping the balance toward a net
increase in phosphorylation. Differentially localized populations
of active and inactive phosphatase are generated so as to not
interrupt the start of Cdk1/cyclin B activation in the nucleus and
the spreading of Cdk1/cyclin B activity upon nuclear envelope
breakdown (Gavet and Pines, 2010). ENSA and ARPP19 are
highly expressed in cells (Sharma et al., 2014). Thus, in late
G2 and early mitosis, most PP2A-B55 is in complex with
either phosphorylated ENSA or ARPP19, resulting in its strong
inhibition. In anaphase, when Cdk1/cyclin B levels and activity
decrease and Gwl is inactivated, the pool of phosphorylated
ENSA and ARPP19 also decreases, resulting in the reactivation
of PP2A-B55 (Figure 1).

Cdk1/cyclin B also directly phosphorylates the protein Bod1.
This phosphorylation turns Bod1 into a potent inhibitor of
PP2A-B56 complex at kinetochores (Porter et al., 2013). At
kinetochores, Bod1 inhibition of PP2A-B56 promotes Plk1
localization and regulates kinetochore-microtubule interactions.
Furthermore, phosphorylation of its substrates by Cdk1/cyclin
B has been shown to affect the affinity of PP2A-B56 toward
these substrates. The effects of Cdk1/cyclin B phosphorylation on
PP2A-B56 substrate recognition are discussed in the next section.

Finally, Cdk1/cyclin B phosphorylates the heterotrimeric PP4
complex, PP4C-R2-R3A, on several residues on the R2 and
R3A subunits, thereby reducing PP4 activity in mitosis (Voss
et al., 2013). This reduction in PP4 activity during mitosis is
known to be essential for keeping γ-tubulin at the centrosomes
phosphorylated, which enhances the formation of the mitotic
spindle.

PHOSPHATASES FIGHTING BACK–PPP
DRIVEN REGULATION OF KINASE AND
PHOSPHATASE ACTIVITIES

PPPs are not only active throughout mitosis to counteract kinases
on shared substrates and regulate substrate phosphorylation
site occupancy, but they also directly regulate kinase activities.
One common mechanism is by modulation of protein kinase
activation loop phosphorylation occupancy (Figure 2). For
many protein kinases, phosphorylation site occupancy of the
activation loop correlates with their activity, constituting an
effective mechanism to impose phosphatase control on kinase
activity. For instance, PP1 in complex with different regulatory
subunits dephosphorylates AURKB, Plk1, Mps1, and Gwl
(Yamashiro et al., 2008; Posch et al., 2010; Moura et al.,
2017; Ren et al., 2017). PP6 does the same with AURKA
(Figure 2).

For full reactivation of PP2A-B55, Gwl phosphorylation of
ENSA and ARPP19 must cease. After the decline of Cdk1/cyclin
B activity, PP1 auto-dephosphorylates Thr-320 resulting in its

reactivation (Wu et al., 2009). Once reactivated, PP1 catalyzes
the inactivation of Gwl in anaphase (Figure 2). This is achieved
through the action of PP1γ in complex with the regulatory
subunit 3B (PPP1R3B) (Ren et al., 2017). PP1 dephosphorylates
several phosphorylation sites on Gwl, including Ser-883 in the
activation loop, leading to a reduction in Gwl activity and
reactivation of PP2A-B55 (Ma et al., 2016; Rogers et al., 2016; Ren
et al., 2017). Interestingly, another phosphatase FCP1 was also
implicated in the inactivation of Gwl (Della Monica et al., 2015)
or dephosphorylation of ENSA (Hegarat et al., 2014), suggesting
more complex regulatory interactions between kinases and
phosphatases. In fission yeast, the PP1-dependent reactivation of
PP2A-B55 starts a relay resulting in the reactivation of PP2A-
B56 (Grallert et al., 2015). PP2A-B55 dephosphorylates Ser-378
in the PP1 dockingmotifs on the B56 regulatory subunit of PP2A.
Phosphorylation of Ser-378 is carried out by Plk1 and only upon
reduction of Plk1 activity in telophase, PP2A-B55 can sufficiently
dephosphorylate B56 to promote PP1 binding and PP2A-B56
activation (Grallert et al., 2015).

PP1 is also implicated in the regulation of AURKB
activity. In complex with Sds22 (PPP1R7), PP1 reverses
AURKB activation loop phosphorylation (Thr-232 in human
cells) at kinetochores (Posch et al., 2010). Sds22 depletion,
likely through hyperactivation of AURKB, leads to defects
in kinetochore-microtubule interactions and an increase in
inter-kinetochore distance. A heteromeric complex of PP1 and
Mypt1 (PPP1R12A) counteracts AURKA phosphorylation of
the activation loop of Plk1, regulating Plk1 activity during
mitosis (Macurek et al., 2008; Seki et al., 2008; Yamashiro
et al., 2008). Finally, it was recently shown in Drosophila
that PP1 can dephosphorylate the activation loop site of the
checkpoint kinase Mps1, thereby inactivating it upon the proper
attachment of kinetochores (Moura et al., 2017). This is a crucial
step for silencing of the spindle assembly checkpoint (SAC)
and activation of the APC/Cdc20 complex to drive anaphase
progression.

PP6 dephosphorylates the activation loop phosphosite of
AURKA (Figure 2; Zeng et al., 2010). AURKA is activated by
autophosphorylation of its activation loop (Thr-288 in human
cells) and binding of the activator Tpx2 (Eyers et al., 2003;
Zorba et al., 2014). Hyperactive AURKA results in defects in
chromosome segregation and spindle assembly. Depletion of
PP6 has also been shown to cause spindle timing, spindle
positioning, and chromosome segregation defects. This function
of PP6 seems to be conserved in other species, including
Drosophila melanogaster and Caenorhabditis elegans, suggesting
conservation of its role in regulating AURKA activity (Chen et al.,
2007; Afshar et al., 2010).

PP4 is known to regulate Cdk1/cyclin B activity through the
regulation of its partner cyclin B (Figure 2). In mitosis, cyclin
B is phosphorylated by Cdk1 on Ser-126 (in human cells) at
centrosomes (Jackman et al., 2003). In G2, centrosome-localized
PP4 dephosphorylates cyclin B and suppresses Cdk1 activity.
Upon entry into mitosis, PP4 delocalizes from centrosomes
promoting Cdk1/cyclin B activation. Prolonged localization of
PP4 at centrosomes prevents Cdk1/cyclin B activation and
mitotic progression.

Frontiers in Cell and Developmental Biology | www.frontiersin.org 6 March 2018 | Volume 6 | Article 30

https://www.frontiersin.org/journals/cell-and-Developmental-biology
https://www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-Developmental-biology#articles


Nasa and Kettenbach Kinases and Phosphatases in Mitosis

FIGURE 3 | Modes of linear motif recognition by protein phosphatases. (A) Linear motifs can dictate the binding preferences of PPP family phosphatases. This can

include a preference for the phosphosite (serine or threonine) or a preference for the residues surrounding the phosphosite (basic, acidic or proline-directed). (B) PPPs

recognize short linear motifs (SLiMs) in regulatory proteins or substrates. PPP binding via the SLiMs helps them recognize and bind the regulatory proteins or the

substrates to dephosphorylate them. PP1 is known to bind through RVxF, SILK and MyPhone motifs to its regulatory proteins (shown in gray). B56 regulatory subunit

of PP2A binds through LxxIxE motifs to its substrates (shown in gray). (C) Phosphatase activity can be regulated by modulation of the SLiM motif. Phosphorylation

within or near the SliM sequence can lead to decreased phosphatase binding either by direct blocking in the case of PP1 or indirectly by binding to phospho-binding

14-3-3 proteins to block the site of interaction. In case of PP2A-B56 SLiM, this phosphorylation can enhance phosphatase activity toward substrate by increasing the

affinity for phosphorylated SLiM.
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THE IMPACT OF THE PHOSPHORYLATION
SITE ON PPP SUBSTRATE
DEPHOSPHORYLATION

We have made great advances in understanding how protein
kinases recognize their substrates through protein-protein
interactions, scaffolding proteins, and linear sequence motifs
surrounding the phosphorylatable amino acid. But how do
PPPs recognize substrates? Are these general themes of kinase
substrate recognition conserved in PPPs? In recent years, a
reawakening in research interest in PPPs has led to the discovery
of active site preferences and linear sequence motifs around
the phosphorylated amino acids and elsewhere as PPP-substrate
recognition themes.

Proteins can be viewed as assemblies of structured domains
connected by intrinsically disordered regions. These disordered
regions frequently contain linear sequence motifs that are
implicated in establishing protein-protein interactions and
are often sites of post-translational modifications, including
phosphorylation. Serine/threonine protein kinases are classified
as basophilic, acidophilic, or proline-directed based on their
preference to phosphorylate specific amino acids (Ser/Thr/Tyr)
surrounded by linear sequence motifs containing either basic
amino acids or acidic amino acids or proline (Manning et al.,
2002; Miller et al., 2008; Kettenbach et al., 2012). In addition,
some protein kinases have been shown to exhibit a preference
to phosphorylate either serine or threonine residues (Kettenbach
et al., 2012). Excitingly, similar observations for the preferences
of PPPs for specific phosphorylation site linear motifs and
phosphorylated residues have recently been made.

A series of recent studies demonstrated that during mitotic
exit phospho-threonine followed by a proline (pTP) were more
rapidly dephosphorylated than pSP sites and that this is due
to the action of the phosphatase PP2A-B55 (McCloy et al.,
2015; Cundell et al., 2016; Godfrey et al., 2017). Interestingly,
the preference of PP2A-B55 for threonine over serine amino
acids is conserved from yeast to humans (Cundell et al., 2016;
Godfrey et al., 2017). The phospho-amino acid preference of
PP2A-B55 can potentially be explained by a more energetically
favorable fit of threonine over serine in the active center of the
PP2A catalytic subunit (Rogers et al., 2016). PP2A-B55 does
dephosphorylate phospho-serines. However, this occurs with
slower kinetics and appears to require that the phospho-serine is
part of linear sequence motif that contains an upstream aromatic
or bulky hydrophobic residue (Cundell et al., 2016). In addition,
phosphoproteomic analyses of candidate PP2A-B55 substrates
revealed a correlation between the net charge of amino acids
surrounding the phosphorylation site and dephosphorylation
kinetics. (Cundell et al., 2016). The more basic a substrate was,
the faster it was dephosphorylated. Preferred substrates of PP2A-
B55 have basic amino acids downstream directly next to the
phosphorylation site, as well as 10–15 amino acids upstream of it,
generating a bipartite polybasic recognition motif. Furthermore,
acidic residues were underrepresented downstream of the
phosphorylation sites. PP2A-B55 identifies these basic linear
motif elements in substrates through acidic patches on the
surface of B55 regulatory subunit (Cundell et al., 2016). These

preferences also provide an explanation for the observation
that ENSA is an “unfair” competitive substrate/inhibitor with a
high affinity for PP2A-B55 and slow dephosphorylation kinetics
(Williams et al., 2014). Besides being an inhibitor, phosphorylated
ENSA is also a substrate of PP2A-B55. The Gwl phosphorylation
site in ENSA is a serine that is surrounded by a bipartite polybasic
recognition motif which likely contributes to high affinity
binding of ENSA to PP2A-B55. However, dephosphorylation of
serine occurs with a slower kinetics, increasing ENSA residence
time in the active site of PP2A-B55.

Both PP1 and PP2A have been found to have a preference for
dephosphorylating basic and proline-directed phosphorylation
site sequences (Wurzenberger and Gerlich, 2011; Rogers et al.,
2016). This has been attributed to acidic residues on the
surface of both enzymes which promotes binding to basophilic
patches on their substrates (Egloff et al., 1995). However,
there are several kinases that preferentially phosphorylate sites
surrounded by upstream or downstream acidic amino acids
such as Plk1 and CK2 (Miller et al., 2008; Kettenbach et al.,
2012). We have recently shown that PP6 dephosphorylates acidic
phosphorylation site sequences in mitosis and opposes CK2
phosphorylation (Rusin et al., 2015). One example of an acidic
phosphorylation site sequence can be found in the condensin I
complex, which is specifically dephosphorylated by PP6 but not
by PP2A-B55.

The active sites of human PPPs (PP1α-γ, PP2A, PP2B,
PP4, PP5, PP6, and PP7) are 100% identical (Shi, 2009). How
can the reported substrate preferences of PPPs be explained?
How is it that PP1 and PP2A favor basic and proline-directed
phosphorylation site sequences, PP2A-B55 dephosphorylates
either threonines or serines only in combination with aromatic
or bulky hydrophobic residues, and PP6 acidic sites (Figure 3A)?
While the active site of the PPP catalytic subunit is 100%
conserved, its conformation can be differentially modulated by
substrates as well as PPP regulatory and scaffolding subunit
binding. These mechanisms remain to be explored for each PPP
holoenzyme and will help us to match protein phosphatase and
kinase based on their shared substrate preferences.

THE ROLE OF SHORT LINEAR MOTIFS
AND THEIR REGULATION OF PPP
HOLOENZYME ASSEMBLY AND
SUBSTRATE RECOGNITION

Besides directly influencing the biochemical characteristics
of the phosphorylation sites, short linear motifs (SLiMs)
also contribute to the assembly of PPP holoenzymes and
the recognition of substrates. SLiMs are often located in
intrinsically disordered regions of proteins and the sequence
composition of the SLiM regulates protein-protein interaction
and binding affinity. SLiM-mediated interactions promote PPP
holoenzyme assembly, substrate specificity, phosphatase activity,
and subcellular targeting. The use of SLiMs as a primary
mechanism for catalytic and regulatory subunit assembly was
first discovered for PP1 and PP2B (Calcineurin, PP3) (in detail
reviewed in Roy and Cyert, 2009; Bollen et al., 2010; Heroes et al.,
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2013; Figure 3B). Since then, it has become clear that SliMs are
not only important for establishing interactions between catalytic
and regulatory subunits, but also contribute to the regulation
of these interactions. SLiMs can be post-translationally modified
and these modifications strongly impact the binding affinity and
targeting of phosphatases (Figure 3C). Phosphorylation of SLiMs
is an effective mechanism for regulatory interventions of PPP
holoenzyme assembly and substrate recognition and establishes
feedbacks that enable rapid switching of phosphatase and kinase
activities in mitosis. Here, we discuss the role of PP1 and PP2A
SLiMs in the regulation of PPP activity in the context of mitosis.

Approximately 90% of PP1 regulatory subunits contain a
RVxF motif ([K/R][K/R][V/I]{P}[F/W]; {} excluded amino acid)
through which they associate with the catalytic subunit (Bollen
et al., 2010; Heroes et al., 2013). Along with the RVxF motif,
PP1 regulatory proteins often contain additional short linear
motifs like S/GILK and MyPhone (myosin phosphatase N-
terminal element), which provide sites of secondary interaction
with the catalytic subunit (Heroes et al., 2013; Figure 3B).
The SliM-dependent association of the regulatory subunit with
the PP1 catalytic subunit generates a holoenzyme that then
dephosphorylates specific substrates, including in some cases the
regulatory subunit itself. A large number of SLiM-dependent
interactions regulate the activity of PP1 during mitosis. At the
onset of anaphase, PP1 is recruited to chromosomes through
an RVxF-dependent interaction with Repo-Man (recruits PP1
onto mitotic chromatin in anaphase, also called CDCA2)
to dephosphorylate histone H3 at Thr-3 (Trinkle-Mulcahy
et al., 2006; Qian et al., 2011, 2013a). Histone H3 Thr-
3 phosphorylation is essential for AURKB recruitment to
chromosomes (Wang et al., 2010). In prophase, AURKB localizes
to chromosomes, but is restricted to centromeres in the later
stages of mitosis through the dephosphorylation of histone
H3 Thr-3 by Repo-Man-PP1 complex (Qian et al., 2011). At
centromeres and kinetochores, PP1 levels are tightly controlled;
too much or too little results in mitotic defects. This is
achieved through AURKB itself, the activity of which follows a
gradient, being the highest at centromeres and tapering toward
chromosome arms. AURKB phosphorylates basic consensus
motifs (Kettenbach et al., 2011, 2012); thus, if the “x” in
the PP1 SLiM RVxF is a serine or threonine amino acid, it
is a consensus site for AURKB and can be phosphorylated.
For instance, AURKB phosphorylates Repo-man on Ser-893,
thereby inhibiting its binding to histones (Qian et al., 2013a).
PP1 is also recruited to kinetochores through RVxF-dependent
interactions with kinetochore null 1 (KNL1), kinesin-like protein
18A (Kif18A) (Posch et al., 2010; Rodrigues et al., 2015), and
centromere-associated protein E (CENP-E) (Kim et al., 2010;
Liu et al., 2010; De Wever et al., 2014). In the case of KNL1,
AURKB directly phosphorylates Ser-60 within the RVxF motif
and Ser-24 within the SILK motif, abrogating the recruitment
of the PP1 catalytic subunit (Liu et al., 2010). For Repo-Man
and KNL1, AURKB phosphorylation is opposed by another
PPP, PP2A-B56 (Nijenhuis et al., 2014; Qian et al., 2015).
PP2A-B56 is important for the appropriate balance of both
PP1 and AURKB activities as cells progress from prophase
to metaphase, when the chromosomes attach to the mitotic

spindle through kinetochore-microtubule interactions and align
at the metaphase plate. These processes are monitored by the
spindle assembly checkpoint (SAC), a surveillance mechanism
that ensures correct microtubule-kinetochore attachment and
inter-kinetochore tension (Rosenberg et al., 2011; Moura et al.,
2017). Until chromosome congression, the SAC generates a
“wait” signal to block metaphase to anaphase transition and
ensures proper chromosome alignment before sister chromatid
separation (Waters et al., 1998; Skoufias et al., 2001). Part of
the “wait” signaling is the recruitment of PP2A-B56 complex
to kinetochores through its binding to the SAC component
BubR1 (Taylor et al., 1998; Suijkerbuijk et al., 2012; Kruse
et al., 2013). After proper biorientation is achieved, PP2A-B56
dephosphorylates Ser-893 on Repo-Man and Ser-60 and Ser-
24 on KNL1 promoting PP1 recruitment to chromosomes and
kinetochores, respectively (Qian et al., 2013a, 2015; Nijenhuis
et al., 2014). Upon anaphase onset, AURKB translocates to
the midzone and cyclin B is degraded, resulting in increased
recruitment of Repo-Man-PP1 to chromosomes and centromeres
and promotion of nuclear envelope reassembly (Vagnarelli et al.,
2011).

The SLiM for PP2A-B56 was only recently identified in the
SAC protein BubR1 (Suijkerbuijk et al., 2012; Kruse et al., 2013;
Qian et al., 2013a; Xu et al., 2013). Using mass spectrometry-
based proteomics as well as structural approaches, it was shown
that a LxIxxE or an expanded [L/C/V/M/I/F][S/T]P[I/L/V/M]xE
sequence represents a general, highly conserved consensus
sequence for PP2A-B56 interactions (Figure 3B; Hertz et al.,
2016; Wang et al., 2016). Interestingly, this mode of protein-
protein interaction is not conserved in PP2A-B55 (Hertz
et al., 2016). The B56 SLiM can also be modulated by
phosphorylation (Hertz et al., 2016; Wang et al., 2016).
However, while phosphorylation of RVxF motif decreases PP1
affinity, phosphorylation of the B56 SliMs increases its affinity
for PP2A (Figure 3C). For instance, in case of Repo-Man,
direct phosphorylation of the RVxF motif by AURKB or
phosphorylation of [S/T]P sites adjacent to RVxF motif by
Cdk1/cyclin B decrease binding of PP1 to Repo-Man (Qian et al.,
2013a, 2015). Conversely, Cdk1/cyclin B phosphorylation of the
PP2A-B56 SLiM motif (LpSPIxE) increases PP2A recruitment to
Repo-Man (Qian et al., 2015).

Another possible mode of regulation of SLiMs arises from
proteins containing phospho-binding domains. Like protein
kinases and phosphatases, phospho-binding domains display
serine/threonine or tyrosine specificity (Reinhardt and Yaffe,
2013). Serine/threonine phospho-binding domains include 14-3-
3 proteins, WW domains, WD40 repeats, FHA domains, BRCT
domains, and Polo-box domains and have been implicated in
the regulation of cell cycle progression (Reinhardt and Yaffe,
2013). Proteins containing these domains bind to phosphorylated
amino acids and regulate their stability, subcellular localization,
activity, and protein-protein interactions. Thus, it is possible
that binding of phospho-binding domain containing proteins to
phosphorylated SLiM motifs could be an additional regulatory
mechanism to control PPP holoenzyme assembly (Figure 3C).
While not described for SLiM phosphorylation yet, the binding
of 14-3-3 proteins plays an important role in the regulation
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of Cdc25, a PTP phosphatase. Activation of Cdk1/cyclin
B is governed by multiple positive and negative feedback
loops (Morgan, 2007). Cdc25 contributes to the activation
of Cdk1/Cyclin B by dephosphorylating crucial inhibitory
phosphorylation sites on Cdk1, Thr-14, and Tyr-15 (Honda
et al., 1993). Cdc25 activity is also controlled by activating
and inhibitory phosphorylations and 14-3-3 proteins bind to
the inhibitory phosphorylation sites on Cdc25, further reducing
Cdc25 activity, and localizing Cdc25 in the cytoplasm (Kumagai
et al., 1998; Graves et al., 2001). Activation of Cdc25 requires, at
least in part, the removal of 14-3-3 through dephosphorylation
of the phospho-binding site. This is achieved by PP1 and PP2A-
B56. PP1 dephosphorylates the 14-3-3 binding sites, while PP2A-
B56 dephosphorylates additional sites that contribute to 14-3-3
release (Margolis et al., 2006a,b).

PERSPECTIVE

Protein kinases and phosphatases are highly specific enzymes
with tightly regulated activities. While protein kinases have been
in the spotlight of phosphorylation research for the past four
decades, protein phosphatases are now taking center stage. As we
learn more about the regulatory mechanism(s) governing both
classes of enzymes, it is becoming clear that protein kinases and
phosphatases not only counteract each other on their shared
substrates but also counteract each other directly as well as
indirectly through elaborate feedforward and feedback loops.
Identification of regulatory mechanisms governing the activity
of distinct PPP holoenzymes including phospho-amino acid
(Ser vs. Thr) and phosphorylation site motif (acidophilic vs.
basophilic) preferences have greatly increased our knowledge of
dephosphorylation signaling and demonstrate the importance of
investigating PPP holoenzyme specific substrate preferences in
vitro and in vivo.

The identification of SLiM mediated subunit-subunit and
subunit-substrate interaction mechanisms has greatly enhanced
our ability to predict PPP regulatory subunits and substrates and
build PPP-based networks. SLiMs provide an entry point for
specifically targeting PPPs to discover their biological functions
and substrates as well as roles in diseases. Phosphorylation
signaling is frequently disrupted or deregulated in many types
of cancer. Until now, the focus for therapeutic strategies has
been on protein kinases. However, the inevitable emergence of
kinase inhibitor resistance requires new therapeutic approaches
and targeting regulatory PPP subunits and their interactions

with catalytic subunits may prove to be a viable strategy. PPP
inhibition activates the spindle assembly checkpoint and blocks
mitotic exit, ultimately leading to mitotic catastrophe and cell
death, a strategy often applied in cancer therapy. While global
inhibition of PPP activity impacts all cells, targeting specific PPP
holoenzymes via the SLiM motif could be tailored to signaling
pathways frequently deregulated in cancer. For instance, selective
inhibition of PP1 in mitosis has been shown to cause impaired
tumor growth (Winkler et al., 2015). PP2A has been characterized
as a tumor suppressor gene and activation of PP2A inhibits tumor
growth (Sangodkar et al., 2016, 2017), while inhibition of PP4 and
PP6 induces cancer cell death and sensitizes to radiation therapy
(Shen et al., 2011; Theobald et al., 2013).

Another important area of investigation in PPP biology is
the identification of substrates of specific PPP holoenzymes
in order to connect kinases and PPPs on their shared
substrates. Quantitative mass spectrometry-based proteomic and
phosphoprotoemic approaches combined with small molecule
kinase inhibitors, genetically-engineered ATP-analog sensitive
kinases, substrate trapping mutants, proximity-labeling and
crosslinking approaches have identified a plethora of kinases
substrates. Using similar approaches when applicable and
available, as well as inducible degron strategy and SLiM targeting
peptides to identify the phosphatase substrateswill fill the gaps
in our understanding of phosphorylation signaling networks. In
addition, identification of upstream signaling inputs regulating
PPP holoenzyme assembly, activity and substrate targeting will
be important to dissect the complex regulatory behaviors.
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