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Abstract

Background: Chronic transplant dysfunction explains the majority of late renal allograft loss and is accompanied by
extensive tissue remodeling leading to transplant vasculopathy, glomerulosclerosis and interstitial fibrosis. Matrix
proteoglycans mediate cell-cell and cell-matrix interactions and play key roles in tissue remodeling. The aim of this study
was to characterize differential heparan sulfate proteoglycan and chondroitin sulfate proteoglycan expression in transplant
vasculopathy, glomerulosclerosis and interstitial fibrosis in renal allografts with chronic transplant dysfunction.

Methods: Renal allografts were transplanted in the Dark Agouti-to-Wistar Furth rat strain combination. Dark Agouti-to-Dark
Agouti isografts and non-transplanted Dark Agouti kidneys served as controls. Allograft and isograft recipients were
sacrificed 66 and 81 days (mean) after transplantation, respectively. Heparan sulfate proteoglycan (collXVIII, perlecan and
agrin) and chondroitin sulfate proteoglycan (versican) expression, as well as CD31 and LYVE-1 (vascular and lymphatic
endothelium, respectively) expression were (semi-) quantitatively analyzed using immunofluorescence.

Findings: Arteries with transplant vasculopathy and sclerotic glomeruli in allografts displayed pronounced neo-expression
of collXVIII and perlecan. In contrast, in interstitial fibrosis expression of the chondroitin sulfate proteoglycan versican
dominated. In the cortical tubular basement membranes in both iso- and allografts, induction of collXVIII was detected.
Allografts presented extensive lymphangiogenesis (p,0.01 compared to isografts and non-transplanted controls), which
was associated with induced perlecan expression underneath the lymphatic endothelium (p,0.05 and p,0.01 compared to
isografts and non-transplanted controls, respectively). Both the magnitude of lymphangiogenesis and perlecan expression
correlated with severity of interstitial fibrosis and impaired graft function.

Interpretation: Our results reveal that changes in the extent of expression and the type of proteoglycans being expressed
are tightly associated with tissue remodeling after renal transplantation. Therefore, proteoglycans might be potential
targets for clinical intervention in renal chronic transplant dysfunction.
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Introduction

Chronic transplant dysfunction (CTD) explains the majority of

long-term loss of transplanted kidneys [1,2]. Although consider-

able improvement has been made in overall graft survival due to

improved prevention and treatment of acute rejection, the rate of

long-term renal graft loss has remained unchanged over more than

a decade. CTD is the overall outcome of tissue remodeling

processes in multiple intrarenal structures (i.e. the intrarenal

arteries, the glomeruli and the interstitium leading to transplant

vasculopathy (TV), focal glomerulosclerosis (FGS) and interstitial

fibrosis (IF), respectively [2–4] and is the resultant of various

underlying causes [5]. TV is presumed to result from activation of

the vascular endothelium, leading to the activation and migration

of vascular smooth muscle cells (SMCs) and the development of an

occlusive neointima in the lumen of the arteries [6]. The

neointima consists of smooth muscle cells, extracellular matrix

and inflammatory cells [7]. FGS presumedly results from defects in

the filtration barrier, which is formed by podocytes, the glomerular

basement membrane (BM) and endothelial cells [8]. IF results
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from the accumulation of extracellular matrix synthesized by

infiltrating and proliferating interstitial myofibroblasts. To date,

due to the lack of knowledge on the pathogenesis of tissue

remodeling leading to CTD, no effective therapies are available to

prevent or treat CTD. The identification of molecules involved in

pathological tissue remodeling after renal transplantation might

provide novel targets for intervention.

Proteoglycans are glycoconjugates that play an important role in

tissue remodeling. They consist of a core protein with one or more

carbohydrate side chains (i.e. glycosaminoglycans, GAGs) at-

tached. Depending on the composition of these GAGs, different

types of proteoglycans can be distinguished: heparan sulfate (HS),

chondroitin sulfate (CS), dermatan sulfate (DS), and keratan

sulfate proteoglycans. The extracellular matrix HS proteoglycans

collagen type XVIII (collXVIII), perlecan and agrin are

components of BMs of various tissues [9–11]. The CS/DS

proteoglycan versican is a major extracellular matrix component

which is not expressed in BMs. Depending on the sulfation

patterns of the carbohydrate side chains, HS and CS/DS

proteoglycans are capable of binding and presenting a variety of

proteins like chemokines and growth factors and are involved in

various cell-cell and cell-matrix interactions [12].

Using a rat renal transplant model for chronic transplant

dysfunction [13–15], we sought to determine the spatial expression

of HS (collXVIII, perlecan, agrin) and CS/DS (versican)

proteoglycans and its association with lymphangiogenesis. We

used specific (semi-)-quantitative immunofluorescent (double)label-

ing to identify the spatial expression of proteoglycans and

lymphatics in non-transplanted kidney, isografts and allografts.

We established a clear spatial relationship between the presence of

HS and CS/DS proteoglycans in allografts and the development

of CTD. Allografts were characterized by marked tubulointerstitial

lymphangiogenesis coinciding with enhanced perlecan expression.

Both the magnitude of lymphangiogenesis and perlecan expression

correlated with IF development and impaired graft function.

Methods

Rats
Inbred female (175–210 gram) and male (200–225 gram) Dark

Agouti (DA) rats were obtained from Harlan (Horst, the Nether-

lands) and inbred male Wistar Furth (WF) rats (240–295 gram)

from Charles River Laboratories Inc. (l’Arbresle, Cedex, France).

Ethics Statement
All animals received care in compliance with the Principles of

Laboratory Animal Care (NIH Publication No. 86-23, revised

1985), the University of Groningen guidelines for animal

husbandry (University of Groningen, the Netherlands), and the

Dutch Law on Experimental Animal Care.

Kidney Transplantation and Experimental Groups
Female DA kidneys were orthotopically transplanted into male

recipients as described previously [14]. Cold ischemic time ranged

from 16 to 38 min. Warm ischemic time ranged from 19 to

32 min. Recipients received cyclosporine A (5 mg/kg bodyweight)

(Sandimmune, Novartis, the Netherlands) subcutaneously on the

first 10 days after transplantation. The contralateral native kidney

was removed 8 to 14 days after transplantation. Total follow-up

was 12 wks or shorter in case animals had to be sacrificed due to

graft failure. The following experimental groups were included:

control (non-transplanted) DA kidneys (n = 5), DA-to-DA isografts

(n = 5), and DA-to-WF allografts (n = 11). Clinical variables of

recipients within these groups have been described in detail

elsewhere [14,15]. Briefly, isograft recipients were sacrificed at day

81 [70–84] (mean [range]) and allograft recipients at day 66 [40–

84] after transplantation. The allograft recipients showed signif-

icantly increased plasma creatinine levels measured at time of

sacrifice compared with isograft recipients (119 [93–139] mmol/L

vs. 42 [34–50] mmol/L, respectively, p,0.005, Mann-Whitney

test). In addition, allograft recipients developed severe proteinuria

compared with isograft recipients (110 [9–262] vs. 18 [9–43] mg/

day, respectively, p,0.05, Mann-Whitney test).

Immunofluorescence
Four-micron frozen sections fixed in acetone or 4% formalde-

hyde were blocked for endogenous peroxidase activity with 0.03%

H2O2 if appropriate. For some stainings the sections were blocked

with normal goat, rabbit or mouse serum. Sections were incubated

for 1 hr with the following primary antibodies: rabbit anti-mouse

collagen XVIII (NC11,kindly provided by Dr. T. Sasaki, Shrines

Hospital for Children, Portland, OR, USA), mouse anti-rat

perlecan (10B2, kindly provided by Dr. Couchman, Biomedicine

Institute, University of Copenhagen, Denmark), sheep anti-rat

agrin (Gr14) [16], mouse anti-heparan sulfate stub region (F69-

3G10, Tokyo, Japan), mouse anti-HS (JM-403) [17,18], mouse

anti-rat CD31 (TLD-3A12, BD Pharmingen, the Netherlands),

and rabbit anti-LYVE-1 (Millipore, USA). Binding of primary

antibodies was detected by incubating the sections for 30 min with

secondary antibodies diluted in PBS with normal rat serum: rabbit

anti-mouse HRP (DAKO, Belgium), goat anti-rabbit FITC

(SouthernBiotech, USA), and rabbit anti-sheep HRP (DAKO).

HRP activity was visualized using the TSATM Tetramethylrho-

damine System (PerkinElmer LAS Inc., USA). Nuclei were stained

with DAPI.

L-Selectin Binding Assay with Enzymatic Pre-Treatments
L-selectin-IgM chimeric protein, consisting of the extracellular

domain of human L-selectin linked to an IgM Fc-tail [19] was

allowed to bind for 1 hr. L-selectin binding was detected by

incubation with rabbit anti-human IgM HRP (DAKO) for

30 min, followed by the use of the TSATM Tetramethylrhodamine

System. Heparitinase I (EC4.2.2.8), and chondroitinase ABC

(EC4.2.2.4) (both from Seikagaku, Tokyo, Japan) were used to

digest the side chains of the heparan sulfate and chondroitin

sulfate proteoglycans, respectively. To this end, prior to some L-

selectin binding assays, enzymatic pretreatments were performed

with heparitinase I (0.05 U/ml) and/or chondroitinase ABC

(1 U/ml) in acetate buffer (50 mM C2H3O2Na, 5 mM

CaCl2?2H2O, 5 mM MgCl2?6H2O, [pH 7.0 for heparitinase I,

pH 8.0 for chondroitinase ABC]) for 1 hr at 37uC.

Fluorescence Microscopy
Fluorescence microscopy was performed using a Leica DMLB

microscope (Leica Microsystems, Rijswijk, the Netherlands)

equipped with a Leica DC300F camera and LeicaQWin 2.8

software. Confocal imaging was performed with a Leica TCS SP2

confocal laser scanning microscope equipped with the Leica

Confocal Software package (version 2.61).

Quantification of Protein Expression in Stained Tissue
Sections

Semiquantitative scoring of proteoglycan expression was

performed independently by two observers (HR and KK) and

the mean value of both observers was used. In the rare cases

discrepancies were identified between the values of both observers,

the respective sections were re-evaluated in the presence of a third
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observer (JvdB) until consensus was reached. Both intensity of the

staining as well as the stained surface area of the structures in the

specific renal compartments (i.e. intima, media, neointima, Bow-

man’s capsule, glomerular BM, mesangial matrix, interstitial

matrix and tubular BMs) were scored separately in a semi-

quantitative manner on a scale ranging from 0–4. For staining

intensity the following grading was used (relative to the strongest

staining observed in the specific renal compartment of interest):

0 = no staining, 1 = weak staining, 2 = moderate staining,

3 = strong staining, 4 = most intense staining observed. For surface

area stained the following grading system was used (relative to the

total area of the specific renal compartment of interest): 0 = no

staining, 1 = 0–25% area positive, 2 = 26–50% area positive,

3 = 51–75% area positive, 4 = 76–100% area positive. Quantifi-

cation of perlecan, CD31 and LYVE-1 in the outer medulla was

performed in four overview photomicrographs of randomly

selected fields (magnification 3206). The total area stained was

quantified using ImageJ 1.41 (Rasband, W.S., ImageJ, U.S.

National Institutes of Health, Bethesda, Maryland, USA) which

was downloaded from http://rsb.info.nih.gov/ij/download.html).

Statistics
Differences between non-transplanted control kidneys, isografts

and allografts in total area stained for perlecan, CD31 and LYVE-

1 were tested with a Mann-Whitney test. Spearman correlation

analysis was performed to correlate the magnitude of lymphan-

giogenesis to interstitial fibrosis and renal function parameters.

p,0.05 was considered statistically significant. Statistics were

performed using GraphPad Prism 5.00 for Windows (GraphPad

Software Inc., USA).

Results

Chronic Tissue Remodeling in Renal Grafts
The rat renal allografts showed severe CTD with TV, FGS and

IF (Figure 1), as reported previously [14,15]. The isografts

developed some interstitial remodeling characterized by tubular

atrophy and IF, but to a much lesser extent than observed in the

allografts [14,15]. Development of TV and FGS was minimal in

isografts. The scant tissue remodeling observed in isografts was

mainly related to the transplantation procedure rather than to the

short-term use of cyclosporine as in the contralateral native kidney

(removed at nephrectomy after cyclosporine treatment) no tissue

remodeling was detected (not shown).

Heparan Sulfate Proteoglycan Expression in Non-
Transplanted Control Kidneys

In non-transplanted DA control kidneys, the HS proteoglycans

collXVIII, perlecan, and agrin, as well as the CS/DS proteoglycan

versican were strongly expressed in the intima of the arteries

(Figure 2A–D). More specifically, the HS proteoglycans were

located in the subendothelial BM whereas versican was located in

the apical endothelial cell membrane (Figure 2D, inset). The BM

of vascular SMCs in the media were characterized by a strong

expression of collXVIII and a patchy expression of perlecan

(Figure 2A and B). The arterial expression of proteoglycans was

similar in arteries in isografts and arteries without TV in allografts

(not shown).

In the glomerular BM of non-transplanted control kidneys,

expression of collXVIII was moderate whereas perlecan was

virtually absent (Figure 2E and F). In contrast to collXVIII and

perlecan, agrin was abundantly present (Figure 2G). All three HS

proteoglycans were strongly expressed in the Bowman’s capsule

but only minimally in the mesangial matrix (Figure 2E–G). A

patchy glomerular versican expression pattern was observed

suggesting non-glomerular BM staining (Figure 2H). Double

labeling for versican and the mesangial cell marker CD90 (Thy-

1) [20] did not reveal co-localization indicating non-mesangial

versican origin (not shown). Double labeling for versican and

CD31 revealed minor co-localization of versican and glomerular

ECs (not shown). Since the limited endothelial versican expression

could not account for the majority of glomerular versican

expression, these data suggest podocyte origin of glomerular

versican. These observations are in line with previous data

showing that glomerular versican is expressed by both podocytes

and glomerular endothelium [21,22].

In the tubular BM, expression of collXVIII was only minimal in

the cortical regions (Figure 2I.1) but more pronounced in the

medullary regions (Figure 2I.2). Agrin was strongly expressed in all

tubular BMs in a uniform fashion (Figure 2K). The tubular BMs

were virtually devoid of perlecan expression but we observed

moderate to strong expression of perlecan in the peritubular

capillaries (Figure 2J) as well as in larger vessels (Figure 2B).

Although versican was not present in the tubular BM, it was

strongly expressed in the interstitial matrix (Figure 2L), where all

three HS proteoglycans were absent.

Table 1 summarizes the semi-quantitative scoring of proteogly-

can expression (both intensity and surface area) in the intrarenal

arteries, glomeruli and interstitium. Below we describe the

Figure 1. Allografts present severe development of transplant vasculopathy (A), focal glomerulosclerosis (B) and interstitial
fibrosis (C). (A) Intrarenal artery with a neointima (Verhoeff staining [elastic laminae: black; collagen: red; smooth muscle cells: yellow]). (B)
Glomerulus with a sclerotic lesion (periodic acid-Schiff staining [glycans in connective tissue: purple-magenta]). (C) Part of the tubulointerstitium with
a fibrotic area (Masson’s trichrome staining [collagen: blue]). Stainings were performed on 2 mm formalin-fixed paraffin sections. Abbreviations: IEL:
internal elastic lamina; IF: interstitial fibrosis; M: media; NI: neointima. Magnification 4006.
doi:10.1371/journal.pone.0009095.g001
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significant changes in expression of HS proteoglycans and versican

in renal isografts, and allografts with CTD.

Differential Proteoglycan Expression in Isografts
Compared with Control Kidneys

The expression profile of proteoglycans in renal isografts was

mostly similar to the expression profile in control kidneys except

for changes in the glomerular and tubular BMs (Table 1). In the

glomerular BM, perlecan expression was increased compared with

control kidneys, but to a far lesser extent than observed in

allografts (described below). In the tubular BM of isografts, an

increased cortical expression of collXVIII and slight induction of

perlecan was observed. The expression of agrin in the tubular BM

remained strong alike control kidneys, although after transplan-

Figure 2. Proteoglycan expression in arteries, glomeruli and tubulointerstitium of non-transplanted control kidneys. All
proteoglycans were strongly expressed in the intima of arteries (A–D). HS proteoglycans were located in the subendothelial BM while versican
was located in the endothelial cell membrane (insert D, confocal image, magnification 37806). The BMs of vascular SMCs in the media showed a
strong expression of collXVIII and a patchy expression of perlecan (A and B). In the glomeruli (E–H), the glomerular BM moderately expressed collXVIII
(E) while perlecan was virtually absent (F) whereas agrin was abundantly present (G). All HS proteoglycans were expressed in Bowman’s capsule but
only minimally in the mesangial matrix (E–G). Dotted staining pattern for versican suggested expression by podocytes. (H). In the tubulointerstitium
(I–L), tubular BMs minimally expressed collXVIII and perlecan in the cortex (I.1 and J). Compared with the cortex, collXVIII expression was increased in
medullary tubular BMs (I.2). Perlecan was moderately to strongly expressed in peritubular capillaries (J). Agrin was uniformly expressed in tubular BMs
(K). Versican was not present in tubular BMs but strongly expressed in the tubulointerstitial matrix (L). Magnifications: A–G, H & J: 6406; I: 3206.
doi:10.1371/journal.pone.0009095.g002
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tation the expression was slightly interrupted. In regions with IF

(only limited present compared with allografts), an increased

expression of versican was observed.

Differential Proteoglycan Expression in Neointima and
FGS versus IF in Allografts

In arteries with TV in allografts, strong expression of collXVIII

and perlecan was observed in the newly-formed neointima

(Figure 3A and B). The expression of agrin and versican in the

neointima was less prominent than collXVIII and perlecan, and

varied in intensity within a single neointima. Agrin and versican

expression in the media was slightly upregulated compared with

non-transplanted control kidneys (Figure 3C and D).

In sclerotic lesions of FGS, we also observed a strong expression

of collXVIII and perlecan (Figure 3E and F). Within a single

glomerulus differential expression of collXVIII expression was

detected and contained both areas with decreased or strongly

increased expression compared with control kidneys and isografts

(Figure 3E). Agrin was not differently expressed in these lesions

(Figure 3G) compared with glomerular BM staining in control

kidneys. Compared with control kidneys and isografts, no altered

expression of versican was observed in the glomeruli of allografts

(Figure 3H). In the glomerular BM, and probably also podocytes

of allografts, an impressive induction of perlecan expression was

detected compared with its expression in control kidneys and

isografts (Figure 3F).

In contrast to the neointima and glomerulosclerotic lesions,

collXVIII and perlecan were minimally expressed in IF with

complete absence of agrin (Figure 3I–K). However, collXVIII/

agrin and perlecan were clearly expressed in the tubular BM and

peritubular capillaries, respectively (Figure 3I–K) as described in

more detail below. In contrast to the HS proteoglycans, we

observed a massive expression of versican in IF (Figure 3L). These

data indicate that in neointimal and glomerular lesions HS

proteoglycans dominate, whereas in regions with IF CS/DS

proteoglycans are more prominent.

Increased Expression of collXVIII in Cortical Tubular
Basement Membranes in Allografts

The expression profile of proteoglycans in the cortical tubular

BM was similar in allografts and isografts (Table 1). In the

allografts, increased expression of collXVIII and a slight induction

of perlecan was detected (Figure 3I and J). Increased collXVIII

expression was observed in both cortical (Figure 3I.1) and

medullary (Figure 3I.2) tubular BMs. Agrin remained strongly

expressed; however, in a less homogeneous pattern compared with

control kidneys (Figures 2K and 3K).

Proteoglycan Core Proteins Expressed in Allografts
Contain Functional Glycosaminoglycan (GAG) Side
Chains

In order to determine whether the proteoglycans expressed in

allografts contain HS GAG side chains, stainings with the

antibodies JM-403 and 3G10 were performed. JM-403 recognizes

heparan sulfate domains with N-unsubstituted glucosamine

residues [17,18]. As shown in Figure 4A–C, neointimal cells in

TV (A), glomerular BMs in non-sclerotic areas of glomeruli (B) and

tubular BMs in IF (C) indeed expressed heparan sulfate domains

with N-unsubstituted glucosamine residues, thereby confirming

the presence of HS side chains. As JM-403 only recognizes a

Table 1. Proteoglycan expression in the specific renal compartments in non-transplanted control kidneys, isografts, and allografts.

Artery Glomerulus Tubulointerstitium

Intima Media NI BC GBM MM Matrix TBM

cortex med

CollXVIII

control 3 (3) 2 (4) 3 (4) 2 (4) 1 (4) 0 K (4) 1K (4)

isograft 3 (3) 2 (4) 3 (4) 2 (4) 1 (4) K (1) 2 (4) 2 (4)

allograft 3 (3) 2 (4) 3 (4) 3 (4) 1–3 (4) 1–3 (4) K (1) 2 (4) 2 (4)

Perlecan

control 3 (2) 1–3 (4) 1–3 (3) K (1) K (1) 0 K (1) K (1)

isograft 3 (2) 1–3 (4) 1–3 (3) 2–3 (2) 1–3 (2) 1 (1) 1 (2) 1 (2)

allograft 3 (2) 1–3 (4) 3 (4) 1–3 (3) 3 (4) 1–3 (4) 1 (1) 1 (2) 1 (2)

Agrin

control 3 (4) K (1) 1–3 (3) 3 (4) 1 (2) 0 2K (4) 3 (4)

isograft 3 (4) K (1) 1–2 (3) 3 (4) 1 (2) 0 2–3 (4) 2–3 (4)

allograft 3 (4) 1–2 (1) 1–3 (2) 1–3 (3) 3K (4) 1 (2) 0 2–3 (4) 2–3 (4)

Versican

control 2 (4) 1 (3) 0 0 0 3 (4) 0 0

isograft 2 (4) 1–2 (3) 0 0 0 2–3 (4) 0 0

allograft 2 (4) 1–2 (3) 2 (1) 0 0 0 2–3 (4) 0 0

Semi-quantitative scores (ranging from 0–4) of proteoglycan expression presented as the staining intensity and, between parentheses, the surface area stained (as
described in detail in the Methods section). Scores given are the group means of the different grafts analyzed. Numbers of grafts analyzed are: non-transplanted control,
n = 5; isografts, n = 5; allografts, n = 11. The values represented in bold/italic indicate differentially expressed proteoglycans in the various groups as discussed in more
detail in the Results section. Abbreviations: NI, neointima; BC, Bowman’s capsule; GBM, glomerular basement membrane; MM, mesangial matrix; TBM, tubular basement
membrane; med, medulla.
doi:10.1371/journal.pone.0009095.t001
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specific subset of HS side chains, not all HS glycosaminoglycans

present will be detected using JM-403. Therefore, we additionally

performed stainings using antibody F69-3G10. F69-3G10 recog-

nizes HS stubs that remain attached to the proteoglycan core

protein following heparitinase treatment. As shown in Figure 4D–

F, F69-3G10 staining revealed presence of HS stubs in medial and

neointimal cells in TV (D), in glomerular BMs (E) as well as

tubular BMs (F), also confirming presence of HS glycosaminogly-

cans on the proteoglycan core proteins. Finally, to demonstrate

that the glycosaminoglycan side chains are capable of binding L-

selectin (as an example of a natural ligand), L-selectin binding

assays were performed. As shown in Figure 4G, L-selectin binding

in the tubulointerstitium was detected on the tubular BMs as well

as in the interstitium. To determine whether L-selectin preferen-

Figure 3. Proteoglycan expression in transplant vasculopathy (TV), focal glomerulosclerosis (FGS) and tubulointerstitial fibrosis (IF)
in allografts. In the neointima in TV, collXVIII and perlecan were strongly expressed (A and B). Expression of agrin and versican was less prominent in
the neointima but their expression was slightly upregulated in the media (compared with non-transplanted control tissue) (C and D). Dotted lines
indicate the internal elastic lamina. In the glomeruli (E–H), expression of collXVIII in the glomerular BM was variable with strong expression in
glomerulosclerotic lesions (E). Perlecan was strongly induced in the glomerular BM (F). Agrin expression remained similar to its expression in
glomerular BMs in non-transplanted control tissue (G). Versican staining was comparable with non-transplanted control tissue (H). In the
tubulointerstitium (I–L), collXVIII (I) and perlecan (J) were minimally present in IF in which agrin expression was absent (K). CollXVIII was clearly
expressed by tubular BMs in cortical (I.1) and medullary (I.2) regions at similar levels. Versican was strongly expressed in IF (L). In the cortical tubular
BM, collXVIII was strongly expressed with a strong, but slightly interrupted, expression of agrin (I and K). Perlecan was only weakly expressed in the
tubular BM but strongly expressed in peritubular capillaries (J). Magnification 6406.
doi:10.1371/journal.pone.0009095.g003
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tially binds to HS or CS/DS proteoglycans, sections were pre-

incubated with heparitinase I and/or chondroitinase ABC.

Following heparitinase I pre-treatment, only interstitial L-selectin

binding was preserved indicating preferential binding of L-selectin

to HS proteoglycans in tubular BMs (Figure 4H). Following

chondroitinase ABC pre-treatment, only L-selectin binding to

tubular BMs was preserved indicating preferential binding of L-

selectin to CS/DS proteoglycans in the interstitium (Figure 4I).

Sections pre-treated with both heparitinase I and chondrointinase

ABC were completely devoid of L-selectin binding (Figure 4J).

Abundant Lymphangiogenesis Is Related to Increased
Expression of Perlecan

In the interstitium of allografts we observed a significant

increase in expression of perlecan in a capillary-like pattern

(Figure 5A–C). Since perlecan has been related to angiogenesis

[23–26], we analyzed whether the increased perlecan expression

was associated with the formation of new peritubular capillaries.

However, quantification of interstitial CD31 staining revealed that

allografts do not contain an increased number of peritubular

capillaries (Figure 5D–F). Instead, we observed a non-significant

decrease in area stained positively for CD31 per given surface area

in both allografts and isografts, which might be associated with

enlargement of the renal graft after transplantation due to removal

of the contralateral kidney [15]. When staining for the lymphatic

marker LYVE-1 [27], we observed a marked increase in the

number of lymph vessels in the allografts (Figure 4G–I) indicative

of lymphangiogenesis. In isografts, we also observed an increase in

LYVE-1 staining but to a significant lesser extent than observed in

allografts (Figure 5I). Double labeling for perlecan and LYVE-1

revealed that the newly-formed lymph vessels all express perlecan

in their BM (Figure 5J–L). In addition, allografts also displayed

abundant presence of capillary-like structures that were strongly

positive for perlecan but LYVE-1 negative, indicating an overall

upregulation of perlecan in pre-existing peritubular capillaries as

well (Figure 5J–L). The observed increase in perlecan expression in

isografts and allografts positively correlated with the severity of IF

(Spearman r = 0.5580, p = 0.0475) as well as serum creatinine

levels (Spearman r = 0.7770, p = 0.0004 [8 wk] and Spearman

r = 0.8182, p = 0.0011 [12 wk]) and proteinuria (Spearman

r = 0.6714, p = 0.0061 [8 wk] and Spearman r = 0.7510,

p = 0.0031 [12 wk]).

Figure 4. Proteoglycan core proteins expressed in transplant vasculopathy, glomerulosclerosis and interstitial fibrosis in allografts
contain functional glycosaminoglycan side chains. Neointimal cells in TV (A), glomerular BMs in non-sclerotic areas (B) and tubular BMs in IF (C)
express heparan sulfate domains with N-unsubstituted glucosamine residues as recognized by antibody JM-403. Following heparitinase treatment
presence of heparan sulfate stub regions was identified in medial and neointimal cells in TV (D), in glomerular BMs (E) and in tubular BMs (F) using
antibody F69-3G10. Dotted line in panel A and D represents the internal elastic lamina. Abbreviations: M: media; NI: neointima. L-selectin-IgM
chimeric protein binding in the tubulointerstitium in no pre-treated sections (G), sections pre-treated with heparitinase I [hep I] (H), sections pre-
treated with chondroitinase ABC [chonABC] (I) and sections pre-treated with both heparitinase I and chondroitinase ABC (J). Insets show high power
magnifications of the framed areas. Arrows: tubular BMs, asterisks: interstitium.
doi:10.1371/journal.pone.0009095.g004
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Lymphangiogenesis in Renal Grafts Correlate with IF and
Impaired Graft Function

In order to analyze whether the magnitude of tubulointerstit-

ial lymphangiogenesis correlates with the severity of IF and graft

function, Spearman correlation analyses were performed in

which data from both the isografts and allografts were included.

As shown in Figure 6A, the magnitude of lymphangiogenesis

showed a significant positive correlation with the severity of IF.

When analyzing proteinuria and plasma creatinine levels

(measured at 8 wks after transplantation), also these functional

variables turned out to be positively correlated with the

magnitude of lymphangiogenesis at sacrifice (Figures 6B & C,

respectively). Similarly, plasma creatinine levels at sacrifice

positively correlated with lymphangiogenesis (Spearman

r = 0.8571, p = 0.0137). Increased plasma creatinine levels

translated into reduced creatinine clearance, which was

inversely correlated with the magnitude of lymphangiogenesis

(Figure 6D).

Figure 5. Lymphangiogenesis in the tubulointerstitium is associated with perlecan expression. Expression of perlecan in allografts was
significantly increased compared with non-transplanted control kidneys and isografts (A–C). After transplantation (of both iso- and allografts), the
area with CD31 expression slightly decreased (D–F) (NS: not significant). In allografts, LYVE-1 expression was significantly increased compared with
non-transplanted control kidneys and isografts (G–I). Double staining for perlecan and LYVE-1 revealed that perlecan is expressed in association with
lymphatic endothelium in the newly-formed lymphatics (J–L). Arrowheads indicate peritubular capillaries strongly positive for perlecan but negative
for LYVE-1. C, F and I represent the quantification of surface area stained for perlecan, CD31 and LYVE-1, respectively. Magnification A, B, D, E, G, H:
3206; J–L: 6406. *p,0.05, **p,0.01
doi:10.1371/journal.pone.0009095.g005
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Discussion

This study is the first to demonstrate the extensive involvement

of proteoglycans in tissue remodeling in experimental CTD,

demonstrating marked changes in proteoglycan expression in the

intrarenal arteries, glomeruli and interstitium. The following key

observations were made. First, whereas HS proteoglycans

dominate in neointimal lesions in TV and in FGS, the CS/DS

proteoglycan versican dominates in IF. Second, glomerular

remodeling is associated with an impressive induction of perlecan

expression in the glomerular BM. Third, the HS proteoglycan

content becomes increased in cortical tubular BMs, especially due

to increased collXVIII expression. Finally, allografts are charac-

terized by marked tubulointerstitial lymphangiogenesis which

correlates with IF development and impaired graft function.

Some earlier work demonstrated increased HS polysaccharides

in fibrotic and sclerotic lesions in vessels, interstitium and

mesangium of chronic renal transplant dysfunction [28], along

with increased GAG-mediated chemokine binding [29,30].

However, proteoglycan core-proteins were not identified in those

studies. In non-transplant renal diseases, tubular upregulation of

collXVIII/endostatin was reported in a number of experimental

models [31–33]. Mesangial expression of perlecan and agrin was

reported in human diffuse mesangial sclerosis [34], in diabetic

nephropathy [35,36], and some other human glomerulopathies

with mesangial expansion [37]. Concerning proteoglycan expres-

sion in the neointima, both perlecan and versican have been

shown to be present in neointimal lesions formed after

experimental or human stenting or denudation or related to

atherosclerosis [38–40]. The neointima in arteries of human

cardiac allografts contain versican [41]. The striking similarities in

proteoglycan expression in transplantation-unrelated kidney

diseases and chronic renal allograft dysfunction suggest compara-

ble matrix remodeling programs. This might indicate that anti-

fibrotic treatments in various kidney diseases might also reduce

chronic transplant dysfunction.

We showed differential expression of HS proteoglycans in

neointimal lesions and FGS on one hand, and CS/DS

proteoglycans in IF on the other, suggesting the existence of

spatial (i.e. compartment-specific) proteoglycan responses during

the development of CTD with potentially variable biological

effects. Expression of the CS/DS proteoglycan versican in IF is

likely involved in leukocyte recruitment and infiltration by its L-

selectin-binding capacity [30,42]. The abundant versican expres-

sion in IF supports our previous finding that L-selectin in the

interstitium binds to CS/DS side chains and not HS side chains

[43]. Moreover, the high L-selectin-binding capacity of CS/DS

proteoglycans in IF fits well with our observation that most

leukocyte infiltration was observed in interstitial regions and to a

far lesser extent in neointimal lesions and within the glomeruli.

The marked expression of versican in IF is probably produced by

interstitial myofibroblasts [44,45]. Tubulointerstitial versican

Figure 6. Lymphangiogenesis in the tubulointerstitium correlates with severity of interstitial fibrosis (A), proteinuria (B), plasma
creatinine levels (C) and creatinine clearance (D). Interstitial fibrosis, proteinuria (8 wks post transplantation), plasma creatinine levels (8 wks
post transplantation) and creatinine clearance (8 wks post transplantation) were determined as recently described [14,15]. LYVE-1 expression was
quantified as described in the Methods section. (gray circle isografts, black circle allografts).
doi:10.1371/journal.pone.0009095.g006
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might contribute to the activation and proliferation of intra- and

extrarenal myofibroblasts and may also mediate their recruitment.

In line with this, we recently demonstrated that ,53% of

interstitial myofibroblasts in IF are derived from extrarenal

sources [14] and may originate from a population of recirculating

fibrocytes. Fibrocytes are mesenchymal progenitor cells exhibiting

morphological characteristics of hematopoietic stem cells, mono-

cytes and fibroblasts and have the capacity to differentiate into a-

SMA-expressing myofibroblasts which is promoted by TGF-ß

[46]. Although HS proteoglycans have been shown to mediate

hematopoietic progenitor cell homing [47] this needs to be

experimentally proven for CS/DS proteoglycans.

In contrast to interstitial myofibroblasts in IF, neointimal SMCs

in experimental renal allografts are solely derived from an

intrarenal source, probably the arterial media [14]. In the current

study, we observed a strong expression of perlecan in the

neointima. Perlecan expression in arteries has been associated

with inhibition of SMC proliferation and reduced intimal

hyperplasia [25,39,48–50] which favours for a role of perlecan

in neointima stabilization. However, data reported by others

indicate that arterial HS proteoglycans can actually activate SMC

proliferation by modulating the function of basic fibroblast growth

factor (bFGF/FGF2) [51]. Although clear expression of collXVIII

was observed in the neointima, its potential role in neointima

formation is as yet unknown.

After transplantation, we observed a strong induction of

perlecan in the glomerular and peritubular capillary BMs.

Peritubular capillaries play an essential role in graft rejection

[52]. Upon capillary inflammation, endothelial cells become

activated and changes occur in the BM, like splitting and multi-

layering [53,54]. The response in peritubular capillaries is similar

to that observed in glomerular capillaries, and the thickened BM

might be the resultant of processes associated with endothelial cell

death and regeneration [53,54]. Capillary BM changes are related

to our previous data indicating endothelial chimerism (i.e. presence

of recipient-derived endothelial cells) in glomerular and peritubu-

lar capillaries in CTD [14]. Both endothelial chimerism and

perlecan expression in capillaries could be essential in capillary

endothelial regeneration [23]. Perlecan in capillary BM might thus

play a role in maintaining the capillary endothelial integrity but

also contribute to the inflammatory response [30].

We observed a major increase of collXVIII expression in the

tubular BM after renal transplantation in both iso- and allografts.

The integrity of the tubular BM and its changes are involved in

inflammation, phenotypic changes of tubular epithelial cells, and

the development of IF and tubular atrophy [29,55–57]. Tubular

epithelial cells can contribute to IF via epithelial-to-mesenchymal

transition (EMT) in which epithelial cells transdifferentiate into

interstitial myofibroblasts [58–60]. CollXVIII and (weakly ex-

pressed) perlecan in the tubular BM could play a role in the EMT

process by binding of chemokines and growth factors resulting in a

concentration gradient in the tubular BM [61]. This gradient

might then direct migration of tubular epithelial cells into the

interstitium during EMT. In line with this, preliminary data

indeed suggest increased binding capacity of HS proteoglycans for

FGF-2 in the tubular BM in allografts (not shown).

The more interrupted and less uniform expression of agrin in

tubular BMs after transplantation supports the assumption that

agrin normally plays a role in anchoring tubular epithelial cells,

and focal loss of agrin could therefore be related to migration of

transdifferentiated tubular cells in EMT or tubular atrophy

[62,63]. In addition to tubular atrophy and EMT, proteoglycan

expression in the tubular BM could be involved in binding of L-

selectin, thereby facilitating inflammatory responses in tubules

[30,64]. The potential causal role of BM HS proteoglycans in

tubular atrophy or EMT are under current investigation in HS

proteoglycan mutant mice.

We showed a marked induction of lymphangiogenesis in

allografts, which was accompanied by the expression of perlecan

at the abluminal side of lymphatic endothelium. Recovery of renal

lymph drainage is shown to occur as early as 24 hours after renal

transplantation [65], suggesting that lymph drainage and the

process of lymphangiogenesis after renal transplantation is of

potential functional relevance. However, it is still a matter of

debate whether lymphangiogenesis and potential development of

lymphoid structures in renal grafts is beneficial or detrimental to

clinical outcome. Lymph vessels could be beneficial by mediating

the drainage of extravasated fluid and the export of leukocytes

[66–68]. On the other hand, lymph vessels and additional

development of lymphoid structures could also perpetuate the

inflammatory response [66,67,69–71]. We observed a clear

correlation between the magnitude of lymphangiogenesis and

severity of IF, suggesting that new lymph vessel formation may

enhance the fibrotic process by stimulating the inflammatory

process. This is supported by recent findings in diabetic

nephropathy indicating that lymphangiogenesis is associated with

inflammatory cell infiltration and progression of IF [72]. In our

study, increased lymphangiogenesis correlated with reduced graft

function suggesting that therapies that target de novo lymphatic

formation might contribute to improved graft function. The

existence of a causal relation between lymphangiogenesis and loss

of graft function, however, needs to be established in future

studies. The expression of perlecan in close proximity of lymphatic

endothelial cells suggests a functional role for perlecan in

lymphangiogenesis. This is supported by results from studies

performed in a mouse model for regenerating skin which suggest

that perlecan is involved in lymphatic endothelial cell migration,

lymphatic organization and maturation [73]. In addition, also

versican, which was abundantly present in the interstitium, might

play a role in lymphangiogenesis [74].

In conclusion, we identified increased spatial expression of HS

and CS/DS proteoglycans in the intrarenal arteries, glomeruli and

tubulointerstitium undergoing extensive tissue remodeling associ-

ated with CTD in renal allografts. Compartment-specific expres-

sion of proteoglycans in CTD might translate into compartment-

specific responses to therapy. In line with this concept, we recently

reported a differential response in renal allograft remodeling to

aldosterone receptor blockade using spironolactone in which

spironolactone ameliorated TV and FGS but not IF [15]. The

potential role of proteoglycans in the spironolactone-induced

effects are currently under investigation.

Although our results are descriptive in nature, the observed

differential expression of proteoglycans in renal allografts most

likely also have functional consequences as the proteoglycan core

proteins were shown to have GAGs that were able to bind L-

selectin. Preliminary data furthermore suggest altered endogenous

expression of natural proteoglycan ligands (such as FGF-2, HB-

EGF, and L-selectin on leukocytes). As a resultant, the

bioavailability of these ligands, which orchestrate tissue remodel-

ing and inflammation, is most likely modulated due to altered

proteoglycan expression as well as GAG side chain modifications.

Based on our results we propose that proteoglycans could be

targets for intervention to ameliorate CTD. As an example,

antibodies recognizing, and thereby blocking, specific HS-motifs/

domains may inhibit leukocyte extravasation resulting in reduced

inflammation. Also generated small inactive chemokine fragments

might be used to block the HS proteoglycan-binding sites of their

in vivo active counterparts thereby making the HS proteoglycans
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less bioactive. Alternatively, we suggest the possibility to produce

small HS-mimetics which may target more specifically a particular

component of HS/heparin bioactivity [75]. Therefore, focus

should now be on the identification of the precise functional role of

proteoglycans in chronic tissue remodeling after renal transplan-

tation followed by exploration of the feasibility to use proteogly-

cans as targets for therapeutic intervention to ameliorate the

development of CTD.
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