
Faculty Reviews 2021 10:(81)Faculty Opinions

Recent advances in preventing neurodegenerative diseases
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Abstract

The worldwide health-care burden of neurodegenerative diseases is on the rise—a crisis created through a combination of  
increased caseload and lack of effective treatments. The limitations of pharmacotherapy in these disorders have led to an urgent 
shift toward research and clinical trials for the development of novel compounds, interventions, and methods that target shared 
features across the spectrum of neurodegenerative diseases. Research targets include neuronal cell death, mitochondrial  
dysfunction, protein aggregation, and neuroinflammation. In the past few years, there has been a growth in understanding of the 
pathophysiologic mechanisms of neurodegenerative disorders such as Alzheimer’s disease, Parkinson’s disease, amyotrophic 
lateral sclerosis, multiple sclerosis, and Huntington’s disease. This increase in knowledge has led to the discovery of numerous 
novel neuroprotective therapeutic targets. In this context, we reviewed and summarized recent advancements in neuroprotective 
strategies in neurodegenerative diseases.
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Introduction
Neurodegenerative diseases include a broad range of disorders  
characterized by neuronal injury or degeneration leading to 
neurological impairment. These diseases include Alzheimer’s  
disease (AD), Parkinson’s disease (PD), multiple sclerosis  
(MS), amyotrophic lateral sclerosis (ALS), and Huntington’s 
disease (HD) that manifest in millions of people worldwide 
every year. The common characteristic of these disorders is  
neuronal loss or impairment resulting in chronic deterioration 
in memory, locomotor difficulties, psychological impairment, 
and cognitive defects. Researchers are pursuing a collabora-
tive approach to preserve the function and networks of neural  
tissues before damage occurs. This neuroprotective approach 
focuses on the development of strategies that prevent or arrest 
various types of neuronal cell death mechanisms such as oxida-
tive stress, mitochondrial dysfunction, neuroinflammation, pro-
tein aggregation, and defective autophagy, thus limiting disease 
progression. The purpose of this review is to summarize recent 
developments in neuroprotective strategies for neurodegenerative  
diseases.

Prevention of cell-autonomous neurodegeneration
Cells employ a variety of self-repair mechanisms to maintain 
and restore physiological homeostasis. When a cell exceeds the 
ability to overcome stress or damage, intracellular homeostasis 
collapses and induces a series of cell death signaling cascades.  
Over the last few years, studies have shown that the apoptotic 
cell death is not the only pathway dominating neuronal loss in 
neurodegenerative diseases. Among them, poly (ADP-ribose)  
(PAR)-dependent cell death, or parthanatos, has been estab-
lished as being responsible for neuronal loss in a variety of 
neurological diseases, including AD, PD, ALS, and HD1.  
PARP1 plays a multi-functional role in a variety of cellu-
lar processes such as DNA repair pathways, genomic stability, 
and inflammation2. Oxidative stress or nitric oxide production  
damages DNA, resulting in excessive intracellular PAR accu-
mulation due to PARP1 activation1. Several cellular processes 
result in parthanatos, including PARP1 overactivation, release 
of apoptosis-inducing factor (AIF) from mitochondria, and  
co-translocation of AIF and macrophage migration inhibitory 
factor (MIF) into the nucleus, leading to DNA fragmentation  
and cell death2–4.

Overactivation of PARP1 and PAR accumulation have been 
observed in the brains of AD patients and mouse models5,6,  
and genetic or pharmacological inhibition of PARP1 protected 
neurons in AD models7–9. Recent studies have also indicated 
that cells of cognitively impaired patients are more suscep-
tible to H

2
O

2
-induced parthanatos10, tissue acidosis-induced  

amplification of neuronal parthanatos11, and robust internal 
inflammation response following ischemic injuries12,13. Moreover, 
amyloid β (Aβ) causes hippocampal neurotoxicity by inducing  
oxidative stress–mediated PARP1 activation, which leads  
to transient receptor potential melastatin-related 2 (TRPM2) acti-
vation and Ca2+ influx and mitochondrial dysfunction14. Nota-
bly, studies have shown that neurons are protected by PARP1 

inhibition, which implies that PARP1 inhibition may have  
therapeutic value for the treatment of AD.

Recent discoveries in PD models show more direct evidence 
that parthanatos is the main cell death pathway in pathologic  
α-synuclein neurodegeneration. In this pathway, PAR is a key 
mediator, promoting α-synuclein toxicity and fibril transmis-
sion, exacerbating neurotoxicity in a feed-forward loop15. 
Interaction between PAR and α-synuclein was also found in  
post-mortem brains of patients with PD16–18. In addition, inhibi-
tion of PARP1 may promote α-synuclein autophagy via tran-
scription factor EB-mediated signaling and downregulation of 
mammalian target of rapamycin (mTOR) signaling, which less-
ened cytotoxicity of α-synuclein aggregation17. Genetic deple-
tion of PARP1 and oral administration of PARP1 inhibitor  
prevented neurodegeneration and improved motor ability in 
both sporadic and genetic mouse models of PD15,17. Moreover,  
PAR levels were increased in the cerebral spinal fluid and 
brains of patients with PD15, suggesting that PARP1 could be 
a theragnostic biomarker and a disease-modifying therapeutic  
target in PD19.

In the ALS brain, expression of PARP1 is increased and local-
ized to a subset of TAR DNA-binding protein 43 (TDP43)  
inclusions, primary cytological features of ALS20,21. Additionally,  
PAR favors the accumulation and aggregation of hnRNP A1 
and TDP43 in stress granules, as observed in patients with  
ALS22,23. Elevated PARP activity is observed in the motor  
neurons of the ALS spinal cord, and inhibition of PARP miti-
gates hnRNP A1- or TDP43-mediated neurotoxicity in cell and  
drosophila models of ALS22,24.

In HD, elongated polyglutamine (polyQ) is responsible for 
huntingtin (htt) protein aggregation and is associated with neu-
ronal inclusions and toxicity25. Recently, several co-morbid 
pathogenic processes were identified in the caudate nucleus  
of HD brains. The accumulation of damaged DNA, increased 
PARP1 expression, and localization of htt protein to the DNA 
damage site were found in conjunction with only weak caspase  
3 activation26. This finding suggests a pathologic relationship 
between caspase-independent parthanatos and HD. Moreo-
ver, the treatment of PARP1 inhibitor to HD model R6/2 
mutant mice showed longer survival and less neuropathologic  
dysfunction27,28. Although these findings suggest a neuropro-
tective effect of PARP1 in HD, further studies are required to  
determine the direct relationship of parthanatos to HD.

Dysregulation of PARP1 activation and increased PAR levels  
contribute to the pathogenesis of various neurodegenerative  
diseases by promoting protein aggregation and parthanatos. 
Thus, neuroprotective strategies aimed to inhibit PARP1 activa-
tion may have therapeutic potential in those disorders. Many  
well-characterized PARP inhibitors in clinical use have yet to 
be tested for use in neurodegenerative disease29. These should 
be considered for neuroprotective treatment for neurological  
diseases.
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Prevention of non-cell-autonomous 
neurodegeneration
Glial cells play a central role in neuronal support by maintain-
ing homeostasis, nutrient transportation, and neurogenesis in  
healthy brains30. Importantly, a growing body of research has 
shown that dysfunctional non-neuronal cells such as microglia  
and astrocytes directly contribute to neurodegeneration and 
cell death (so-called non-cell-autonomous neurodegeneration)  
in a variety of neurodegenerative diseases.

In the brain, microglia are the resident macrophages and pri-
mary immune cells. Therefore, they play an important role in 
neuronal disease. Recent single-cell RNA analysis of central 
nervous system (CNS) immune cells in AD models discovered  
a pro-inflammatory signature present in Aβ plaque-associated  
microglia, also known as disease-associated microglia (DAM),  
which might play both a toxic and a protective role in  
AD31–34. DAMs have also been observed in other neurode-
generative conditions, including aging, ALS, and frontotem-
poral dementia (FTD)33. Reactive microglia are presented in  
post-mortem AD brains and have been shown to promote syn-
aptic loss and neuroinflammation in AD35,36. Emerging studies  
suggest that dysregulation of neuroinflammation is modulated 
by TREM2 and ApoE, which eventually contribute to synap-
tic loss in multiple AD models33,37–40. Additionally, inefficient  
microglia clearance of pathologic proteins plays an adverse 
role in the spread of tau in tauopathy and AD41. Polariza-
tion of microglia toward a neuroprotective M2 type improves 
neurological deficits in post-ischemic stroke through activa-
tion of AMP-activated protein kinase (AMPK) and nuclear 
factor erythroid 2-related factor 2 (Nrf2) or peroxisome  
proliferator-activated receptor gamma coactivator 1α (PGC-1α)  
neuroprotective pathways42,43. Many PD-related genes, including  
α-synuclein, PINK1, and parkin, are expressed in glial cells. 
Mutated gene products are involved in microglial dysfunction  
during PD pathogenesis44. Also, microglia have been found 
to modulate the transmission of α-synuclein in the brain45,46.  
Recent spatial transcriptomics of ALS patients and mouse  
models revealed that changes in microglial gene expression  
preceded and contributed to motor neuron loss47. Accordingly,  
pharmacological blockage of neuregulin (NRG) receptors 
present on microglia (associated with ALS disease progres-
sion) has been shown to slow disease advancement in an  
SOD1-ALS mouse model48. In summary, microglia are thought 
to have both beneficial and detrimental functions in neurode-
generative diseases. Thus, induction of DAM or homeostatic  
microglia signature and subsequent prevention of neurotoxic 
microglia signature could be promising therapeutic strategies  
for neuroprotection in neurodegenerative diseases, but the fac-
tors associated with heterogenous microglial phenotype will  
need to be defined in more detail.

Astrocytes are the most abundant population of glial cells in 
the CNS and perform a broad range of homeostatic functions.  
Consequently, it is not surprising that the loss of normal 
astrocyte function is involved in the pathogenesis of neuro-
degenerative diseases. A 2017 study showed that activated  

microglia induce the formation of neurotoxic reactive astro-
cytes by secreting interleukin 1α (IL-1α), tumor necrosis factor  
α (TNF-α), and C1q49. These reactive astrocytes were found 
in post-mortem brains of human neurodegenerative diseases,  
including AD, PD, ALS, and HD49. The contribution of  
reactive astrocytes to neurodegeneration has been determined 
in disease models of PD50, AD51, ALS52, and MS53. The pres-
ence of reactive astrocytes in numerous disease models creates  
a prime opportunity for development of neuroprotective thera-
pies that can be shared across multiple neurodegenerative  
diseases. For example, direct prevention of microglia-mediated  
naïve astrocyte transformation into reactive astrocytes by  
Glucagon-like peptide 1 (GLP1) receptor agonist improves behav-
ioral deficits and neurodegeneration in pathologic α-synuclein  
mouse models of PD50. This restorative intervention could 
be applied to other neurodegenerative disease models. GLP1 
receptor agonists are protective in AD mouse models54. Addi-
tionally, in mouse models for PD, activation of receptor  
CD44 (expressed on astrocytes) helped reduce nuclear factor  
kappa B (NFκB) activation and inflammatory response55. In 
another study, dopaminergic neurons produced high levels of 
prokineticin 2 (PK2) protein56. Astrocytes have PK2 recep-
tors; upon ligand-receptor binding, there is a reduction in  
pro-inflammatory factors and an increase in several antioxidant  
genes56. Genetic depletion of reactive astrocytes markedly 
extended survival in ALS mouse models57. Inhibition of astro-
cyte reactivity by modulating the JAK2-STAT3 pathway  
reduced amyloid deposition and synaptic and behavioral defi-
cits in an AD mouse model58. In ischemic stroke mouse mod-
els, knockout of glutamate-releasing SWELL1 channel present 
in astrocytes decreased excitotoxicity59. More recently, how-
ever, it has been identified that the phenotype diversity of  
astrocytes is observed in brains of neurodegenerative diseases 
and extends beyond the A1 and A2 phenotypes60–65. Thus, further  
investigation is needed to better understand the molecular  
mechanisms of reactive astrocytes and their specific role within 
different neurodegenerative pathologies, especially how neu-
rotoxic signals transduce and are shared across multiple  
neurodegenerative conditions.

Conclusions
Neurodegenerative diseases are the result of a number of fac-
tors, including genetic mutations, neuronal cell death, mito-
chondrial dysfunction, protein aggregation, flawed protein  
recycling, and innate immune responses due to activation  
in glial cells. Thus, neuroprotection from cell-autonomous  
neurodegeneration could be achieved by directly targeting 
degenerating neurons and from non-cell-autonomous neurode-
generation by targeting their neighboring glial cells (Figure 1). 
Thus, a multifaceted approach targeting both cell-autonomous  
and non-cell-autonomous mechanisms may be required to pre-
vent or slow neurodegeneration. During the previous decade, 
consistent and focused studies have revealed the causal factors 
in neurodegenerative diseases. Understanding the molecular  
mechanisms of neurodegeneration is an essential step forward 
in the development of novel neuroprotective therapies. The 
last couple of years have seen advancements in both research 
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and clinical understanding of potential novel neuroprotective  
therapeutics. Owing to tremendous effort, these therapies 
have progressed beyond the lab and into the clinical testing 
stage. Despite this progress, therapies to prevent or decrease  
disease progression and restore neuronal function remain a 
challenge and an ongoing focus in both research and clinical  
practice. Thus, further investigation into the neurodegen-
erative pathways and the identification and development 
of neuroprotective agents are needed to develop promising  
disease-modifying therapeutic approaches for the treatment  
of neurodegenerative disease.
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Figure 1. Cell-autonomous and non-cell-autonomous neurodegeneration. PARP1-dependent cell-autonomous mechanisms of 
neurodegeneration (bottom). Neuron injury stressors such as an oxidative stress or aggregated proteins activate nitric oxide synthase that 
produces nitric oxide and then peroxynitrite (ONOO−), resulting in overactivation of PARP1. Accumulated poly (ADP-ribose) (PAR) polymers 
synthesized by overactivated PARP1 translocate from the nucleus to the cytoplasm and mitochondria, where it binds to and induces 
mitochondrial release of apoptosis-inducing factor (AIF). AIF-bound macrophage migration-inducing factor (MIF) nuclease translocates into 
the nucleus, where MIF cleaves genomic DNA into large-scale fragments, causing cell death. Inhibition of PARP1 can protect neurons in a 
variety of neurodegenerative diseases (see ‘Prevention of cell-autonomous neurodegeneration’ section). Non-cell-autonomous mechanisms 
of neurodegeneration mediated by microglia or astrocytes (top). Induction of disease-associated microglia or homeostatic microglia and 
subsequent prevention of neurotoxic microglia could be promising neuroprotection strategies in neurodegenerative diseases. Alternatively, 
activated microglia induces the formation of neurotoxic reactive astrocytes by secreting interleukin 1α (IL-1α), tumor necrosis factor α  
(TNF-α), and C1q. Reactive astrocyte-targeted neuroprotection could be achieved by microglial inhibition of formation of neurotoxic reactive 
astrocytes and induction of neuroprotective astrocytes. PARP, poly (ADP-ribose) polymerase; ROS, reactive oxygen species.
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