Improving gene annotation of complete viral genomes

Ryan Mills¹, Michael Rozanov³, Alexandre Lomsadze¹, Tatiana Tatusova³ and Mark Borodovsky^{1,2,*}

¹School of Biology and ²School of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0230, USA and ³National Center for Biotechnology Information, National Institutes of Health, Bethesda, MD 20894, USA

Received June 24, 2003; Revised August 2, 2003; Accepted October 3, 2003

ABSTRACT

Gene annotation in viruses often relies upon similarity search methods. These methods possess high specificity but some genes may be missed, either those unique to a particular genome or those highly divergent from known homologs. To identify potentially missing viral genes we have analyzed all complete viral genomes currently available in GenBank with a specialized and augmented version of the gene finding program GeneMarkS. In particular, by implementing genome-specific self-training protocols we have better adjusted the GeneMarkS statistical models to sequences of viral genomes. Hundreds of new genes were identified, some in well studied viral genomes. For example, a new gene predicted in the genome of the Epstein-Barr virus was shown to encode a protein similar to α -herpesvirus minor tegument protein UL14 with heat shock functions. Convincing evidence of this similarity was obtained after only 12 PSI-BLAST iterations. In another example, several iterations of PSI-BLAST were required to demonstrate that a gene predicted in the genome of Alcelaphine herpesvirus 1 encodes a BALF1-like protein which is thought to be involved in apoptosis regulation and, potentially, carcinogenesis. New predictions were used to refine annotations of viral genomes in the RefSeq collection curated by the National Center for Biotechnology Information. Importantly, even in those cases where no sequence similarities were detected, GeneMarkS significantly reduced the number of primary targets for experimental characterization by identifying the most probable candidate genes. The new genome annotations were stored in VIOLIN, an interactive database which provides access to similarity search tools for up-to-date analysis of predicted viral proteins.

INTRODUCTION

Currently, the complete genome of a virus can be sequenced within days. The next step towards understanding the details of a virus life cycle is to identify the whole complement of viral genes and proteins. This information can provide critical insights on many occasions. For instance, for a team working on an antiviral drug design, promising drug targets would be those viral proteins that are basically identical in all major strains of a virus and are significantly different from the proteins in the host, e.g. human.

At the time of this study, the GenBank database (1) contained ~3000 annotated complete viral genome sequences. In most cases, research groups providing the original annotation are unable to detect and confirm all genes experimentally by the time of submission. Computational approaches have therefore been commonly used since the time of pioneer projects such as the sequencing and annotation of phage λ (2).

There are two major approaches to gene identification, intrinsic and extrinsic (3). The intrinsic approach, which can be also called an *ab initio* statistical approach, uses statistical patterns of nucleotide frequencies and nucleotide ordering observed in a given genome. These patterns are not the same in protein-coding and non-coding DNA sequences; hence a properly trained intrinsic method can recognize proteincoding regions. Extrinsic methods seek to identify evolutionarily conserved sequences in protein-coding regions. These sequences can be detected by similarity searches. The extrinsic method is thus dependent on external information residing outside the sequence of interest.

Intrinsic and extrinsic methods have complementary strengths. Tests of their predictive power performed with sets of sequences containing known genes show that the intrinsic methods have higher sensitivity than the extrinsic methods which usually have higher specificity. Using intrinsic and extrinsic methods in concert is therefore a worthwhile approach (3).

So far, the use of computational gene identification methods in viral genomes by the groups of researchers submitting genomic data to GenBank was primarily restricted to similarity searches. To reduce the risk of missing real genes, a simple statistics-based rule is frequently applied to take into account the difference in length distributions of real genes and random open-reading frames (ORFs). This rule suggests

*To whom correspondence should be addressed. Tel: +1 404 894 8432; Fax: +1 404 894 0519; Email: mark.borodovsky@biology.gatech.edu

annotating 'long enough' ORFs as genes. For instance, in the rat cytomegalovirus genome any ORF longer than 300 nt not overlapping an adjacent ORF to an extent larger than 60% was annotated as a gene (4). Such a simplistic rule, however, could cause substantial over-annotation, especially in genomes with high G+C content.

Another frequently used simplification is the annotation of a gene start by the 'longest ORF' rule (assignment of a gene start to the 5'-most ATG codon). A screening of GenBank identified 26 complete viral genomes with a total of 4400 genes, all annotated using this rule. It was nevertheless shown earlier that the true start may not be pinpointed by this rule in ~25% of cases (5).

Viral genomes are different from the genomes of their hosts in several aspects that hamper immediate successful application of the gene finding methods developed for their hosts. An important factor is the rather small size of a viral genomic sequence. Currently, the RefSeq collection (19) contains 891 viral genomes shorter than 10 kb with a total of 2900 genes annotated, 169 genomes with lengths between 10 and 100 kb (3500 genes) and 47 genomes longer than 100 kb (7900 genes). A rather short genome size makes it either impossible to apply previously developed training procedures to derive parameters of high order statistical models (for the shortest viral genomes) or significantly limits the accuracy of these models (even in the case of the longest viral genomes). Another important feature of viral genome organization is the high frequency of gene overlaps that occur in viruses of both prokaryotic and eukaryotic hosts. The gene overlaps in viral genomes appear to be considerably longer than those seen in prokaryotic and, much more rarely, eukaryotic genomes. Furthermore, some annotated and experimentally confirmed viral genes are completely overlapped by others. Repetitive DNA may occupy a large portion of a viral genome; for example, in the Epstein-Barr virus genome (NC 001345) repetitive regions amount to $\sim 30\%$ of the genomic sequence (6), thus making model training more complicated.

In spite of the difficulties mentioned above, several groups have attempted to apply earlier developed statistical gene prediction programs for viral genome annotation. For instance, the GeneMark program (7) was used to identify genes in the genomes of Bovine herpesvirus 4 (8), bacteriophage FKZ of *Pseudomonas aeruginosa* (9), Mycoplasma virus P1 (10), Mycobacteriophage D29 (11), Stx 2e-encoding phage FP27 (12), coliphage T4 and the marine cyanophage S-PM2 (13), as well as to identify genes in genomes of virulence plasmids in *Rhodocuccus equi* (14), *Shigella felxneri* (15) and *Escherichia coli* (16). Still, these initial attempts did not use a tool developed specifically for the problem in hand (except perhaps the case of T4, where the GeneMark models were adjusted to the genomic T4 sequence).

A significant difference may exist sometimes between the GenBank record and the original publication. For instance, the annotation of the white spot bacilliform virus (GenBank record AF332093) lists 531 protein-coding genes in comparison with only 181 genes mentioned in the original publication (17). On the other hand, only 23 genes are annotated in *Rana tigrina* ranavirus (GenBank record AF389451), while the original publication (18) describes 105 genes. In order to improve the quality of DNA sequence annotation, the National Center for Biotechnology Information (NCBI) has created the

RefSeq collection. While the original GenBank genomic record is maintained as suggested by the authors, the RefSeq record of the same sequence is continuously updated with regard to new relevant data that become available. There were 1191 RefSeq records for complete genomes of viruses of prokaryotic and eukaryotic hosts as of August 2002.

Several attempts have been made to organize data on viral genomes in interactive databases providing tools for analysis of viral genes and proteins (20–22). These projects have been typically focused on specific classes of viruses.

To provide a tool for accurate *ab initio* gene identification in viral genomes we have modified the earlier developed GeneMarkS program (5) to make it suitable for analysis and gene prediction in viral genomes of different types. As a result of the application of this tool, we have created new annotation records for viral genomes present in GenBank (including its RefSeq part). These records have been compiled in the database VIOLIN (viral genomes online) accessible online at http://opal.biology.gatech.edu/GeneMark/VIOLIN/.

MATERIALS AND METHODS

Materials

A set of 2945 complete viral genome records was downloaded from GenBank. Since several genomic variants (strains, mutants, isolates) were determined for many viral species, many viral genome records had several other almost identical entries. To filter out this redundancy we have specifically focused on the analysis of viral genomes from the RefSeq collection containing 1191 complete genomic records of viruses of eukaryotic (1071) and prokaryotic (120) hosts. RefSeq contains only one record for each virus species. Notably, these 1191 RefSeq viral genome annotations included 86 records that had been updated with the aid of our new predictions. In what follows, these 86 records have been treated differently in terms of comparison of predicted and annotated genes.

Methods

For phage genomes with prokaryotic-type gene organization, computer methods of prokaryotic gene finding could be adjusted rather easily. The prokaryotic version of GeneMark.hmm as well as its self-training version GeneMarkS were previously shown to possess high accuracy both in detecting prokaryotic genes as a whole and in exactly pinpointing gene starts (23,24). Therefore, GeneMarkS was the natural choice as the tool to be applied and adjusted for the analysis of phage genomes. For viruses of eukaryotic hosts, the situation is more complex. Current eukaryotic gene finding algorithms are unable to predict the gene overlaps frequently seen in genomes of viruses of eukaryotic hosts. On the other hand, according to the RefSeq annotation of ~11000 genes in 1015 genomes of viruses of eukaryotic hosts, only ~300 genes have introns. Therefore, use of the program able to predict overlapping genes provides more benefits than the one predicting exon-intron structures. The program suitable for immediate use and further modifications was again the prokaryotic GeneMarkS, which could identify overlapping protein-coding ORFs while rarely occurring exons would be predicted as separate ORFs.

A viral genomic sequence might not provide enough training data to determine parameters of Markov chain models used in GeneMark.hmm. We turned, therefore, to the heuristic training technique described earlier (24), which is able to derive the parameters of the required models from a DNA sequence as short as 400 nt.

For larger viral genomes, the statistical models initially defined by the heuristic procedure could be iteratively refined further by the unsupervised training procedure implemented in GeneMarkS (24). This iterative procedure used simultaneous training and gene prediction to build models of protein-coding and non-coding sequences. For larger phage genomes, GeneMarkS also derived a model for the ribosomal binding site (RBS) and its spacer (the sequence between the rightmost nucleotide of the RBS and the first nucleotide of the start codon). Parameters of both models were determined from the multiple alignment of the nucleotide sequences situated upstream of the predicted gene starts, with the alignment constructed by the Gibbs Motif Sampler (25). For large enough genomes of viruses of eukaryotic hosts, parameters of a model for the Kozak pattern associated with the translational initiation site were determined by GeneMarkS with yet another modification. This GeneMarkS version allowed the use of the Kozak model for gene start prediction. Further modifications were done to adjust the program to different types of viral genome organization.

Since a linear viral genome cannot have a partial coding region at either terminus, a specific restriction imposed at the program initialization stage excluded this possibility. Conversely, an additional post-processing step was implemented for circular viral genomes to detect genes possibly divided by the split point chosen in the original annotation. For the single-stranded RNA (ssRNA) positive strand viruses whose genes are located in one strand only, an additional procedure identified the strand where gene predictions clustered predominantly and the opposing strand was assigned as completely non-coding.

For every viral genome the training procedure had to determine whether the sequence data were only sufficient for obtaining heuristic models or if a full training cycle of GeneMarkS could be initiated. If GeneMark.hmm with the initially defined heuristic models predicted fewer than a certain number of genes, Nr, then the procedure stopped and these initial predictions were not refined further. Otherwise, the full cycle of GeneMarkS training was initiated. The number 50 was assigned as the default Nr number.

In the training process, if several repetitive copies of some predicted protein-coding ORFs were identified, all copies but one were excluded from the training set of protein-coding regions to reduce bias in the protein-coding sequence model. Predicted ORFs longer than 500 nt that appeared in predicted intergenic regions were excluded from the set of non-coding regions to exclude possible 'contamination' of the non-coding training set. For viral genomes with a total size of predicted non-coding regions was augmented with an additional 10 kb sequence generated by the simplest multinomial model, simulating a sequence with the frequencies of the four nucleotides identical to those observed in the native non-coding region (26).

The step-wise diagram of GeneMarkS self-training and gene prediction for the genome of a virus of prokaryotic host is

shown in Figure 1. For a virus of a eukaryotic host, a reference to the Kozak model should replace the reference to the RBS model. The evaluation of the RBS model fitness was done by assessing both the variance of the RBS signal localization and the information content of the RBS model derived by the Gibbs Sampler. The Kozak model was evaluated in a similar manner. The self-training procedure was terminated as soon as two subsequent iterations produced the same gene predictions. However, in some cases exact convergence was not achieved due to small cyclic variations observed in subsequent iterations. In these cases the self-training was stopped and the reported sequence parse into coding and non-coding regions was the one with the larger number of predicted genes.

Assessment of the accuracy of computer gene prediction is a critically important issue. To characterize errors of two sorts, false positive and false negative, we used two parameters of accuracy, sensitivity and specificity. The value of sensitivity (Sn) is defined as the ratio of the number of true predictions to the number of genes in a test set. The fewer the number of false negatives, the higher the sensitivity. The value of specificity (Sp) is defined as the ratio of the number of true predictions to the total number of predictions made. The fewer the number of false positives, the higher the specificity. To determine sensitivity and specificity values for a particular gene prediction method, one needs a test set of nucleotide sequences with experimentally verified genes. To further define the terms we say that a gene is 'detected' if its 3' end coincides with the 3' end of a verified one. Additionally, a gene is 'predicted exactly' if the positions of both ends coincide with the verified gene ends. The accuracy of 'exact prediction' in our terms is the same as the accuracy of the gene start prediction'. This value is defined by the fraction of 'exactly predicted genes' among 'detected' genes.

The BLAST searches used to characterize newly predicted proteins were conducted using standard parameters: BLOSUM62; penalty for gap '10'; penalty for gap extension '1'; low-complexity filtering 'on'. In PSI-BLAST searches, the parameters were the same with the exception that the low-complexity filtering was 'off'.

RESULTS AND DISCUSSION

The overall statistics of the results of our analysis of complete viral genomes from GenBank is shown in Table 1. Our major focus here is on the genomes from the RefSeq collection. Those 86 viral genomes that had previously been reannotated in RefSeq with the aid of our analysis were excluded from our comparisons.

As shown in the RefSeq section of Table 1, 8011 proteincoding genes predicted in 1015 complete genomes of viruses of eukaryotic hosts matched the earlier annotation exactly. However, 1047 gene predictions did not match any previously annotated gene, and for 332 out of these 1047 new predictions, hits to known proteins with *E*-values $<10^{-5}$ were found by BLASTP search (27). Interestingly, 135 out of these 332 similarity search supported predictions overlapped with annotated genes but the reading frames were different. A rather large number of 2231 genes in the RefSeq annotated genomes of viruses of eukaryotic hosts were not confirmed by our analysis.

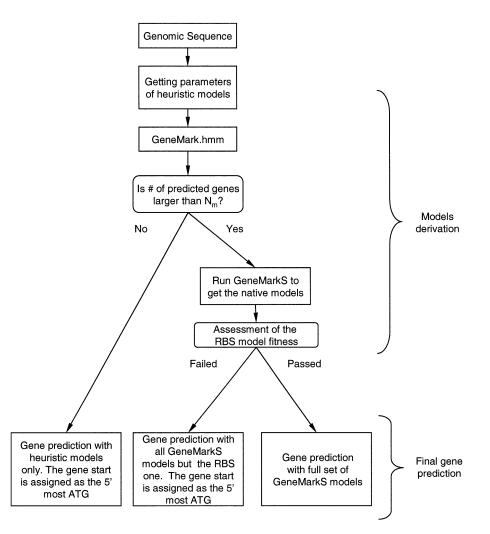


Figure 1. Flowchart of the statistical gene identification procedure applied to a complete genome of a virus of a prokaryotic host. For viruses of eukaryotic hosts, the Kozak model is used instead of the RBS model.

Table 1. Summary of the results of the analysis of viral genomes currently available in GenBank and those viral genomes for which reference sequences (RefSeq collection) have already been created at NCBI

	GenBank ^a Total	RefSeq Total	Eukaryotic hosts	Prokaryotic hosts
	Total	Total	Eukaryouc nosis	Prokaryotic nosts
Database summary				
Number of viral genomes analyzed	1750	1107	1015	92
Prediction and annotation comparison				
Exact match between prediction and annotation	15703	10425	8011	2414
Predicted gene differs in start location from annotated one	1479	931	368	563
Predicted gene overlaps with an intron containing annotated gene	382	209	190	19
Annotated gene was not predicted (possible false negative)	3885 (25%) ^b	2720 (26%) ^c	2231 (28%) ^c	489 (20%) ^c
Newly predicted genes (possible false positive)	3520 (22%) ^b	1360 (13%) ^c	1047 (13%) ^c	313 (13%) ^c
Analysis of newly predicted genes				
Prediction has a BLASTP and CD-Search hit with E-value <0.005	622	99	89	10
Prediction has a BLASTP hit with E-value <0.005, no CD-Search hit	1248	336	243	93
Prediction has a CD-Search hit with E-value <0.005, no BLASTP hit	35	6	6	0
Prediction has no BLASTP or CD-Search hit with E-value <0.005	1615	919	709	210

The numbers in the RefSeq columns do not reflect 86 genomes annotated in RefSeq with the aid of the VIOLIN data. Newly predicted genes have been further analyzed by BLASTP and these results are shown in the bottom rows.

^aThe GenBank records used in the current analysis did not include RefSeq records; however, the original records for each RefSeq record were included in this GenBank set of genomes.

^bThe percentage value is defined with regard to the number of predicted genes exactly matching the annotation in GenBank.

"The percentage value is defined with regard to the number of predicted genes exactly matching the annotation in RefSeq.

a	$L < 10 \ 000 \ \mathrm{nt^b} \ (891)^{\mathrm{c}}$	$10000 \le L \le 100\ 000\ \mathrm{nt^b}\ (169)^{\mathrm{c}}$	$L > 100 \ 000 \ \text{nt}^{\text{b}} \ (47)^{\circ}$
Exact match	1772	2493	6160
Different start	225 (12.7%)	483 (19.4%)	223 (3.6%)
Overlap with interrupted gene	79 (4.5%)	43 (1.7%)	87 (1.4%)
Annotated gene not predicted	731 (41.3%)	499 (20.0%)	1490 (24.1%)
New predictions	331 (18.7%)	350 (14.0%)	679 (11.0%)
Analysis of newly predicted genes			. ,
BLASTP and CD-Search hit	26	34	39
BLASTP only hit	51	104	181
CD-Search only hit	1	0	5
No hits	253	212	454

Table 2. Distribution of the results of the comparative analysis of gene prediction and annotation for viral genomes from the RefSeq collection with the three sets of viruses clustered by genome length

^aThe meaning of the categories in this column is the same as in the left-most column in Table 1.

^bThe genome length is designated as *L*.

^cThe number in parentheses designates the number of genomes of a given category.

Table 3. Distribution of the results of the comparative analysis of gene prediction and annotation for viral genomes from the RefSeq collection joined in classes defined by viral classification

a	dsDNA (193) ^b	ssDNA (185) ^b	dsRNA (127) ^b	ssRNA positive strand (418) ^b	ssRNA negative strand (82) ^b	Retroid (65) ^b	Satellite (27) ^b	Virus not classified (6) ^b	Phage not classified (3) ^b
Exact match	8532	440	142	750	252	151	12	12	132
Different start	644	56	5	115	36	32	0	1	42
Overlap with interrupted gene	125	2	4	51	3	24	0	0	0
Annotated gene not predicted	2053	275	12	245	32	45	4	6	49
New predictions	1025	88	54	72	32	53	4	3	29
Analysis of newly predicted genes									
BLASTP and CD-Search hit	79	2	0	5	0	13	0	0	0
BLASTP only hit	279	21	6	12	3	8	1	0	6
CD-Search only hit	5	0	0	1	0	0	0	0	0
No hits	662	65	48	54	29	32	3	3	23

^aThe meaning of the categories in this column is the same as in the left-most column in Table 1.

^bThe number in parentheses designates the number of genomes of a given category.

In 92 RefSeq phage genomes, 2414 gene predictions matched the existing annotation exactly. There were 313 entirely new predictions, and 103 of them were corroborated by the BLASTP search with hits to known proteins (*E*-value $<10^{-5}$). Again, approximately one-third of predictions corroborated by the similarity search (36 out of 103) overlapped already annotated genes with different reading frames. Our analysis did not confirm 489 genes annotated in phage genomes from the RefSeq collection.

Those 2720 (2231 + 489) genes that were annotated in the RefSeq viral genomes but were not predicted in this study are of a special interest. Subsequent BLASTP searches of these genes protein products against the non-redundant database detected similarity to other known proteins only for 848 out of the 2231 genes annotated in genomes of viruses of eukaryotic hosts and for 137 out of the 489 genes annotated in phages. Overall, we came to the number 985 as the total number of genes not predicted by the *ab initio* method, though these annotated genes had significant similarity with other known proteins. Therefore, given the whole number of 14 076 genes annotated in 1107 viral genomes, the false negative rate of the *ab initio* prediction method might be estimated at <10%. Interestingly, in 620 RefSeq viral genomes no annotated gene was missed in predictions.

As is indicated in Table 1, analysis of the original GenBank genomic records produced a larger fraction of newly predicted genes than determined in the genomes from the RefSeq collection. In turn, a larger fraction (28%) of these new genes produced significant BLASTP hits in comparison with the fraction of new genes in RefSeq (10%) supported by BLASTP search.

The gene prediction results for the RefSeq complete viral genomes were grouped together by virus length and type (Tables 2 and 3). Interestingly, a large number of new genes were identified in genomes shorter than 10 kb (892 genomes). For example, in the 8454 nt long genome of single-stranded DNA (ssDNA) enterobacteria phage IF1 (NC_001954) we identified a new 192 nt long gene coding for a homolog of *Vibrio cholerae* RasR protein. In contrast to all other known genes of this phage, this new gene was located in the DNA strand complementary to the ssDNA present in the virion. The largest numbers of newly identified genes or genes with new start predictions turned out to reside in 193 genomes of double-stranded DNA (dsDNA) viruses and 418 genomes of ssRNA viruses (Table 3).

Quite a few new predictions among those that had no BLASTP search support were found to overlap already annotated genes. This occurred 274 times (20% of newly predicted genes) in the RefSeq genomes. In 117 of these cases the product of the annotated gene showed similarity to a protein in another species. Nevertheless, the fact of overlap does not indicate a likely false positive prediction *per se*. Gene

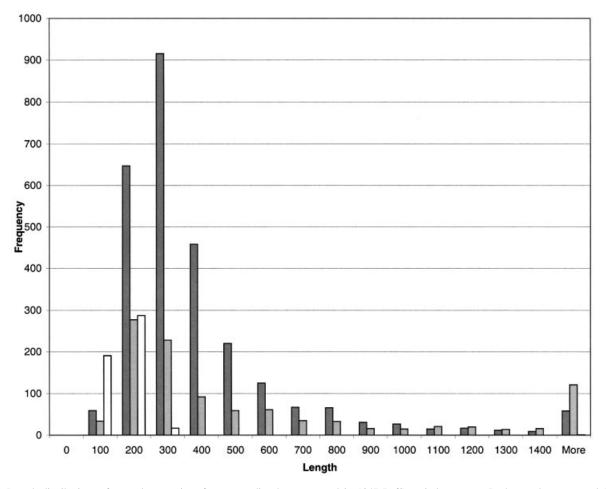
Virus	Number of genes predicted	Number of genes annotated	Number of genes in test set	Number of correct predictions	Prediction sensitivity (%)	Prediction specificity (%)
HHV-1 (HSV-1)	76	73	75	69	92	90
HHV-2 (HSV-2)	77	71	71	65	92	84
HHV-3 (VZV)	72	71	71	69	97	96
HHV-4 (EBV)	90	94	78	70	89	78
HHV-5 (HCMV)	164	198	148	125	84	76
HHV-6A	115	121	119	104	87	90
HHV-6B	114	91	85	81	95	71
HHV-7	109	107	104	90	87	83
HHV-8 (KSHV)	96	82	88	83	94	86
Total	913	908	839	767	91	84

Table 4. Gene prediction accuracy assessment for nine human herpesviruses

The test set was compiled as explained in text.

overlap is a quite frequent phenomenon in viral genomes, as 52% of viral genes annotated in RefSeq overlap each other.

Ideally, the characteristics of gene prediction accuracy, sensitivity and specificity (defined in Methods), should be determined for a test set of sequences containing experimentally verified genes. However, any given viral genome, except perhaps several of tiny size, would not have a large fraction of genes annotated experimentally. For this reason, we have compiled sets of so-called 'trustable' genes and used them as the test sets. For instance, in nine genomes of human herpesviruses (Table 4) we identified as trustable the genes both annotated and *ab initio* predicted. Also, we included in this category those genes that were either annotated or predicted and possessed additional 'extrinsic' evidence for being a real gene. This could be an experimentally characterized function or statistically significant sequence similarity to previously characterized proteins. For this compiled set of trustable genes of human herpesviruses, we obtained the average values of Sn = 91% and Sp = 84% as the estimates of the accuracy of our method.


Length comparison between newly predicted genes and genes annotated but missed in predictions indicated that the newly predicted genes tend to be shorter than the ones supposedly real but missed in predictions (Fig. 2). The ratio of newly predicted genes to missed genes decreased from 3.81 for genes shorter than 300 nt to 0.49 for genes longer than 300 nt. This observation seems to be related to a preference in the original records to have longer ORFs annotated as genes. The longer ORFs are generally assumed to be more likely to be real genes while ORFs shorter than 300 nt are difficult to discriminate from random non-coding ORFs and are more risky to annotate as genes. This conventional wisdom could lead to over-annotation of ORFs longer than 300 nt as genes while some short genes could be missed. As Figure 2 shows, many 'long' annotated genes were indeed not confirmed while quite a few new 'short' genes were predicted.

Assessing and improving the gene start prediction accuracy is another important issue. As described above, for more precise gene start prediction we used the RBS model for long enough viruses of prokaryotic hosts and the Kozak model for viruses of eukaryotic hosts. To give an example, the positional frequency matrices of RBS models specific for phage T4 and phage λ are visualized in 'logo' images (28) in Figure 3b and c. Notably, these images emphasize the similarity of the nucleotide frequency patterns existing in the RBS of phages to the pattern known for *E.coli* (Fig. 3a). This observation could be expected given that T4 and λ use the *E.coli* translational mechanism. While the positional frequency matrix of the RBS model has a fixed length and variable pattern of positional frequencies, the model of the RBS spacer allows for sequences of variable lengths (distances between RBS and start codon) with an invariant positional frequency pattern of the non-coding region.

The logos for the Kozak model determined for the Epstein-Barr virus (HHV4) and for Kaposi's sarcoma herpesvirus (HHV8) shown in Figure 3e and f clearly indicate that the information content of these signals is lower than that of RBS. However, the Kozak patterns observed in these viruses are still similar to the Kozak pattern known for the genome of the human host (Fig. 3d). Accurate evaluation of the gene start prediction accuracy requires a set of genes with experimentally verified gene starts. Evaluation of GeneMarkS performance was done earlier on the test set of *E.coli* genes with 5' ends verified by sequencing of N-terminals of encoded proteins (29). In this test the accuracy of start prediction was observed to be as high as 94% (5). A comparison of predictions for phage T4 both with and without the use of the RBS model was carried out (Supplementary Material, Table 1). This comparison showed that predictions made with the use of the RBS model made an almost 10% better match with the annotation, which we consider sufficiently accurate for this well studied phage genome.

Considering viruses of eukaryotic hosts, we compiled a set of genes from nine human herpesviruses with translation starts confirmed by similarity search on a protein level. The 5' end of the protein having the highest BLASTP hit (excluding one or several self hits) was compared with the 5' end of the query protein to assess the accuracy of the gene start prediction. After selection of the most unambiguous cases, we obtained an estimate of the accuracy of start prediction as 85% (Supplementary Material, Table 2).

The whole set of newly predicted genes was used further to search for similarity and reconstruct possible orthologous relationships. A database of 1360 newly predicted proteins was compiled and was cross-searched using BLASTP. We found that 237 predicted proteins had some similarity to other members in the database and could be further grouped into 106 protein clusters (Supplementary Material, Table 3). Some of

Figure 2. Length distributions of several categories of genes predicted or annotated in 1047 RefSeq viral genomes. Dark gray bars are used for genes annotated but not predicted; light gray bars are used for predicted but not annotated genes whose protein products produce BLASTP hits with *E*-values $<10^{-5}$; white bars are used for predicted but not annotated genes whose protein produce BLASTP hits with *E*-values $<10^{-5}$.

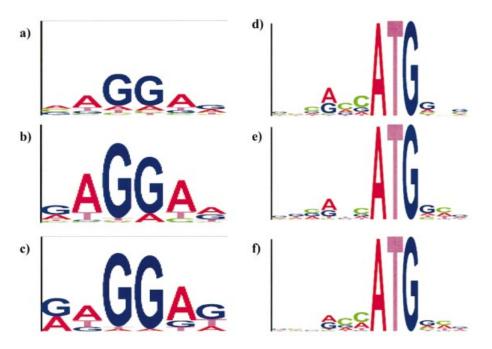
these clusters show highly conserved regions; for instance, a cluster of protein products of new genes identified in poxviruses.

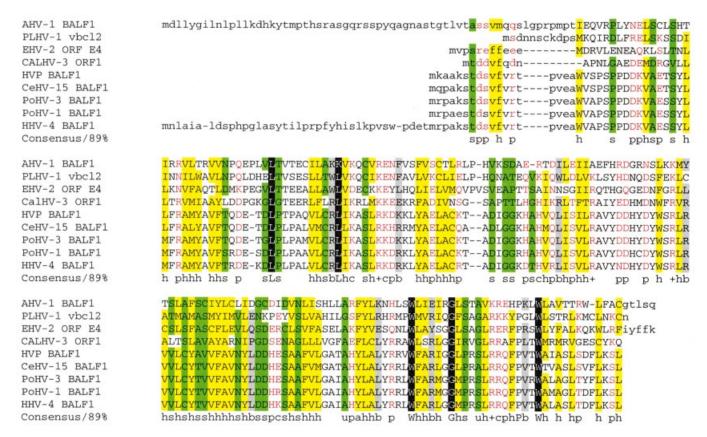
Now we take a closer look at several individual gene predictions. In the well studied genome of Bacteriophage λ (JO2459) we identified as many as five new genes. These genes have already been included in the RefSeq version of the phage λ annotation (NC_001416). Two genes, coding for a putative envelope protein (NP_597781) and Bor protein precursor (NP_597780), are similar to genes in prophage CP-933X, being a part of the *E.coli* O157 genome (NC_002655). A gene for superinfection exclusion protein B (NP_597779) must have been known for some time since its protein product had been included into the PIR database (P03762). The other two genes were classified as hypothetical.

Our predictions of 16 new genes in Porcine adenovirus A (NC_001997) were corroborated by similarity search. For instance, the protein encoded by predicted ORF6 is a member of a family of DNA polymerases present in 39 other adenoviruses.

A potentially important finding was a gene located in positions 10443–11138 of the genome of Alcelaphine herpesvirus 1 (NC_002531) coding for a 231 amino acid

long putative protein (NP_597933). Initially, the new protein was shown to be similar to the uncharacterized putative protein ORF E4 (NP 042601, AAC13792) of unclassified γ-herpesvirus Equine herpesvirus 2. A subsequent PSI-BLAST search revealed a striking similarity between these two proteins and recently discovered antagonists of the lymphocryptovirus antiapoptotic BCL-2 proteins (30). Later, the sequence of a third non-lymphocryptovirus protein, hypothetical v-BCL2 of another unclassified y-herpesvirus (Porcine lymphotropic herpesvirus 1) was released (31) and we have found its sequence to be very similar to the newly identified protein (NP_597933). The PSI-BLAST search profile built from the three proteins further identified similarity with ORF1 protein of Callitrichine herpesvirus 3 (a lymphocryptovirus BALF1-like BCL-2 like protein) and with the BALF1 protein (AAK01916) of Allitrichine herpesvirus 3 (a lymphocryptovirus) with *E*-values of 8×10^{-4} and 0.007, respectively. This range of E-values has been characterized as being indicative of significant sequence similarity (32,33). The output of the third iteration of PSI-BLAST included all the BALF1-like proteins at the top of the list. Human GRS protein and other BCL-2-like non-viral proteins were also present in the list at a substantial score distance.




Figure 3. The positional nucleotide frequency patterns of the GeneMarkS models of the RBS pattern for phage T4 (b) and phage λ (c) are shown in the logo form (27), as compared with the RBS pattern of *E.coli* shown in (a). Similarly, the Kozak pattern for human herpesvirus 4 (e) and human herpesvirus 8 (f) are shown in the logo form, with the Kozak pattern for human genes shown in (d).

In the next round of analysis, the RPS-BLAST (the NCBI program comparing protein sequences with the Conserved Domain Database) readily detected a BCL motif in all three non-lymphocryptovirus proteins. Moreover, multiple alignment by hierarchical clustering (34) of the newly predicted protein (NP_597933) with proteins NP_042601, AAM22111 and all the lymphocryptovirus BALF1 proteins (Fig. 4) further supported the probable functional significance of the observed pairwise similarity by making evident the patterns of amino acids conserved in all sequences. Interestingly enough, a TBLASTN search failed to reveal additional un-annotated homologs of NP_597933. It is tempting to speculate that, given the function of BALF1 (30), the newly identified BALF1-like protein may be involved in a complex regulation of the host cell apoptosis, presumably as an antagonist of the herpesvirus antiapoptotic BCL-2 proteins, and, perhaps, as a part of a gene network involved in carcinogenesis.

Another interesting new finding was a gene (ORF65) predicted in the genome of Epstein-Barr virus (HHV-4, NC_001345). Initially, the protein product of this gene was found to be significantly similar (with an *E*-value of $<10^{-5}$) to uncharacterized ORF26/ORF35 proteins of other y-herpesviridae. The subsequent PSI-BLAST search revealed after four iterations a similarity (with an *E*-value of 6×10^{-4}) to the ORF26/ORF35 protein family and the ORF48 protein of Equine herpesvirus 4, an α -herpesvirus. The ORF48 protein belongs to the UL14 family of proteins which are present in a minor component of the virion tegument and possess heat shock protein-like functions (35). Eight further PSI-BLAST iterations brought up all the members of this family. Multiple alignment of the ORF26/ORF35 and UL14-like protein sequences (Fig. 5) highlights common features that could not be readily seen in pair-wise alignments, particularly, similar patterns of distribution of charged residues. The observed sequence similarity strongly indicates a common function which remains to be determined by direct experiments. It is likely that these proteins play an important role since the members of the ORF26/ORF35 protein family are now confirmed to be present in all complete genomes of γ -herpesviruses. Interestingly, none of the β -herpesviruses genomes has a TBLASTN detectable homolog of ORF26/ORF35 proteins are likely to fulfill a subfamily-level function.

Some coding regions in viral genomes were missed in the earlier annotation because of their unusual organization. For instance, some viral genes contain a weak, read-through stop codon, which in the original annotation is considered the end of the gene; thus, a part of the real gene (and protein) is missed. In Barmah Forest virus a GeneMarkS prediction (ORF2), recovers the second part of the non-structural polyprotein gene in positions 5679–7298, missed in the original record U73745. Only after combining together these two parts, the protein (NC_001786) shows full-length similarity to the complete polyprotein encoded, for instance, in Ross River virus.

The vast majority of genes in viral genomes have no introns. There are, however, a few genes with introns and even some with whole separate genes located inside introns, such as an IE glycoprotein gene, HCMVUL37, in Human herpesvirus 5 (NC_001347). Genes interrupted by introns were identified by GeneMarkS as series of separate protein-coding ORFs. For instance, in Enterobacteria phage T4 (introns may appear not only in viruses of eukaryotic hosts but in phages as well) a gene for DNA topoisomerase small subunit protein (NC_000866) consists of two exons both predicted by GeneMarkS as separate ORFs. Developing an *ab initio*

Figure 4. MultAlin alignment of (putative) BALF1-like proteins (33). The variable N- and C-termini are shown in lower case. Protein names are abbreviated as follows: AHV-1 BALF1, BALF1 homolog (NP_597933) predicted by GeneMarkS in the genome of Alcelaphine herpesvirus 1 (NC_002531); PLHV-1 vbcl2, Porcine lymphotropic herpesvirus 1 hypothetical v-bcl2 (AAM22111); CALHV-3 ORF1, Callitrichine herpesvirus 3 ORF1 (AAK38208); HVP BALF1, Herpesvirus papio BALF1 (AAK01916); PoHV-3 BALF1, Pongine herpesvirus 3 BALF1 (AAK60342); HHV-4 BALF1, Human herpesvirus 4 BALF1 (NP_039912); PoHV-1 BALF1, Pongine herpesvirus 1 (AAK01917); CeHV-15 BALF1, Cercopithicine herpesvirus 15 (AAK95480); EHV-2 ORF E4, Equine herpesvirus 2 ORF E4 protein (NP_042601). The conserved positions are color coded based on the type of amino acid residue as indicated in the consensus line, where h and a stand for hydrophobic residues (A, C, F, I, L, M, V, W, Y: yellow background in alignment) and for aromatic residues (F, Y, W), respectively; b stands for 'large' residues (E, K, R, I, L, M, F, Y, W: gray background); p stands for polar residues (D, E, H, K, N, Q, R, S, T: shown in pink); s and u stand for small residues (A, C, S, T, D, N, V, G, P: green background) and tiny residues (G, A, S), respectively; c and + stand for charged residues (K, R), respectively. Invariant amino acid residues (in 85% or more sequences) are highlighted with black background.

approach for exact prediction of introns in viral genes is a challenging problem. However, quite frequently the combination of data obtained by intrinsic and extrinsic methods becomes easily amenable to further delineation of exon–intron structure by expert analysis. For instance, in the complete genome of Human adenovirus D (Human adenovirus type 17), GeneMarkS revealed 32 potential genes or gene fragments missed in the original annotation (AF108105). Only 11 of them appeared to be complete genes while the other 21 predicted coding regions were manually assembled into nine genes in the RefSeq record (NC_002067).

The above discussed examples of confirmation and functional characterization of new *ab initio* predictions by subsequent application of an extrinsic method make it quite plausible that many not yet confirmed *ab initio* predictions will be supported extrinsically as more DNA and protein data become available. Still, the absence of similarity to known proteins may also indicate the uniqueness of the protein whose expression and function might be established only by direct experiments.

The VIOLIN database

Newly defined genome annotations were compiled in the VIOLIN database http://opal.biology.gatech.edu/GeneMark/ VIOLIN/. This database currently has flat text file architecture. Differences between the VIOLIN and GenBank annotations are visualized by color codes (Fig. 6). The VIOLIN web site provides hypertext links to the NCBI similarity search programs directly from a genome annotation record. For a gene exactly matching an already known one, the line citing its coordinates is linked to the original gene record in GenBank as well as to the BLink program providing up-to-date information on the protein product (the BLink program, 'BLAST Link', displays the prerecorded results of BLAST searches that have been done for every protein sequence in the Entrez proteins data domain). For a predicted gene with no exact or partial match to the previous annotation, links to the programs PSI-BLAST and RPS-BLAST allow one to proceed with further up-to-date characterization of the putative protein. Genes annotated in a GenBank record but not confirmed by

HHV-4 GeneMark_65	MSSSKRDLVAQQLRASVDKRAAVSAR-DRFGRDHALFETQUTSARGALESLRHARETFE-SKQLISTYQRVVTATKT
CalHV-3 ORF26	TAKTKRDLIAQQLRASIEKKVAVSTC-DRFGEDHVLFHNQLLAAQESVRELNRTRSDLE-LKSLVSDYKCILSRSRRLR
MuHV-4 unknown	TKLLAKKLIGSSLRADIERRAAVSLT-DRFGKSHSLTQFQUTKAKRAERTASSAREHCHRIENMVSTKRELSDCVSELT
SaHV-2 ORF35	MNSNKKEFLYSAFETEINKKASVSLF-DRFGGKSCIFLHQLDHTKKSLIKHENLKRQKSIEGMLQAVDTSIQEKRKELS
AtHV-3 ORF35	MNSNRKKFLCSAFEAEINKKTSVSLF-DRFGESNCLFLHQLDTTKKSLIKHENLKKQKSIEGMLQEVNLSIQEKKKELS
BoHV-4 unknown	RNKKIAELFKINLLSE <mark>VNK</mark> KT <mark>SVSL</mark> F-DRFGEHSDIFLQQ <mark>,</mark> EVTQKNLQDCNQLRQSTKVDNI <mark>I</mark> SFVEST <mark>I</mark> RSQEKQLE
RRV unknown	SAAAKKML <mark>I</mark> KSELESE <mark>INK</mark> KL <mark>SISV</mark> F-DR <mark>FC</mark> ADSAVENAQ <mark>U</mark> KGTRE <mark>S</mark> LRSYNSLKKKDDLATV <mark>V</mark> GTLETS <mark>L</mark> REKQSELG
HHV-8 ORF 35	STNSKREF <mark>i</mark> ksalean <mark>i</mark> nrra <mark>avsl</mark> f-dr <mark>fg</mark> gssavfekq <mark>a</mark> qdaqhavrahgalkreaelgtl <mark>v</mark> rkagqr <mark>f</mark> ealkrers
EHV-2 ORF35	SRDQQRDL <mark>I</mark> ARGLEAE <mark>VNK</mark> RA <mark>AVSL</mark> F-DRFGPSNPLFKKQ <mark>U</mark> ADTRLSLRSYHSCSQTERVRAS <mark>L</mark> ELVNLT <mark>I</mark> ETKNKERA
PLHV-1 unknown	GPVLTKEH <mark>V</mark> LKNLEIA <mark>VNK</mark> QV <mark>SVSA</mark> A-DR <mark>FG</mark> KGNPLFRAQ <mark>,</mark> QFTTNLIRNQQKRDHERSLQMKLYNLESQ <mark>I</mark> RQKQSEIA
AlHV-1 ORF35	NPQSMKEQ <mark>I</mark> RLDIELA <mark>V</mark> QRRVAVS <mark>V</mark> G-DR <mark>FG</mark> TQSALFRRQUDEANAVSHRVQQTERLRAIKNK <mark>V</mark> VYLTTE <mark>I</mark> ENRTKEVE
HHV-3 MTP	HRRNRVKL <mark>V</mark> EAHNRAG <mark>LFKERTLDL</mark> IRGGASVQDPAFVYATTAAKEACADLNNQLRSAARIAS <mark>V</mark> EQKIRD <mark>I</mark> QSKVEEQT
CeHV-7 unknown	NRRTRVHLLEAHHRANLYKORTTDLIRGGSTTSDPHEVHATTAKDACAELNRNIRSVARVTAVEQKIAKIQERVKEQT
EHV-4 ORF48	SRRRLQLEEAYQREM <mark>IFKMRTLDL</mark> VREG <mark>VD</mark> KRNPAFVRA <mark>,</mark> TSAKEASLDLNRYMQAHSRVGR <mark>V</mark> EQNARALAQRVEAQA
EHV-1 ORF48	SRRQRLQLEEAYQREM <mark>IFRMHTLDL</mark> VREG <mark>VNKRSPAF</mark> VRA <mark>, TSA</mark> KEASLDLDRYMQAHSRVGR <mark>V</mark> EQNARA <mark>L</mark> AQRVEAQA
BoHV-1 unknown	ARRRLRLEEAHRREA <mark>IFK</mark> SRVVDLVRAG <mark>AD</mark> RDDPAFIHA <mark>,</mark> TAAKAARRDLGGQIRAAARVEAVRQHARDIETRVAAQA
HHV-1 UL14	HAALRRELAETHLEAEIYKDQTLQLHEGVSTQDPREVGA, MAAKAAHLELEARLKSRARLEMMRQRATCVKIRVEEQA
HHV-1(HSV1/17) UL14	
HHV-2 UL14	HAALRRELAETHERAE <mark>VYRDQTLQL</mark> HREG <mark>VS</mark> TQD PRE VGAEMAAKAAHLELEARLKSRARLEMMRQRATC <mark>V</mark> KIRVEEQA
GaHV-2 UL14	ARRRRILAECRTREA <mark>VYKERTLEL</mark> LSQG <mark>VE</mark> TDD PEF IEV <mark>H</mark> TSARNAHSDYKAQLRSNMRLEATDRKTKI <mark>I</mark> QRHIDEQL
GaHV-3 UL14	RRRRQILAECRTREK <mark>IYKERTLTL</mark> LSQG <mark>VE</mark> ADDPELIEALTSARNAHSDYKTQLHSNMRIEEAHRKSRI <mark>I</mark> QRHIDEQV
MeHV-1 UL14 MTP	RRRRQLLAECRVRETIYKERTLELSEGVGTDDPAFIAT TSARNAHTDHKAQLRSNILLENTERKLRLIERRIEDQV
SuHV-1 UL14	RRERRVRLEEAFORES <mark>VFKARTVEL</mark> LRGR <mark>AD</mark> KKNPEFVRA <mark>LMAA</mark> KO <mark>A</mark> RRDVERHLRLAARVES <mark>V</mark> EQKARALOARVEAOA
PsHV-1 UL14	RRIQARTK <mark>I</mark> MEYIKGS <mark>AYK</mark> AS <mark>VLEM</mark> TSAG <mark>VS</mark> PSHPAFRHATTKATEHEEAAKIAAQVDKRMVS <mark>V</mark> RRKIAR <mark>I</mark> TAVVNGQR
GaHV-1 Ull4	YRNRARAEVMNYIKGQAYKAAVIEMMSLKVERMHEALRYFLASAREQEAVSEINVRSNKRLSSVRCHVAR <mark>I</mark> KAATESQR
CHV unnamed	AYQREN <mark>IFKARTLDL</mark> IQEG <mark>VN</mark> RRDPIFVSATTSAKQASFNLDRQLYFNTKINA <mark>V</mark> KQKADA <mark>I</mark> RLHVESQS
consensus/80%	bhbcl.Kslplhs.pps.Fa.ssp.sp.pbpbh.pp.lp.p.cpb.
HHV-4 GeneMark_65	-QFPK <mark>I</mark> NYKQLERVEE <mark>L</mark> REQELEAR <mark>B</mark> E <mark>L</mark> RQALEP <mark>F</mark> EEHGCEY <mark>S</mark> CGVEP <mark>D</mark> ELL QQ WRVECLERT PS
CalHV-3 ORF26	GTLPI <mark>INHRELELAED</mark> FQDRLEETCSE <mark>I</mark> KEALAP <mark>F</mark> KRDGGEHGNGYEFDEQPADIVERMRLEQLESVPK
MuHV-4 unknown	HLKEI <mark>C</mark> QNFSVEDAER <mark>L</mark> IEETTVLKEELEDTVNT <mark>V</mark> SAALQREESLSAD <mark>SEQEESDI</mark> TCMRLDGLETVTA
SaHV-2 ORF35	LLKA- <mark>FNRHKLTAAEDL</mark> QDK <mark>I</mark> LELK <mark>E</mark> D <mark>I</mark> HFEIES <mark>L</mark> -NNGQPS <mark>S</mark> QEEEN <mark>S</mark> SETSIPDTIMQMRIEALERVPS
AtHV-3 ORF35	LLKT-FDRHKLSDTEDLQDKISELTEDLQFEIEAL-NHGQSSSQEEESSSENTVTGTIMRORIEALERVPS
BoHV-4 unknown	TLLK- <mark>F</mark> DKKKLERAEA <mark>L</mark> TNR <mark>V</mark> SDLS <mark>E</mark> D <mark>I</mark> QAELSF <mark>L</mark> TSEGGDG T NISHG <mark>S</mark> EDDTTR <mark>DTI</mark> MHMRLGTIEDVPA
RRV unknown	LLKG- <mark>F</mark> NRKKIEEFDA <mark>V</mark> ADA <mark>V</mark> RDLK <mark>EEL</mark> YGELEILGTLDNES <mark>V</mark> PVEEE <mark>S</mark> PK <mark>DDI</mark> IRMKLERLFRVCP
HHV-8 ORF 35	ILRQPRDLPRVADIDALVDAVADLKEEVAVRLDALEENGEETPTHSSSEIKDTIVRMRLDDLPPVCP
EHV-2 ORF35	LLSK-LNRGAVARVEKLCDAVADLREEFDLELDSLTAAQDDPVEGGPEPADVADTITEMRAEALESVPA
PLHV-1 unknown	TLSS- <mark>I</mark> DIKKIDHLEK <mark>L</mark> TDR <mark>V</mark> DELRET <mark>L</mark> EFELER-QDIEDNGGAHDELSGLQPDID <mark>NII</mark> VDMRLERLEKCPQ
AlHV-1 ORF35	SLIR- <mark>F</mark> DPKKVDILEE <mark>L</mark> TDK <mark>V</mark> EELEAN <mark>V</mark> SFEVDR <mark>I</mark> QGYQERYHGGQQT <mark>SLPDCNGELETTL</mark> TQ MRLEQAERC PP
HHV-3 MTP	
C-ITT C	SIQQILNTNRRYIAPDFIRGLDKTEDDNTDNIDRLEDAVGPNIEHENHTWFGEDDEALLTOWNLTTHEPTSK
CeHV-7 unknown	SIQQILNTNRRYIAPDFIRGLDKTEDDNTDNIDRLEDAVGPNIEHENHTWFGEDDEALLTOMMITTHEPTSK TIRKLLNANRRYLAPNFVERLENIEDDNCEGIDKLEDAVGGDTPLDHQEGWLCEDDEALLTOMMITTSESPIP
EHV-4 ORF48	TIRKLLNANRRYLAPNFVERLENIEDDNCEGIDKLEDAVGGDTPLDHOEGWLCEDDEALLTOWMLTTSESPIP AVGEILDRHRRFLHKDFIDKFDSLEDSLVEREERLGDVLSDINCDGGSGEAGESEEWLGHEDEALLMRWMLEEABRVST
	TIRKLLNANRRYLAPNFVERLENIEDDNCEGIDKLEDAVGGDTPLDHOEGWLCEDDEALLTOWMLTTSESPIP AVGEILDRHRRFLHKDFIDKFDSLEDSLVEREERLGDVLSDINCDGGSGEAGESEEWLGHEDEALLMRWMLEEABRVST
EHV-4 ORF48	TIRKLLNANRRYLAPNFVERLENIEDDNCEGIDKLEDAVGGDTPLDHQEGWLCEDDEALLTQWMLTTSESPIP AVGEILDRHRRFLHKDFIDKFDSLEDSLVEREERLGDVLSDINCDGGSGEAGESEEWLGHEDEALLMRWMLEEAFRVST AVGEILDRHRRFLHPDFIDNFDSREDSIVEREERLGDVLSDINCDGGGGEVGDPQEWLGHEDEALLMRWMLEEAFRVST AVAAVLAENRRFLRGDFLRAFDDAEDALLDQEERMGDAAADCGGDVGVGGAWLDGDDESLLAQWLLQSAFRVGP
EHV-4 ORF48 EHV-1 ORF48	TIRKLLNANRRYLAPNFVERLENIEDDNCEGIDKLEDAVGGDTPLDHQEGWLCEDDEALLTQWMLTTSESPIP AVGEILDRHRRFLHKDFIDKFDSLEDSLVEREERLGDVLSDINCDGGSGEAGESEEWLGHEDEALLMRWMLEEAFRVST AVGEILDRHRRFLHPDFIDNFDSREDSIVEREERLGDVLSDINCDGGGGEVGDPQEWLGHEDEALLMRWMLEEAFRVST AVAAVLAENRRFLRGDFLRAFDDAEDALLDQEERMGDAAADCGGDVGVGGAWLDGDDESLLAQWLLQSAFRVGP
EHV-4 ORF48 EHV-1 ORF48 BoHV-1 unknown	TIRKLLNANRRYLAPNFVERLENIEDDNCEGIDKLEDAVGGDTPLDHQEGWLCEDDEALLTQWMLTTSESPIP AVGEILDRHRRFLHKDFIDKFDSLEDSLVEREERLGDVLSDINCDGGSGEAGESEEWLGHEDEALLMRWMLEEABRVST AVGEILDRHRRFLHPDFIDNFDSREDSIVEREERLGDVLSDINCDGGGGEVGDPQEWLGHEDEALLMRWMLEEABRVST AVAAVLAENRRFLRGDFLRAFDDAEDALLDQEERMGDAAADCGGDVGVGGAWLDGDDESLLAQWLLQSAFRVGP ARRDFLTAHRRYLDPALGERLDAVDDRLADQEEQLEEAATNASLWGDGDLAEGWMSPADSDLLVMWQLTSAFKVHA ARRDFLTAHRRYLDPALGERLDAVDDRLADOEEOLEEAATNASLWGDGDLAEGWMSPADSDLLVMWQLTSAFKVHA
EHV-4 ORF48 EHV-1 ORF48 BOHV-1 unknown HHV-1 UL14	TIRKLLNANRRYLAPNFVERLENIEDDNCEGIDKLEDAVGGDTPLDHQEGWLCEDDEALLTQWMLTTSESPIP AVGEILDRHRRFLHKDFIDKFDSLEDSLVEREERLGDVLSDINCDGGSGEAGESEEWLGHEDEALLMRWMLEEAPRVST AVGEILDRHRRFLHPDFIDNFDSREDSIVEREERLGDVLSDINCDGGGGEVGDPQEWLGHEDEALLMRWMLEEAPRVST AVAAVLAENRRFLRGDFLRAFDDAEDALLDQEERMGDAAADCGGDVGVGGAWLDGDDESLLAQWLLQSAPRVGP ARRDFLTAHRRYLDPALGERLDAVDDRLADQEEQLEEAATNASLWGDGDLAEGWMSPADSDLLVMWQLTSAPKVHA ARRDFLTAHRRYLDPALGERLDAVDDRLADQEEQLEEAATNASLWGDGDLAEGWMSPADSDLLVMWQLTSAPKVHA ARRDFLTAHRRYLDPALSERLDAVDDRLADQEEQLEEAATNASLWGDGDLAEGWMSPADSDLLVMWQLTSAPKVHA
EHV-4 ORF48 EHV-1 ORF48 BoHV-1 unknown HHV-1 UL14 HHV-1 (HSV1/17) UL14	TIRKLLNANRRYLAPNFVERLENIEDDNCEGIDKLEDAVGGDTPLDHQEGWLCEDDEALLTQWMLTTSESPIP AVGEILDRHRRFLHKDFIDKFDSLEDSLVEREERLGDVLSDINCDGGSGEAGESEEWLGHEDEALLMRWMLEEAPRVST AVGEILDRHRRFLHDDFIDNFDSREDSIVEREERLGDVLSDINCDGGGGEVGDPQEWLGHEDEALLMRWMLEEAPRVST AVAAVLAENRRFLRGDFLRAFDDAEDALLDQEERMGDAAADCGGDVGVGGAWLDGDDESLLAQWLLQSAPRVGP ARRDFLTAHRRYLDPALGERLDAVDRLADQEEQLEEAATNASLWGDGDLAEGWMSPADSDLLVMVQLTSAPKVHA ARRDFLTAHRRYLDPALGERLDAVDRLADQEEQLEEAATNASLWGDGDLAEGWMSPADSDLLVMVQLTSAPKVHA ARRDFLTAHRRYLDPALSERLDAADDRLADQEEQLEEAATNASLWGDGDLAEGWMSPADSDLLVMVQLTSAPKVHA DRRLILDINRKLLNPALSERLDAADDRLADQEEQLEEAATNASLWGDGDLAGGWMSPGDSDLLVMVQLTSAPKVHA
EHV-4 ORF48 EHV-1 ORF48 BoHV-1 unknown HHV-1 UL14 HHV-1 (HSV1/17) UL14 HHV-2 UL14	TIRKLLNANRRYLAPNFVERLENIEDDNCEGIDKLEDAVGGDTPLDHQEGWLCEDDEALLTQMMLTTSESPIP AVGEILDRHRRFLHKDFIDKFDSLEDSLVEREERLGDVLSDINCDGGSGEAGESEEWLGHEDEALLMRWMLEEAPRVST AVGEILDRHRRFLHPDFIDNFDSREDSIVEREERLGDVLSDINCDGGGGEVGDPQEWLGHEDEALLMRWMLEEAPRVST AVAAVLAENRRFLRGDFLRAFDDAEDALLDQEERMGDAAADCGGDVGVGGAWLDGDDESLLAOWLLQSAPRVGP ARRDFLTAHRRYLDPALGERLDAVDDRLADQEEQLEEAATNASLWGDGDLAEGWMSPADSDLLVMVQLTSAPKVHA ARRDFLTAHRRYLDPALGERLDAVDDRLADQEEQLEEAATNASLWGDGDLAEGWMSPADSDLLVMVQLTSAPKVHA ARRDFLTAHRRYLDPALSERLDAADDRLADQEEQLEEAATNASLWGDGDLAEGWMSPADSDLLVMVQLTSAPKVHA DRRLILDINRKLLNPKLQUQLDQTEBAILEKEDILAQTIDDITLNDSITNTDELDEESEALLTKWILNQKTKKRP DRRIVLDANRRFLNPRLOSOLDRAFEDILANEDILTQISDDISDRLPDIELDAECEALLSKWILTSKFESRG
EHV-4 ORF48 EHV-1 ORF48 BoHV-1 unknown HHV-1 UL14 HHV-1(HSV1/17) UL14 HHV-2 UL14 GaHV-2 UL14	TIRKLLNANRRYLAPNFVERLENIEDDNCEGIDKLEDAVGGDTPLDHQEGWLCEDDEALLTQMMLTTSESPIP AVGEILDRHRRFLHKDFIDKFDSLEDSLVEREERLGDVLSDINCDGGSGEAGESEEWLGHEDEALLMRWMLEEAPRVST AVGEILDRHRRFLHPDFIDNFDSREDSIVEREERLGDVLSDINCDGGGGEVGDPQEWLGHEDEALLMRWMLEEAPRVST AVAAVLAENRRFLRGDFLRAFDDAEDALLDQEERMGDAAADCGGDVGVGGAWLDGDDESLLAOWLLQSAPRVGP ARRDFLTAHRRYLDPALGERLDAVDDRLADQEEQLEEAATNASLWGDGDLAEGWMSPADSDLLVMVQLTSAPKVHA ARRDFLTAHRRYLDPALGERLDAVDDRLADQEEQLEEAATNASLWGDGDLAEGWMSPADSDLLVMVQLTSAPKVHA ARRDFLTAHRRYLDPALSERLDAADDRLADQEEQLEEAATNASLWGDGDLAEGWMSPADSDLLVMVQLTSAPKVHA DRRLILDINRKLLNPKLQUQLDQTEBAILEKEDILAQTIDDITLNDSITNTDELDEESEALLTKWILNQKTKKRP DRRIVLDANRRFLNPRLOSOLDRAFEDILANEDILTQISDDISDRLPDIELDAECEALLSKWILTSKFESRG
EHV-4 ORF48 EHV-1 ORF48 BoHV-1 unknown HHV-1 UL14 HHV-1(HSV1/17) UL14 HHV-2 UL14 GaHV-2 UL14 GaHV-3 UL14	TIRKLLNANRRYLAPNFVERLENIEDDNCEGIDKLEDAVGGDTPLDHQEGWLCEDDEALLTQWMLTTSESPIP AVGEILDRHRRFLHKDFIDKFDSLEDSLVEREERLGDVLSDINCDGGSGEAGESEEWLGHEDEALLMRWMLEEAPRVST AVGEILDRHRRFLHPDFIDNFDSREDSIVEREERLGDVLSDINCDGGGGEVGDPQEWLGHEDEALLMRWMLEEAPRVST AVAAVLAENRRFLRGDFLRAFDDAEDALLDQEERMGDAAADCGGDVGVGGAWLDGDDESLLAOWLLQSAPRVGP ARRDFLTAHRRYLDPALGERLDAVDDRLADQEEQLEEAATNASLWGDGDLAEGWMSPADSDLLVMVQLTSAPKVHA ARRDFLTAHRRYLDPALGERLDAVDDRLADQEEQLEEAATNASLWGDGDLAEGWMSPADSDLLVMVQLTSAPKVHA ARRDFLTAHRRYLDPALSERLDAADDRLADQEEQLEEAATNASLWGDGDLAEGWMSPADSDLLVMVQLTSAPKVHA DRRLILDINRKLLNPKLQUQLQTBALEKEDILAQTIDDITLNDSITNTDELDEESEALLTKWILNQKTKKRP DRRIVLDANRRFLNPRLQSQLDRAFPDILANEDILTQISDDISDRLPDIELDAECEALLSKWILTSKPESRG DRKLILETNRRFLSPELHSHLEQAPDLIDKETILTEACEELTLADSSEDIEEFSETAFALLTKWILEQKPRPLL AVRGVLDRHRRFTRADFAEALDAABDALAAGEDRLDDAAALDEDWAGGGAPDEDEGEEADEALLTQWLLEEAEA
EHV-4 ORF48 EHV-1 ORF48 BoHV-1 unknown HHV-1 UL14 HHV-1 (HSV1/17) UL14 HHV-2 UL14 GaHV-2 UL14 GaHV-3 UL14 MeHV-1 UL14 MTP	TIRKLLNANRRYLAPNFVERLENIEDDNCEGIDKLEDAVGGDTPLDHQEGWLCEDDEALLTQMMLTTSESPIP AVGEILDRHRRFLHKDFIDKFDSLEDSLVEREERLGDVLSDINCDGGSGEAGESEEWLGHEDEALLMRWMLEEAPRVST AVGEILDRHRRFLHPDFIDNFDSREDSIVEREERLGDVLSDINCDGGGGEVGDPQEWLGHEDEALLMRWMLEEAPRVST AVAAVLAENRRFLRGDFLRAFDDAEDALLDQEERMGDAAADCGGDVGVGGAWLDGDDESLLAOWLLQSAPRVGP ARRDFLTAHRRYLDPALGERLDAVDDRLADQEEQLEEAATNASLWGDGDLAEGWMSPADSDLLVMVQLTSAPKVHA ARRDFLTAHRRYLDPALGERLDAVDDRLADQEEQLEEAATNASLWGDGDLAEGWMSPADSDLLVMVQLTSAPKVHA ARRDFLTAHRRYLDPALSERLDAADDRLADQEEQLEEAATNASLWGDGDLAEGWMSPADSDLLVMVQLTSAPKVHA DRRLILDINRKLLNPKLQLQLDQTEBAILEKEDILAQTIDDITLNDSITNTDELDEESEALLTKWILNQKTKKRP DRRIVLDANRRFLNPRLQSQLDRAFBDLIANEDILTQISDDISDRLPDIELDAECEALLKWILTSKFESRG DRKLILETNRRFLSPELHSHLEQAFBDLIDKETILTEACEELTLADSSEDIEEFSETAFALLTKWILEQKFRPLL AVRGVLDRHRRFTRADFAEALDAAFDALAAGEDRLDDAAALDEDWAGGGAPDEDEGEEADEALLTOWLLEEAEA ELASELKGYRRYLSSGFLDTFAAEACKLYEDEISLECAEAELSQHLPAGEDYDEGENELLVRWQLEGAFVPSR
EHV-4 ORF48 EHV-1 ORF48 BoHV-1 unknown HHV-1 UL14 HHV-1 (HSV1/17) UL14 HHV-2 UL14 GaHV-2 UL14 GaHV-3 UL14 MeHV-1 UL14 MTP SuHV-1 UL14	TIRKLLNANRRYLAPNFVERLENIEDDNCEGIDKLEDAVGGDTPLDHQEGWLCEDDEALLTQMMLTTSESPIP AVGEILDRHRRFLHKDFIDKFDSLEDSLVEREERLGDVLSDINCDGGSGEAGESEEWLGHEDEALLMRWMLEEAPRVST AVGEILDRHRRFLHPDFIDNFDSREDSIVEREERLGDVLSDINCDGGGGEVGDPQEWLGHEDEALLMRWMLEEAPRVST AVAAVLAENRRFLRGDFLRAFDDAEDALLDQEERMGDAAADCGGDVGVGGAWLDGDDESLLAQWLQSAPRVGP ARRDFLTAHRRYLDPALGERLDAVDDRLADQEEQLEEAATNASLWGDGDLAEGWMSPADSDLLVMVQLTSAPKVHA ARRDFLTAHRRYLDPALGERLDAVDDRLADQEEQLEEAATNASLWGDGDLAEGWMSPADSDLLVMVQLTSAPKVHA ARRDFLTAHRRYLDPALSERLDAADDRLADQEEQLEEAATNASLWGDGDLAGGWMSPGDSDLLVMVQLTSAPKVHA DRRLILDINRKLLNPKLQLQLDQTBAILEKEDILAQTIDDITLNDSITNTDELDEESEALLTKWILNQKTKKRP DRRIVLDANRRFLNPRLQSQLDRAEDDLIANEDILTQISDDISDRLPDIELDAECEALLSKWILTSKFESRG DRKLILETNRRFLSPELHSHLEQAEDLIDKETILTEACEELTLADSSEDIEEFSETAFALLTKWILEQKPRPLL AVRGVLDRHRFTRADFAEALDAAEDALAAGEDRLDDAAALDEDWAGGGAPDEDEGEEADFALLTCWILEEAEEA ELASELKGYRRYLSSGFLDTFAAEADKLYEDEISLECAEAELSQHLPAGEDYDEGENELLVWQLEGAFVPSR ALRLELDGYRRYLRNDFLETFAQESEAIAAAEDKLYEDEISLECAEAELSQHLPAG
EHV-4 ORF48 EHV-1 ORF48 BoHV-1 unknown HHV-1 UL14 HHV-1 (HSV1/17) UL14 HHV-2 UL14 GaHV-2 UL14 GaHV-3 UL14 MeHV-1 UL14 MTP SuHV-1 UL14	TIRKLLNANRRYLAPNFVERLENIEDDNCEGIDKLEDAVGGDTPLDHQEGWLCEDDEALLTQMMLTTSESPIP AVGEILDRHRRFLHKDFIDKFDSLEDSLVEREERLGDVLSDINCDGGSGEAGESEEWLGHEDEALLMRWMLEEAPRVST AVGEILDRHRRFLHPDFIDNFDSREDSIVEREERLGDVLSDINCDGGGGEVGDPQEWLGHEDEALLMRWMLEEAPRVST AVAAVLAENRRFLRGDFLRAFDDAEDALLDQEERMGDAAADCGGDVGVGGAWLDGDDESLLAOWLLQSAPRVGP ARRDFLTAHRRYLDPALGERLDAVDDRLADQEEQLEEAATNASLWGDGDLAEGWMSPADSDLLVMVQLTSAPKVHA ARRDFLTAHRRYLDPALGERLDAVDDRLADQEEQLEEAATNASLWGDGDLAEGWMSPADSDLLVMVQLTSAPKVHA ARRDFLTAHRRYLDPALSERLDAADDRLADQEEQLEEAATNASLWGDGDLAEGWMSPADSDLLVMVQLTSAPKVHA DRRLILDINRKLLNPKLQLQLDQTEBAILEKEDILAQTIDDITLNDSITNTDELDEESEALLTKWILNQKTKKRP DRRIVLDANRRFLNPRLQSQLDRAFBDLIANEDILTQISDDISDRLPDIELDAECEALLKWILTSKFESRG DRKLILETNRRFLSPELHSHLEQAFBDLIDKETILTEACEELTLADSSEDIEEFSETAFALLTKWILEQKFRPLL AVRGVLDRHRRFTRADFAEALDAAFDALAAGEDRLDDAAALDEDWAGGGAPDEDEGEEADEALLTOWLLEEAEA ELASELKGYRRYLSSGFLDTFAAEACKLYEDEISLECAEAELSQHLPAGEDYDEGENELLVRWQLEGAFVPSR

Figure 5. Alignment of the sequences of ORF26/ORF35 and UL14-like proteins. For most sequences, the N- and C-termini are not shown. The coloring is as in Figure 4. The protein gi numbers and the organism names are: HHV-4 GeneMark_65 prediction (positions 1–139) (Human herpesvirus 4); SaHV-2 ORF35 (1–147), 9625991 (Saimiriine herpesvirus 2); HHV-3 MTP (minor tegument protein, positions 11–159), 9625920 (Human herpesvirus 3); CeHV-7 unknown (11–159), 13242439 (Cercopithecine herpesvirus 7); AtHV-3 ORF35 (1–147), 9631227 (Ateline herpesvirus 3); EHV-4 ORF48 (7–155), 9629775 (Equine herpesvirus 4); BOHV-4 unknown (4–150), 13095612 (Bovine herpesvirus 4); RRV unknown (3–146), 18653842 (Rhesus rhadinovirus, Macaca mulatta rhadinovirus); HHV-1 UL14 (7–151), 9629394 (Human herpesvirus 1); HHV-2 UL14 (7–155), 9629283 (Human herpesvirus 2); HHV-1 (HSV1/17) UL14 (3–155), 136823 [Herpes simplex virus (type 1/strain 17)]; EHV-1 ORF48 (7–155), 9626785 (Equine herpesvirus 1); EHV-2 ORF35 (5–150), 9628038 (Equine herpesvirus 2); CalHV-3 ORF26 (3–148), 13676668 (Callitrichine herpesvirus 3); HHV-8 ORF35 (3–147), 18846002 (Human herpesvirus 8); PLHV-1 unknown (3–149), 20453822 (Porcine lymphotropic herpesvirus 1); AlHV-1 ORF35 (2–148), 10140956 (Alcelaphine herpesvirus 1); GaHV-2 UL14 (19–161), 9635049 (Gallid herpesvirus 2); MeHV-1 UL14 MTP (13–156), 12084842 (Meleagrid herpesvirus 1); GaHV-3 UL14 (8–156), 10834883 (Gallid herpesvirus 3); MuHV-4 unknown (3–149), 9629576 (murid herpesvirus 4); PSHV-1 UL14 (15–163), 13094667 (Psittacid herpesvirus 1); BoHV-1 unknown (18–170), 9629861 (Bovine herpesvirus 1); GaHV-1 UL14 (62–210), 5708112 (Gallid herpesvirus 1); CHV unnamed (1–112, the entire sequence; appears to be incomplete), 1066253 (Canine herpesvirus); SuHV-1 UL14 (6–159, end of sequence), 267201 [Suid herpesvirus 1 (strain NIA-3)].

Sector Contractor	View Favorite	and the second	and the second	oft Internet Ex	And the second sec			
	-		neMark/virus/virus	_display.cgi?acces	sion=NC 001847	,		v 🔁
		,,,.,						
Predic	tions Fo	r						
Bovine	herpesviru on=NC 00	us 1, comp	lete genon	ne.				
			inter and a			[
			GenBank (59		
A PARTY OF THE OWNER OF THE				m GenBank				
Index of the local data was not the				notated inte	and the second se	and a second second		
				annotated i	n GenBanl			
			was not pre	dicted		3		
* signif	ies signifi	cant BLAS	TP hit					
Predict	ted Genes	5:				DOT		
Index	Strand	Left	Right	Length	Name	PSI- BLAST/	View	RPS-
I NOCH	Juana	End	End	Length	Nume	BLink	Record	BLAST
1	+	222	1229	1008	circ	PSI-BLAST	View	
2		1658	2860	1203	UL54	<u>BLink</u>	View	
3	-	3040	4038	999	UL53	<u>BLink</u>	View	
4	+	3794	3868	75		PSI-BLAST		RPS-BLAST
5	-	4013	7237	3225	UL52	<u>BLink</u>	View	
6	+	7236	7967	732	UL51	BLink	View	
7	-	8045	9022	978	UL50	BLink	View	
8	+	8970	9260	291	UL49.5	BLink	View	
9	+	9384	10160	777	UL49	BLink	View	
10 11	+	10275	11792	1518	UL48	BLink	View	
12	+++	11963 14314	14182 16560	2220 2247	UL47 UL46	<u>BLink</u> BLink	View	
12	-	16683	18209	1527	UL46 UL44	BLink	<u>View</u> View	
10	-	18388	19524	1137	UL44 UL43	BLink	View	
14	82.8	19597	20823	1227	UL43	BLink	View	
				1821	UL41	PSI-BLAST	View	
15	+	20627	1/44/			DL DL HOL	1011	
15 16	+	20627	22447	and the second sec	UI 40	BLink	View	
14 15 16 17 18	-	20627 22563 23526	23507 26201	945 2676	UL40 UL39	<u>BLink</u> PSI-BLAST	<u>View</u> View	

Figure 6. Snapshot of a sample viral genome record as it appears at the VIOLIN web site.

our analysis are shown at the bottom of the VIOLIN record with links to the BLink, PSI-BLAST and RPS-BLAST programs to help re-analyze the previously annotated genes.

VIOLIN has been regularly used by the NCBI curators to improve the annotation of viral genomes in the RefSeq collection (36). Gene predictions have been subjected to additional analysis and manual curation by NCBI staff for quality control and functional assignment. Some of the new findings that originally appeared in VIOLIN and that are now included into annotations of 86 viral genomes in the RefSeq collection are shown in Table 5. For example, in Fowl adenovirus D (NC_000899) 14 proteins have been added to 15 existing in the original GenBank record AF083975. This was a particularly difficult case because many of the newly added genes were disrupted by frameshifts that likely resulted from sequencing errors. The new tentative protein sequences were assembled from fragments predicted by GeneMarkS using the ORF Finder (R. Tatusov and T. Tatusova, unpublished results), and BLASTP searches. In another example, in Lymphocystis disease virus (NC_001824) 110 coding regions were identified while the original GenBank record (AF083975) contained only one gene for a major capsid protein.

CONCLUDING REMARKS

We have demonstrated that GeneMarkS, the *ab initio* gene finding method can be adjusted for analysis of viral genomes of different types and can generate useful information. In small viral genomes, any single missed gene could be of significant interest and the reliable identification of a narrow set of putative proteins to work with by extrinsic and experimental methods saves a considerable amount of time and effort. As the never ending discovery of new viruses

Broup	Prediction	Predicted length	Best BLASTP hit	BLASTP length	Score	<i>E</i> -value	Annotated function
dsDNA	Alcelaphine herpesvirus 1		NC_002531				
	10443–11138 Amsacta moorei entomopoxvirus	231	gil9628007l NC 002520	183	66.3	4.00E-10	Putative BALF1 homolog
	complement (114621–114773) Ateline herpesvirus 3	50	gil9629968l NC_001987	52	65.6	9.00E-11	Conotoxin-like protein
	73911–75053	380	gil331012l	384	603	1.00E-171	Immediate-early phospho- protein (transactivator)
	Avian adenovirus CELO		NC_001720				• · · ·
	26793–27119 Bovine adenovirus 2	108	gil9633186l NC_002513	302	95.6	2.00E-19	Late 33 kDa protein
	10583–12295	570	gil13487865l	573	755	0	Peripentonal hexon-asso- ciated protein
	12347–13783	478	gil13487866l	471	793	0	Penton protein
	15888–16382	164	gil13487870l	233	201	4.00E-51	Minor capsid protein VI precursor
	16628–19324	898	gil134878711	910	1546	0	Hexon protein
	21366–23579	737	gil13487873l	722	1004	0	Hexon assembly-associate 100 kDa protein
	complement (30406-30735)	109	gil134878811	245	101	3.00E-21	245R protein homolog
	complement (30823–31383)	186	gil13487880	253	188	5.00E-47	253R protein homolog
	Deer papillomavirus 3914–4048	44	NC_001523 gil137747	44	85.4	9.00E-17	E5 transforming protein
	Equine herpesvirus 1 complement (112994–113785) Fowl adenovirus 8	263	NC_001491 gil15235673 NC_000899	608	179	5.00E-44	Glycine-rich protein
	14583–16211	542	gil9628848l	575	799	0	Peripentonal hexon associated protein
	complement (38665–40446) Fowlpox virus	593	gil3845680l NC_002188	195	381	1.00E-104	Glycine-rich protien
	52914–54572	552	gil1083970l	552	1122	0	Rifampicin resistance N3I protein
	Human adenovirus type 2		NC_001405				protein
	30444-30830	128	gi 119063	128	264	5.00E-70	Early E3B protein
	complement (30852–31019)	55	gil9626584l	53	143	4.00E-09	U protein
	complement (35146–35532) Human adenovirus type 12	128	gil119716l NC_001460	283	246	1.00E-64	E4 protein
	25202-25558	118	gil9626562l	211	135	2.00E-31	33 kDa phosphoprotein
	complement (31183–31407) Human adenovirus type 17	74	gil93525l NC_002067	74	154	1.00E-37	Early E4 17 kDa protein
	560–1138	192	gil4323354	251	316	1.00E-85	Early E1A protein
	1491–2117	208	gil43233571	182	377	1.00E-104	Small T-antigen fragment
	2165–2533	122	gil4323358l	495	214	5.00E-55	Small T-antigen fragment
	2530–2976	148	gil4323358l	495	301	5.00E-81	Small T-antigen fragment
	3033–3359	108	gil4323358l	495	227	4.00E-59	Small T-antigen fragment
	complement (3888–4499) complement (4501–4935)	203 144	gi 130244 gi 130244	448 448	408 250	1.00E-113 8.00E-66	IVa2 maturation protein IVa2 maturation protein
	15724–15960	78	gil9626191	368	230 74.5	2.00E-00	V minor core protein
	16177–16713	178	gil9626570l	358	148	4.00E-35	V minor core protein
	16798–16953	51	gil96265711	70	74.5	2.00E-13	L2 protein mu precursor
	17754–18065	103	gil780528l	947	161	3.00E-39	Hexon capsid protein
	18068–20617	849	gil780528l	947	1595	0	Hexon capsid protein
	complement (21293–21745)	150	gil118737l	517	238	3.00E-62	E2A DNA binding protein
	complement (21724–22503) 23513–23779	259 88	gil118735 gil209871	512 652	341 99.8	6.00E–93 7.00E–21	E2A DNA binding protein Hexon assembly-associate
	23799–24956	385	gil9626180l	805	331	1.00E-89	protein Hexon assembly-associate protein
	25472-25774	100	gil96265781	233	129	9.00E-30	pVIII protein
	27021–27494	157	gil1279435l	166	314	7.00E-85	HLA-binding protein
	29892-30287	131	gil6940696l	130	264	4.00E-70	E3B protein
	30280-30672	130	gil6940697l	130	272	1.00E-72	E3B protein
	complement (30770–30919)	49	gil96265841	53	54.3	2.00E-07	U protein
	complement (32308–32970)	220	gil39135551	292	464	1.00E-130	E4 protein
	complement (33116–33478) complement (33481–33834)	120 117	gil1699394 gil1699393	120 117	259 243	2.00E-68 7.00E-64	E4 protein E4 protein
	complement (33831–34058)	75	gil1699392	130	142	7.00E-04 5.00E-34	E4 protein
	complement (34266–34463) Human herpesvirus 3	65	gil16993921 gil16993911 NC_001348	125	132	7.00E-31	E4 protein
	10678–10905	75	gil13242466	87	112	9.00E-25	Membrane protein

Table 5	. Continued
---------	-------------

Group	Prediction	Predicted length	Best BLASTP hit	BLASTP length	Score	<i>E</i> -value	Annotated function
	Human herpesvirus 4		NC_001345				
	503-805	100	gil3303871	365	160	5.00E-39	Latent membrane protein
	1546-1680	44	gil3303871	365	85.8	7.00E-17	Latent membrane protein
	166576-166920	114	gil1263791	497	257	4.00E-68	Latent membrane protein
	complement (169031–169474)	147	gil126373	386	224	6.00E-58	Latent membrane protein
	Human herpesvirus 5		NC_001347				F
	160003–160173	56	gil7542409	176	97.1	3.00E-20	Interleukin-10-like protein
	Human herpesvirus 6B	50	NC_000898	170	<i>)</i> /.1	5.00L 20	interieuxiii 10 iike pioteiii
	23343–23774	143	gi 11346494	305	300	1.00E-80	G-protein coupled receptor
	Human herpesvirus 7	145	NC_001716	505	500	1.00L-00	G-protein coupled receptor
	129708–129848	46		153	101	2.00E-21	Mambuona alvoonuotain
		40	gil2746315	155	101	2.00E-21	Membrane glycoprotein
	Human papillomavirus type 1a	(12	NC_001356	(12	1251	0	Deulisetian anotain El
	812–2650	612	gil137646l	612	1251	0	Replication protein E1
	Human papillomavirus type 53		NC_001593	(2)	105	1 005 00	
	892–1140	82	gil96273231	631	125	1.00E-28	Replication protein E1
	1391–1591	66	gil96273231	631	104	2.00E-22	Replication protein E1
	Human papillomavirus type 56		NC_001594				
	895–1149	84	gil96285851	630	112	1.00E-24	Replication protein E1
	1395-2804	469	gil96285851	630	927	0	Replication protein E1
	Human papillomavirus type 71		NC_002644				* *
	559–828	89	gil1491685	100	99.8	8.00E-21	Transforming protein E7
	3004–3858	284	gil9626037l	383	264	1.00E-69	Regulatory protein E2
	4443-5783	446	gil13186281	524	583	1.00E=09	Minor capsid protein L2
	5776-7341	440 521		505	585 689	1.00E-105 0	
	5776–7341 Macaca mulatta rhadinovirus	321	gil3845719	505	089	U	Late major capsid protein L
		1.61	NC_003401	224	270	2 005 74	
	70403–70888	161	gil135067811	234	279	2.00E-74	bZIP transcription factor
	71468–72160	230	gil13506783l	275	292	4.00E-78	Glycoprotein R8.1
	Murine adenovirus type 1		NC_000942				
	2897-3175	92	gil2097491	97	187	2.00E-47	Early E1A protein
	complement (29726-30076)	116	gil9800520l	810	67.9	6.00E-11	Tropoelastin
	Ovine papillomavirus 1		NC_001789				
	747–2624	625	gil96270781	611	744	0	Replication protein E1
	2611-3780	389	gil96270691	416	379	1.00E-104	Regulatory protein E2
	3780–3941	53	gil137747l	44	66.3	5.00E-11	Transforming protein E5
	4268–5623	451	gil9627086	447	445	1.00E-124	Minor capsid protein L2
	Ovine papillomavirus 2	7,51	NC_001790		775	1.00L-124	winor capsic protein E2
		607	_	611	752	0	Doubligation motion E1
	745–2628	627	gil9627078	611	753	0	Replication protein E1
	2615–3778	387	gil96270691	416	369	1.00E-101	Regulatory protein E2
	3778–3930	50	gil137747l	44	65.2	1.00E-10	E5 protein
	4122–5615	497	gil9627086l	477	525	1.00E-148	Minor capsid protein L2
	Tupaia herpesvirus		NC_002794				
	complement (60731-61684)	317	gil9845327l	478	120	2.00E-26	US22 family protein
	Vaccinia virus		NC_001559				
	complement (5422-5526)	34	gil30969641	351	67.1	3.00E-11	TNF receptor II
	complement (6231–6377)	48	gil3096965	586	96.7	4.00E-20	K1R protein (ankyrin repeat
	r · · · · · · · · · · · · · · · · · · ·		6				protein)
	76530–76721	63	gi 11346541	63	130	3.00E-30	RNA polymerase
	162151–162264	37	gil401315	193	58.9	9.00E-09	Guanylate kinase
	183524–183640	38	gil3096966l	672	66.7	4.00E-11	D4L protein (ankyrin repeat
	103324-103040	30	g1100909001	072	00.7	4.002-11	1 1 1
	195207 195507	24	10000000	501	BC <	2.005 12	protein)
	185397–185507	36	gil30969651	586	70.6	3.00E-12	K1R protein (ankyrin repeat
							protein)
	186212-186316	34	gil3096964l	351	67.1	3.00E-11	TNF receptor II
ssDNA	Chloris striate mosaic virus		NC_001466				-
	complement (1864–2376)	170	gil137410	295	348	3.00E-95	Replication-associated
	I		0				protein
	Periplaneta fuliginosa densovirus		NC_000936				r
	complement (5134–5388)	84	gil5689346l	291	83.1	6.00E-16	Structural protein
Phage	Bacteriophage bIL311	54	NC_002670		05.1	0.001 10	Structural protein
nage		70		68	139	4.00E-33	no2 protein 14 liles trans-
	2252–2464	70	gil15673928	08	139	4.00E-33	ps3 protein 14-like transcrip
							tional regulator
	Bacteriophage L5		NC_003695				
	2-340	112	gil4098413l	348	216	8.00E-56	Integrase
	Bacteriophage lambda		NC_001416				
	34482-35036	184	gil140702l	183	374	1.00E-103	Superinfection exclusion protein B
	complement (46459-46752)	97	gi 137520	97	196	5.00E-50	Bor protein precursor
	complement (47042–47575)	177	gil16128541	150	309	2.00E-83	Putative envelope protein
		1//		150	309	2.00E-03	i diadive envelope protein
	Bacteriophage VT2-Sa provirus		NC_000902 gil15830439	217	59.7	5.00E-09	c1 repressor protein
	complement (11467–11595)	42					

Table 5. Continued

Group	Prediction	Predicted length	Best BLASTP hit	BLASTP length	Score	E-value	Annotated function
	Chlamydia phage phiCPAR39		NC_002180				
	1–147	48	gil9634956l	84	104	2.00E-22	Non-structural protein
	4425-4532	35	gil9634956l	84	75.3	1.00E-13	Non-structural protein
	Enterobacteria phage HK022		NC 002166				*
	virion		-				
	19015-20130	371	gil96341791	321	270	2.00E-71	Tail fiber protein
	complement (26155–26307)	50	gil96341911	50	104	1.00E-22	kil protein
	32436–33047	203	gil15832758	188	106	3.00E-22	Endonuclease
	33876–34316	146	gil9910800l	146	294	4.00E-79	Protein Nin B
	35667-36029	120	gil9634210	120	244	4.00E-64	Holiday-junction resolvas
	Enterobacteria phage Mu	120	NC_000929	120	244	4.001 04	Honday Junetion resolvas
	complement (33531–34064)	177	gil96899l	177	360	8.00E-99	Tail fiber assembly protei
	complement (34067–35053)	328	gil969011	536	678	0	Tail fiber
		328	NC_002519	550	078	0	Tall liber
	Roseophage SIO1 complement (39527–39826)	99	gil9964612l	271	124	2 OOF 28	ant like metain
		99		271	124	3.00E-28	gp5-like protein
	Streptococcus thermophilus		NC_002185				
	bacteriophage 7201	<i>(</i> 0	10000000	210	116	2.005.20	
	3148–3330	60	gil9634634l	218	116	3.00E-26	Erf protein
	Streptococcus thermophilus		NC_000872				
	bacteriophage Sfi21	. = 0					
	37175–37687	170	gil9635004l	167	317	6.00E-86	DNA binding protein
	Sulfolobus Virus 1		NC_001338				
	12585-13001	138	gil75696l	144	270	7.00E-72	Structural protein VP1
etroid	Abelson murine leukemia virus		NC_001499				
	4425-4580	51	gil3320311	636	104	2.00E-22	env polyprotein
	Feline immunodeficiency virus		NC_001482				
	9006-9170	54	gi 128015	122	118	1.00E-26	nef protein
	Friend spleen focus-forming virus		NC_001500				
	2173–2292	39	gil11120675	1733	79.6	5.00E-15	gag polyprotein
	2289–2543	84	gil510896l	538	168	2.00E-41	gag polyprotein
	Human foamy virus		NC_001736				6.61 71
	11054–11827	257	gil227764	356	562	1.00E-159	bel-2 protein
	Human T-cell lymphotropic virus		NC_001488				F
	type 2						
	6–119	37	gil65397511	48	77.6	2.00E-14	tax protein
	Moloney murine sarcoma virus	51	NC_001502	40	77.0	2.001 14	tax protein
	2485–2967	160	gil9626961	1737	271	5.00E-72	pol polyprotein
	2945-3388	147	gil96269611	1737	293	1.00E-72	pol polyprotein
			U	636			
	4563–4718	51	gi 332031	030	102	5.00E-22	Envelope protein
	Murine osteosarcoma virus	122	NC_001506	127	250	4.005 ((TTL: 1/1 1/1 / 1
	complement (2305–2706)	133	gil15822914	137	250	4.00E-66	Ubiquitin-like protein
	Murine sarcoma virus	1.60	NC_001363		271		
	2970-3452	160	gil96269611	1737	271	5.00E-72	pol polyprotein
	3430–3873	147	gil96269611	1737	293	1.00E-78	pol polyprotein
	5048-5203	51	gil3320311	636	102	5.00E-22	spike protein
	Simian foamy virus		NC_001364				
	3–377	124	gil9626108	417	279	1.00E-74	bet protein
	Simian immunodeficiency virus		NC_001549				
	3–335	110	gil96272091	223	247	5.00E-65	nef protein
	Simian type D virus 1		NC_001551				
	5194–5973	259	gil96272141	1771	450	1.00E-125	pol polyprotein
	Y73 sarcoma virus		NC_001404				
	2865–3194	109	gil13508442l	611	206	7.00E-53	Transmembrane envelope protein
	Barmah Forest virus		NC_001786				Protoin
	5679–7298	539	gil7444406	2493	816	0	Non-structural polyprotein
sRNA(+)		559	U	2473	010	0	rion-su ucturar poryproten
SKINA(+)	Northern cereal mosaic virus	2059	NC_002251	1067	524	1.00E 150	Dolumoroso
	6740–12916	2058	gil29614291	1967	536	1.00E-150	Polymerase

brings about new names such as Mimivirus (37) or SARS (38), accurate *ab initio* computer methods for viral gene identification will remain of great value.

SUPPLEMENTARY MATERIAL

Supplementary Material is available at NAR Online.

ACKNOWLEDGEMENTS

We thank Dr Yiming Bao for valuable comments on his experience of using the GeneMarkS program for annotating viral genomes. We are grateful to Dr John Besemer, Dr Dwight Hall and Dr Chris Klausmeier for useful remarks on the manuscript. M.B., A.L. and R.M. were supported in part by grant HG00783 from the US National Institutes of Health as well as by a grant jointly awarded by Georgia Tech and the US Centers for Disease Control and Prevention.

REFERENCES

- Benson, D.A., Karsch-Mizrachi, I., Lipman, D.J., Ostell, J., Rapp, B.A. and Wheeler, D.L. (2002) GenBank. Nucleic Acids Res., 30, 17–20.
- Sanger,F., Coulson,A.R., Hong,G.F., Hill,D.F. and Peterson,G.B. (1982) Nucleotide sequence of bacteriophage λ DNA. J. Mol. Biol., 162, 729–773.
- Borodovsky, M., Rudd, K.E. and Koonin, E.V. (1994) Intrinsic and extrinsic approaches for detecting genes in a bacterial genome. *Nucleic Acids Res.*, 22, 4756–4747.
- Vink,C., Beuken,E. and Bruggeman,C.A. (2000) Complete DNA sequence of the rat cytomegalovirus genome. J. Virol., 74, 7656–7665.
- Besemer, J., Lomsadze, A. and Borodovsky, M. (2001) GeneMarkS: a selftraining method for predicition of gene starts in microbial genomes. Implications for finding sequence motifs in regulatory regions. *Nucleic Acids Res.*, 29, 2607–2618.
- Kieff,E. and Rickinson,A.B. (2001) Epstein–Barr virus and its replication. In Knipe,D.M. and Howley,P.M. (eds), *Fields Virology*. Lippincott Williams and Wilkins, Philadelphia, PA, Vol. 2, pp. 2511–2672.
- 7. Borodovsky, M.Y. and McIninch, J.D. (1993) GeneMark: parallel gene recognition for both DNA strands. *Comput. Chem.*, **17**, 123–153.
- Zimmerman, W., Broll, H., Ehlers, B., Buhk, H., Rosenthal, A. and Goltz, M. (2001) Genome sequence of bovine herpesvirus 4, a bovine *Rhadinovirus* and identification of an origin of DNA replication. *J. Virol.*, **75**, 1186–1194.
- Mesyanzhinov,V.V., Robben,R., Grymonprez,B., Kostyuchenko,V.A., Bourkaltseva,M.V., Sykilinda,N.N., Krylog,V.N. and Volckaert,G. (2002) The genome of bacteriophage ΦKZ of *Pseudomonas aeruginosa*. *J. Mol. Biol.*, **317**, 1–19.
- Tu,A.T., Voelker,L.L., Shen,X. and Dybvig,K. (2001) Complete nucleotide sequence of the *Mycoplasma* virus P1 genome. *Plasmid*, 45, 122–126.
- Ford,M.E., Sarkis,G.J., Belanger,A.E., Hendrix,R.W. and Hatfull,G.F. (1998) Genome structure of mycobacteriophage D29: implications for phage evolution. J. Mol. Biol., 279, 143–164.
- Recketenwald,J. and Schmidt,H. (2002) The nucleotide sequence of Shiga toxin (Stx) 2e-encoding phage ΦP27 is not related to other Stx phage genomes, but the modular genetic structure is conserved. *Infect. Immun.*, **70**, 1896–1908.
- Hambly, E., Tetart, F., Desplats, C., Wilson, W.H., Krisch, H.M. and Mann, N.H. (2001) A conserved genetic module that encodes the major virion components in both the coliphage T4 and the marine cyanophage S-PM2. *Proc. Natl Acad. Sci. USA*, 98, 11411–11416.
- Takai,S., Hines,S.A., Sekizaki,T., Nicholson,V.M., Alperin,D.A., Osaki,M., Takamatsu,D., Nakamura,M., Suzuki,K., Ogino,N., Kakuda,T., Dan,H. and Prescott,J.F. (2000) DNA sequence and comparison of virulence plasmids from *Rhodocuccus equi* ATCC 33701 and 103. *Infect. Immun.*, 68, 6840–6847.
- Venkatesan, M.M., Goldberg, M.B., Rose, D.J., Grotbeck, E.J., Burland, V. and Blattner, F.R. (2001) Complete DNA sequence and analysis of the large virulence plasmid of *Shigella felxneri*. *Infect. Immun.*, 69, 3271–3285.
- Burland, V., Shao, Y., Perna, N.T., Plunkett, G., Sofia, H.J. and Blattner, F.R. (1998) The complete DNA sequence and analysis of the large virulence plasmid of *Escherichia coli* O157:H7. *Nucleic Acids Res.*, 26, 4196–4202.
- Yang, F., He, J., Lin, X., Li, Q., Pan, D., Zhang, X. and Xu, X. (2001) Complete genome sequence of the shrimp white spot bacilliform virus. *J. Virol.*, **75**, 11811–11820.
- He,J.G., L,L., Deng,M., He,H.H., Weng,S.P., Wang,X.H., Zhou,S.Y., Long,Q.Z., Wang,X.Z. and Chan,S.M. (2002) Sequence analysis of the complete genome of an iridovirus isolated from the tiger frog. *Virology*, 292, 185–197.

- Wheeler,D.L., Church,D.M., Lash,A.E., Leipe,D.D., Madden,T.L., Pontius,J.U., Schuler,G.D., Schriml,L.M., Tatusova,T.A., Wagner,L. and Rapp,B.A. (2001) Database resources of the National Center for Biotechnology Information. *Nucleic Acids Res.*, 29, 11–16.
- Farmer, A.D., Calef, C.E., Millman, K. and Myers, G.L. (1995) The Human Papillomavirus Database. J. Biomed. Sci., 2, 90–104.
- Hiscock,D. and Upton,C. (2000) Viral Genome DataBase: storing and analyzing genes and proteins from complete viral genomes. *Bioinformatics*, 16, 484–485.
- Mar Albà, M., Lee, D., Pearl, F.M.G., Shepherd, A.J., Martin, N., Orengo, C.A. and Kellam, P. (2001) VIDA: a virus database system for the organisation of virus genome open reading frames. *Nucleic Acids Res.*, 29, 133–136.
- Lukashin, A. and Borodovsky, M. (1998) GeneMark.hmm: new solutions for gene finding. *Nucleic Acids Res.*, 26, 1107–1115.
- Besemer, J. and Borodovsky, M. (1999) Heuristic approach to deriving models for gene finding. *Nucleic Acids Res.*, 27, 3911–3920.
- Lawrence, C.E., Altschul, S.F., Boguski, M.S., Liu, J.S., Neuwald, A.F. and Wootton, J.C. (1993) Detecting subtle sequence signals: a Gibbs sampling strategy for multiple alignment. *Science*, 262, 208–214.
- Durbin, S., Eddy, A., Krogh, G. and Mitchison, G. (1998) *Biological* Sequence Analysis. Cambridge University Press, Cambridge, UK.
- Altschul,S.F., Madden,T.L., Schaffer,A.A., Zhang,J., Miller,W. and Lipman,D.J. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. *Nucleic Acids Res.*, 26, 3986–3991.
- Schneider, T.D. and Stephens, R.M. (1990) Sequence logos: a new way to display consensus sequences. *Nucleic Acids Res.*, 18, 6097–6100.
- Link,A.J., Robison,K. and Church,G.M. (1997) Comparing the predicted and observed properties of proteins encoded in the genome of *Escherchia coli* K-12. *Electrophoresis*, 18, 1259–1313.
- Bellows, D.S., Howell, M., Pearson, C., Hazlewood, S.A. and Hardwick, J.M. (2002) Epstein-Barr virus BALF1 is a BCL-2-like antagonist of the herpesvirus antiapoptotic BCL-2 proteins. *J. Virol.*, 76, 2469–2479.
- Goltz, M., Ericsson, T., Patience, C., Huang, C.A., Noack, S., Sachs, D.H. and Ehlers, B. (2002) Sequence analysis of the genome of porcine lymphotropic herpesvirus 1 and gene expression during post-transplant lymphoproliferative disease of pigs. *Virology*, **294**, 383–393.
- Schaffer,A.A., Aravind,L., Madden,T.L., Shavirin,S., Spouge,J.L., Wolf,Y.I., Koonin,E.V. and Altschul,S.F. (2001) Improving the accuracy of PSI-BLAST protein database searches with composition-based statistics and other refinements. *Nucleic Acids Res.*, 29, 2994–3005.
- Altschul,S.F., Bundschuh,R., Olsen,R. and Hwa,T. (2001) The estimation of statistical parameters for local alignment score distributions. *Nucleic Acids Res.*, 29, 351–361.
- Corpet,F. (1988) Multiple sequence alignment with hierarchical clustering. *Nucleic Acids Res.*, 16, 10881–10890.
- Yamauchi, Y., Wada, K., Goshima, F., Daikoku, T., Ohtsuka, K. and Nishiyama, Y. (2002) Herpes simplex virus type 2 UL14 gene product has heat shock protein (HSP)-like functions. J. Cell Sci., 115, 2517–2527.
- Tatusova,T.A., Karsch-Mizrachi,I. and Ostell,J.A. (1999) Complete genomes in WWW Entrez: data representation and analysis. *Bioinformatics*, 15, 536–543.
- Scola,B.L, Audic,S., Robert,C., Jungang,L., de Lamballerie,X., Drancourt,M., Birtles,R., Claverie,J. and Raoult,D. (2003) A giant virus in Amoebae. *Science*, **299**, 2033.
- Marra,M.A., Jones,S.J., Astell,C.R., Holt,R.A., Brooks-Wilson,A., Butterfield,Y.S., Khattra,J., Asano,J.K., Barber,S.A., Chan,S.Y., Cloutier,A., Coughlin,S.M., Freeman,D., Girn,N., Griffith,O.L., Leach,S.R., Mayo,M., McDonald,H., Montgomery,S.B., Pandoh,P.K., Petrescu,A.S., Robertson,A.G., Schein,J.E., Siddiqui,A., Smailus,D.E., Stott,J.M., Yang,G.S., Plummer,F. andonov,A., Artsob,H., Bastien,N., Bernard,K., Booth,T.F., Bowness,D., Czub,M., Drebot,M., Fernando,L., Flick,R., Garbutt,M., Gray,M., Grolla,A., Jones,S., Feldmann,H., Meyers,A., Kabani,A., Li,Y., Normand,S., Stroher,U., Tipples,G.A., Tyler,S., Vogrig,R., Ward,D., Watson,B., Brunham,R.C., Krajden,M., Petric,M., Skowronski,D.M., Upton,C. and Roper,R.L. (2003) The Genome sequence of the SARS-associated coronavirus. *Science*, 300, 1399–1404.