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Abstract

Background

Penalised regression methods are a useful atheoretical approach for both developing pre-

dictive models and selecting key indicators within an often substantially larger pool of avail-

able indicators. In comparison to traditional methods, penalised regression models improve

prediction in new data by shrinking the size of coefficients and retaining those with coeffi-

cients greater than zero. However, the performance and selection of indicators depends on

the specific algorithm implemented. The purpose of this study was to examine the predictive

performance and feature (i.e., indicator) selection capability of common penalised logistic

regression methods (LASSO, adaptive LASSO, and elastic-net), compared with traditional

logistic regression and forward selection methods.

Design

Data were drawn from the Australian Temperament Project, a multigenerational longitudinal

study established in 1983. The analytic sample consisted of 1,292 (707 women) partici-

pants. A total of 102 adolescent psychosocial and contextual indicators were available to

predict young adult daily smoking.

Findings

Penalised logistic regression methods showed small improvements in predictive perfor-

mance over logistic regression and forward selection. However, no single penalised logistic

regression model outperformed the others. Elastic-net models selected more indicators

than either LASSO or adaptive LASSO. Additionally, more regularised models included

fewer indicators, yet had comparable predictive performance. Forward selection methods
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dismissed many indicators identified as important in the penalised logistic regression

models.

Conclusions

Although overall predictive accuracy was only marginally better with penalised logistic

regression methods, benefits were most clear in their capacity to select a manageable sub-

set of indicators. Preference to competing penalised logistic regression methods may there-

fore be guided by feature selection capability, and thus interpretative considerations, rather

than predictive performance alone.

Introduction

Maximising prediction of health outcomes in populations is central to good public health prac-

tice and policy development. Population cohort studies have the potential to provide such evi-

dence due to the collection of a wide range of developmentally appropriate psychosocial and

contextual information on individuals over extended periods of time. It is however, challeng-

ing to identify which indicators maximise prediction, particularly when a large number of

potential indicators is available. Atheoretical predictive modelling approaches–such as penal-

ised regression methods–have the potential to identify key predictive markers while handling

potential multicollinearity issues, addressing selection biases that impinge on the ability of

indicators to be identified as important, and using procedures that enhance likelihood of repli-

cation. The interpretation of penalised regression is relatively straightforward for those accus-

tomed to regressions, and thus represents an accessible solution. Furthermore, growing

accessibility of predictive modelling tools is encouraging and presents as a potential point of

advancement for identifying key predictive indicators relevant to population health [1].

Broadly, predictive modelling contrasts with the causal perspective most commonly seen

within cohort studies, in that it aims to maximise prediction of an outcome, not investigate

underlying causal mechanisms [2]. While both predictive and causal perspectives share some

similarities, Yarkoni and Westfall note that “it is simply not true that the model that most closely
approximates the data-generating process will in general be the most successful at predicting
real-world outcomes” [2, p. 1000]. This reflects the perennial difficulty of achieving full or even

adequate representation of underlying constructs through measurable data, creating a “dispar-
ity between the ability to explain phenomena at the conceptual level and the ability to generate
predictions at the measurable level” [3, p. 293]. The perspectives differ further in their foci:

while causal inference approaches are commonly interested in a single exposure-outcome

pathway [4, 5], predictive modelling focuses on multivariable patterns of indicators that

together predict an outcome [6].

Two of the key goals in finding evidence for predictive markers are improving the accuracy

and generalisability of predictive models. Accuracy refers to the ability of the model to cor-

rectly predict an outcome, whereas generalisability refers to the ability of the model to predict

well given new data [7]. The concept of model fitting is key to understanding both accuracy

and generalisability. Over-fitting is of particular concern and refers to the tendency for analy-

ses to mistakenly fit models to sample-specific random variation in the data, rather than true

underlying relationships between variables [8]. When a model is overfitted, it is likely to be

accurate in the dataset it was developed with but is unlikely to generalise well to new data.

Several model building considerations are key to balancing the accuracy and generalisabil-

ity of predictive models. First and foremost is the use of training and testing data. Training
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data are the data used to generate the predictive model, and testing data are then used to exam-

ine the performance of the predictive model. However, given the rarity of entirely separate

cohort datasets suitable to train and then test a predictive model, a single data set is often split

into training and testing portions; two subsets of a larger data pool [7]. If predictive models are

trained and tested on the exact same data (i.e., no data splitting), the accuracy of models is

likely to be inflated due to overfitting. To further improve generalisability, it is also recom-

mended to iterate through a series of many training and testing data splits, to reduce the influ-

ence of any specific training/testing split of the data [9].

Another consideration important to balancing the accuracy and generalisability of predic-

tive models is the process of regularisation involved in penalised regression. Regularisation is

an automated method whereby the strength of coefficients for predictive variables that are

deemed unimportant in predicting the outcome are shrunk towards zero. Regularisation also

helps reduce overfitting by balancing the bias-variance trade-off [10]. Specifically, by reducing

the size of the estimated coefficients (i.e., adding bias and reducing accuracy in the training

data), the model becomes less sensitive to the characteristics of the training data, resulting in

smaller changes in predictions when estimating the same model in the testing data (i.e., reduc-

ing variation and increasing generalisability).

Additionally, regularisation aids in balancing the accuracy and generalisability of predictive

models in terms of complexity. Complexity often refers to the number of indicators in the final

model. For several penalised regression procedures, the regularisation process results in the

coefficients of unimportant variables being shrunk to zero (i.e., excluded from the model).

Importantly, reducing the number of indicators in the final model helps to reduce overfitting.

This is commonly referred to as feature selection [10]. Feature selection helps to improve the

interpretability of models by selecting only the most important indicators from a potentially

large initial pool, which is critical for researchers seeking to create administrable population

health surveillance tools. While traditional approaches, such as backward elimination and for-

ward selection procedures [11], are capable of identifying a subset of indicators, penalised

regression methods improve on these by entering all potential variables simultaneously, reduc-

ing biases induced by the order variables are entered/removed from the model.

Retention of indicators is, however, influenced by the particular decision rules of the algo-

rithm. Three penalised regression methods which conduct automatic feature commonly com-

pared in the literature and discussed in standard statistical texts [10, 12] are the least absolute

shrinkage and selection operator (LASSO) [13], the adaptive LASSO [14] and the elastic-net

[15]. The LASSO applies the L1 penalty (constraint based on the sum of the absolute value of

regression coefficients), which shrinks coefficients equally and enables automatic feature selec-

tion. However, in situations with highly correlated indicators the LASSO tends to select one

and ignore the others [16]. The adaptive LASSO and elastic-net are extensions on the LASSO,

both of which incorporate the L2 penalty from ridge regression [17].

The L2 penalty (constraint based on the sum of the squared regression coefficients) shrinks

coefficients equally towards zero, but not exactly zero, and is beneficial in situations of multi-

collinearity as correlated indicators tend to group towards each other [16, 18]. More specifi-

cally, the adaptive LASSO incorporates an additional data-dependent weight (derived from

ridge regression) to the L1 penalty term, which results in coefficients of strong indicators being

shrunk less than the coefficients of weak indicators [14], contrasting to the standard LASSO

approach. The elastic-net includes both the L1 and L2 penalty and enjoys the benefits of both

automatic feature selection and the grouping of correlated predictors [15].

In addition to selecting between alternative penalised regression methods, analysts need to

tune (i.e., select) the parameter lambda (λ), which controls the strength of the penalty terms.

This is most commonly done via the data driven process of k-fold cross-validation [19].
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Specifically, k-fold cross-validation splits the training data into k number of partitions, for

which a model is built on k-1 of the partitions and validated on the remaining partition. This

is repeated k number of times until each partition is used once as the validation data. 5-fold

cross is often used. Commonly, the value of λ which minimises out-of-sample prediction error

is selected, identifying the best model. An alternative parameterisation applies the one-stan-
dard-error rule, for which a value of λ is selected that results in the most regularised model

which is within one standard error of the best model [20]. Comparatively, the best model usu-

ally selects a greater number of indicators than the one-standard-error model. The tuning of λ
is, however, often poorly articulated and represents an important consideration for those seek-

ing to derive a succinct set of predictive indicators [21].

The purpose of this study was to examine the predictive performance and feature (i.e., vari-

able) selection capability of common penalised logistic regression methods (LASSO, adaptive

LASSO, and elastic-net) compared with traditional logistic regression and forward selection

methods. To demonstrate methods, a broad range of adolescent health and development indi-

cators, drawn from one of Australia’s longest-running cohort studies of social-emotional

development, was used to maximise prediction of tobacco use in young adulthood. Tobacco

use is widely recognised as a leading health concern in Australia [22], making it a high priority

area for government investment [23] and a targetable health outcome of predictive models.

Although some comparative work has previously been examined the prediction substance use

with cohort study data [24], comparisons have largely focused on differences in predictive per-

formance, not feature selection, and have yet to examine differences between the best and one-
standard-error models.

Method

Participants

Participants were from the Australian Temperament Project (ATP), a large multi-wave longi-

tudinal study (16 waves) tracking the psychosocial development of young people from infancy

to adulthood. The baseline sample in 1983 consisted of 2,443 infants aged between 4–8 months

from urban and rural areas of Victoria, Australia. Information regarding sample characteristics

and attrition are available elsewhere [25, 26]. The current sample consisted of 1292 (707

women) participants with responses from at least one of the adolescent data collection waves

(ages 13–14, 15–16 or 17–18 years) and who remained active in the study during at least one of

the three young adult waves (ages 19–20, 23–24 or 27–28 years).

Research protocols were approved by the Human Research Ethics Committee at the Uni-

versity of Melbourne, the Australian Institute of Family Studies and/or the Royal Children’s

Hospital, Melbourne. Participants’ parents or guardians provided informed written consent at

recruitment into the study, and participants provided informed written consent at subsequent

waves.

Measures

Adolescent indicators. A total of 102 adolescent indicators, assessed at ages 13–14, 15–16,

17–18 years, by parent and self-report, were available for analysis (see S1 Table). Data spanned

individual (i.e., biological, internalising/externalising, personality/temperament, social compe-

tence, and positive development), relational (i.e., peer and family relationships, and parenting

practices), contextual (demographics, and school and work), and substance use specific (per-

sonal, and environmental use) domains. Repeated measures data were combined (i.e., maxi-

mum or mean level depending on the indicator type) to represent overall adolescent

experience. All 102 adolescent indicators were entered as predictors into each model.
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Young adult tobacco use outcome. Tobacco use was assessed at age 19–20 years (after

measurement of the indicators), as the number of days used in the last month. This was con-

verted to a binary variable representing daily use (i.e.,� 28 days in the last month), which was

used as the outcome (response variable) in all analyses.

Statistical analyses

R statistical software [27] was used for all analyses. Since standard penalised regression pack-

ages in R do not have in-built capacity to handle multiply imputed or missing data, a single

imputed data set was generated using the mice package [28]. Following imputation, continuous

indicators were standardised by dividing scores by two times its standard deviation, to

improve comparability between continuous and binary indicators [29].

Regression procedures. Logistic, LASSO, adaptive LASSO, and elastic-net logistic regres-

sions were run using the glmnet package [16]. The additional weight term used in the adaptive

LASSO was derived as the inverse of the corresponding coefficient from ridge regression. Elas-

tic-net models were specified as using an equal split between L1 and L2 penalties. Specifically,

L1 penalization imposes a constraint based on the sum of the absolute value of regression coef-

ficients, whilst L2 penalisation, imposes a constraint based on the sum of the squared regres-

sion coefficients [12]. 5-fold cross-validation was used to tune λ (the strength of the penalty)

for all penalised logistic regression methods. Logistic regression imposes no penalisation on

regression coefficients. Forward selection logistic regression was conducted using the MASS
package [30]. Predictive performance and feature selection were examined separately using the

processes described below. Models were run based on an adapted procedure and syntax imple-

mented by Ahn et al. [9]. All syntax is available online (https://osf.io/ehprb/?view_only=

9f96d224f08e4987829bb29204061f4b).

The process to compare predictive performance is illustrated in Fig 1A. All models were

implemented in 100 iterations of training and testing data splits (80/20%). For penalised logis-

tic regression approaches, 100 iterations of 5-fold cross-validation were implemented to tune λ
in the training data (80%). Each iteration of cross-validation identified the best (λ-min; model

which minimised out-of-sample predictor error) and one-standard-error (λ-1se; more regu-

larised model with out-of-sample prediction error within one standard error of the best
model) model. For all models, predictions were made in the test data (20%). For penalised

logistic regression approaches, mean predictive performance was derived across cross-valida-

tion iterations. For all models, predictive performance metrics were saved for each of the 100

training and testing data splits.

Predictive performance was assessed using the area under the curve (AUC) of the receiver

operator characteristic [31] and the harmonic mean of precision and recall (F1 score) [32].

AUC indicates a model’s ability to discriminate a given binary outcome, by plotting the true

positive rate (the likelihood of correctly identifying a case) against the false positive rate (i.e.,

the likelihood of incorrectly identifying a case). An AUC value of 0.5 is equivalent to chance,

and a value of 1 equals perfect discrimination [33]. However, as base rates decline (i.e., the

prevalence of the outcome gets lower), the AUC can become less reliable because high scores

can be driven by correctly identifying true-negatives, rather than true-positives. When base

rates are low, the F1 score is a useful addition [34]. The F1 score represents the harmonic aver-

age of precision (i.e., proportion of true-positives from the total number of positives identified)

and recall/sensitivity (i.e., the proportion of true-positive identified from the total number of

true-positives). The F1 score indicates perfect prediction at 1 and inaccuracy at 0.

The process to compare feature selection capability is illustrated in Fig 1B. In line with Ahn

et al [9], to identify the most robust indicators from each model, similar procedures to that
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described above were implemented; although the full data set was used to train the models.

Additionally, the number of cross-validation iterations was increased to 1,000. For the penal-

ised logistic regression methods, robust indicators were considered as those which were

Fig 1. A. Process to compare predictive performance of models. B. Process to compare feature selection capability of

models.

https://doi.org/10.1371/journal.pone.0242730.g001

PLOS ONE A comparison of penalised regression methods for informing the selection of predictive markers

PLOS ONE | https://doi.org/10.1371/journal.pone.0242730 November 20, 2020 6 / 14

https://doi.org/10.1371/journal.pone.0242730.g001
https://doi.org/10.1371/journal.pone.0242730


selected in at least 80% of the cross-validation iterations. For indicators that met this robust

criterion the mean of the coefficients was taken, whilst others were set to zero. Small coeffi-

cients were considered as those between -0.1 and 0.1 [34].

Results

Predictive performance

The predictive performance of each model across iterations of training and testing data splits

is presented in Fig 2.

All λ-min penalised logistic regression models had higher AUC scores than both logistic

regression and forward selection (Δ median AUC 0.002–0.008). Similarly, all of the λ-1se

penalised logistic regression models outperformed forward selection (Δ median AUC 0.003–

0.006), however, only the λ-1se elastic-net model outperformed logistic regression (Δ median

AUC 0.002). Similarly, in comparison to logistic regression and forward selection F1 scores

were higher for all λ-min and λ-1se penalised logistic regression models (Δ median F1 0.007–

0.025).

Between penalised logistic regression models, the elastic-net had the highest AUC scores

within both the λ-min (Δ median AUC 0.001–0.002) and λ-1se (Δ median AUC 0.003) models.

Fig 2. Predictive performance: Box and whisker plot of AUC (A) and F1 (B) scores across 100 iterations of training and testing data splits. Dotted lines indicating

median performance for logistic regression and forward selection; Median values reported for each model.

https://doi.org/10.1371/journal.pone.0242730.g002
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Comparatively, the LASSO had the highest F1 scores for the λ-min models (Δ median F1

0.010–0.015) and the adaptive LASSO scored highest F1 scores for the λ-1se models (Δ median

F1 0.002–0.007).

Finally, all λ-min models had higher AUC scores than the respective λ-1se models (Δ
median AUC 0.002–0.004). In contrast, while the λ-min LASSO had the higher F1 score than

the λ-1se model (Δ median F1 0.004), the λ-1se model outperformed the respective λ-min

model for adaptive LASSO and elastic-net (Δ median F1 0.011–0.018).

Feature selection. Feature selection was compared between penalised logistic regression

methods and forward selection logistic regression. Fig 3 plots the beta coefficients from feature

selection methods. Indicators were only presented if selected in at least one model.

Fig 3. Mean beta coefficients for indicators that survived at least 80% of 1,000 iterations; � = small coefficients (between -0.1 and 0.1). Suffix

10 = wave 10 (13–14 years) only; 11 = wave 11 (15–16 years) only; 12 = wave 12 (17–18 years) only; ad = combined across adolescence.

https://doi.org/10.1371/journal.pone.0242730.g003
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There were notable differences in feature selection when comparing the penalised logistic

regression methods to the forward selection procedure. Specifically, the number of indicators

selected via forward selection was far below that selected in the λ-min models. There was, how-

ever, similarity in the number of selected indicators between forward selection and the λ-1se

models. Even so, forward selection models selected several indicators not present in any of the

penalised logistic regression models.

There was notable similarity in the number of indicators selected in the LASSO and adap-

tive LASSO. The LASSO did, however, select slightly fewer indicators than the adaptive

LASSO for both the λ-min (35 v 36) and λ-1se (5 v 7) models. Comparatively, both the LASSO

and adaptive LASSO λ-min models contained several unique indicators (five and six, respec-

tively); in the LASSO unique indicators were limited to those with small coefficients, whereas

in the adaptative LASSO none of the unique indicators had small coefficients. Additionally,

while the λ-min LASSO contained a total of seven indicators with small coefficients (28 indica-

tors with non-small coefficients), the respective adaptive LASSO only contained one (35 indi-

cators with non-small coefficients). There was clear similarity between the LASSO and

adaptive LASSO λ-1se models, such that the adaptive LASSO contained all indicators from the

LASSO (and two unique indicators). For both the LASSO and adaptive LASSO λ-1se models,

no indicators had small coefficients.

In contrast, the elastic-net models selected more indicators in both the λ-min (51) and λ-

1se models (17) than the respective LASSO and adaptive LASSO models. The elastic-net mod-

els selected all indicators selected with the LASSO and adaptive LASSO. Additionally, there

were several unique elastic-net λ-min and λ-1se indicators (10 and 10, respectively); almost all

of these unique indicators had small coefficients. The elastic-net selected a total of 13 indica-

tors with small-coefficients from the λ-min model (38 indicators with non-small coefficients)

and 8 from the λ-1se model (9 indicators with non-small coefficients).

Discussion

This study examined three common penalised logistic regression methods, LASSO, adaptive

LASSO and elastic-net, in terms of both predictive performance and feature selection using

adolescent data from a mature longitudinal study of social and emotional development to

maximise prediction of daily tobacco use in young adulthood. We demonstrated an analyti-

cal process for examining predictive performance and feature selection and found that

while differences in predictive performance were only small, differences in feature selection

were notable. Findings suggested that the benefits of penalised logistic regression methods

were most clear in their capacity to select a manageable subset of indicators. Therefore,

decisions to select any particular method may benefit from reflecting on interpretative

considerations.

The use of penalised regression approaches provides one method of identifying important

indicators from amongst a large pool. While the interpretation of penalised regression meth-

odologies is relatively straight forward for those accustomed to regression analyses, the process

by which output is obtained requires a series of iterative procedures, which may be somewhat

novel. This study has outlined one potential approach to this sequence of analyses and pro-

vided syntax for others to apply and adjust analyses for themselves. Understanding both the

predictive performance and the feature selection capabilities of any one model is necessary to

make informed decisions regarding the development of population surveillance tools. For

instance, a well predicting model with too many indicators may be difficult to translate into a

succinct tool, whereas an interpretable model with poor predictive performance may throw

into question the usefulness of such indicators. Additionally, the current analytical process
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allows for the examination of both the best and, more regularised, one-standard-error models,

which have previously received limited attention.

Findings suggested greater predictive performance of penalised logistic regression com-

pared to logistic regression or forward selection, albeit small. Results were consistent in that all

of the best models outperformed both standard and forward selection logistic regression in

terms of both AUC and F1 scores. Additionally, all one-standard-error models outperformed

forward selection on both performance indices. The only underperforming models were the

one-standard-error LASSO and adaptive LASSO, which had lower AUC scores, albeit only

marginally, than standard logistic regression. The standard logistic regression models, how-

ever, included no feature selection and thus is not a useful alternative.

Current findings are supportive of previously identified improvements in predictive perfor-

mance, although improvements appear to be smaller than previously documented [24]. While,

alignment with previous work may be limited by the substantial differences in both indicators

and outcomes, even small improvements in predictive performance encourage the use of

penalised logistic regression methods. In contrast to previous literature [24], differences in

predictive performance between penalised logistic regression methods were only small and did

not suggest any particular best performing method. Specifically, elastic-net models did not

show an improvement in predictive performance over other methods, whereby, although elas-

tic-net models had the highest AUC scores, the highest F1 scores were found in the LASSO

and adaptive LASSO models. For those seeking to use penalised logistic regression methods to

develop population surveillance tools, the current findings suggest that all examined methods

performed similarly.

There were, however, notable differences in feature selection–and thus interpretation–

between models. Forward selection, in comparison to the penalised logistic regression

approaches, selected far fewer indicators than the best penalised logistic regression models.

Additionally, forward selection included a number of indicators not selected in the penalised

logistic regression models and omitted indicators with large coefficients identified in the

penalised logistic regression models. Overall, there appeared little benefit to the use of forward

selection over penalised logistic regression alternatives. This recommendation coincides with a

range of statistical concerns inherent to forward selection procedures [35].

In comparing among penalised logistic regression models, most notably, elastic-net models

selected substantially more indicators than either the LASSO or adaptive LASSO, although

almost all indicators unique to elastic-net models had small coefficients. The elastic-net

selected all indicators included in the penalised logistic regression models. Additionally, while

the LASSO and adaptive LASSO selected a similar number of indicators, both models con-

tained several unique indicators. All indicators unique to the LASSO, however, had small

effects. whereas in the adaptive LASSO unique indicators had more pronounced effects. These

findings suggest a considerable level of similarity in the selected features, with differences

between models largely limited to indicators with small coefficients.

A particularly relevant consideration for those seeking to develop predictive population

surveillance tools is the differences in feature selection between the best and one-standard-
error models, which reflects understanding the desired goal of the model [1]. Findings suggest

that the one-standard-error models selected far fewer indicators than the best models yet had

relatively comparable predictive performance. In developing a predictive population surveil-

lance tool which is intended to be relevant to a diversity of outcomes (e.g., tobacco use or men-

tal health problems), examining both the best and one-standard-error models simultaneously is

likely to convey advantage in determining which indicators are worth retaining. By examining

the best model, a diverse range of indicators are likely to be identified, for which indicators

(even those with weak prediction) may share overlap across multiple outcomes and suggest
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cost effective points of investment. By examining the one-standard-error model, the smallest

subset of predictors for each relevant outcome can be identified, which may suggest the most

pertinent indicators for future harms.

There are, however, some study limitations to note. First, the use of real data provides a

relatable demonstration of how models may function, but findings may not necessarily gener-

alise to other populations or data types. The use of simulation studies remains an important

and complementary area of research for systematically exploring differences in predictive

models [e.g., 12]. Second, we did not explore all available penalised logistic regression applica-

tions, but rather methods that were common and accessible to researchers. Methods such as

the relaxed LASSO [36] or data driven procedures to balance the L1 and L2 penalties of elastic-

net [34] require similar comparative work. Finally, as penalised regression methods have not

been widely implemented into a MI framework, the current study relies on a singly-imputed

data set [37, 38].

In summary, this paper provided an overview of the implementation and both the predic-

tive performance and feature selection capacity of several common penalised logistic regres-

sion methods and potential parameterisations. Such approaches provide an empirical basis for

selecting indicators for population surveillance research aimed at maximising prediction of

population health outcomes over time. Broadly, findings suggested that penalised logistic

regression methods showed improvements in predictive performance over logistic regression

and forward selection, albeit small. However, in selecting between penalised logistic regression

methods, there was no clear best predicting method. Differences in feature selection were

more apparent, suggesting that interpretative goals may be a key consideration for researchers

when making decisions between penalised logistic regression methods. This includes greater

consideration of the respective best and one-standard-error models. Future work should con-

tinue to compare the predictive performance and feature selection capacities of penalised

logistic regression models.
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