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Vorinostat synergizes with ridaforolimus and
abrogates the ridaforolimus-induced activation
of AKT in synovial sarcoma cells
Sherif S Morgan and Lee D Cranmer*
Abstract

Background: Curative treatments for patients with metastatic synovial sarcoma (SS) do not exist, and such patients
have a poor prognosis. We explored combinations of molecularly-targeted and cytotoxic agents to identify synergistic
treatment combinations in SS cells.

Methods: Two SS cell lines (HS-SY-II and SYO-I) were treated with single agents or combinations of molecularly
targeted therapies (HDAC inhibitor, vorinostat; mTOR inhibitor, ridaforolimus) and cytotoxic agents. After 72 hours, cell
viability was measured using the MTS cell proliferation assay. Combination Indices (CI) were calculated to determine
whether each combination was synergistic, additive, or antagonistic. Western Blot analysis assessed alterations in total
and phospho-AKT protein levels in response to drug treatment.

Results: We determined the single-agent IC50 for ridaforolimus, vorinostat, doxorubicin, and melphalan in HS-SY-II and
SYO-I. Synergism was apparent in cells co-treated with ridaforolimus and vorinostat: CI was 0.28 and 0.63 in HS-SY-II
and SYO-I, respectively. Ridaforolimus/doxorubicin and ridaforolimus/melphalan exhibited synergism in both cell lines.
An additive effect was observed with combination of vorinostat/doxorubicin in both cell lines. Vorinostat/melphalan
was synergistic in HS-SY-II and additive in SYO-I. Western blot analysis demonstrated that ridaforolimus increased
pAKT-ser473 levels; this effect was abrogated by vorinostat co-treatment.

Conclusions: The combination of ridaforolimus and vorinostat demonstrates in vitro synergism in SS. Addition of
vorinostat abrogated ridaforolimus-induced AKT activation. Since AKT activation is a possible mechanism of resistance
to mTOR inhibitors, adding vorinostat (or another HDAC inhibitor) may be a route to circumvent AKT-mediated
resistance to mTOR inhibitors.
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Background
Soft-tissue sarcomas (STS) are a relatively rare and het-
erogeneous group of malignancies. In the United States,
an estimated 11,410 new cases and 4,390 deaths were
anticipated in 2013 from STS [1]. Based on Surveillance
Epidemiology End Results (SEER) data from 2006 to
2010, synovial sarcoma (SS) accounted for 5% of STS
cases [2]. Unresectable or metastatic disease occurs in
approximately 40-60% of STS patients [3,4]. Recurrence
rates for SS are high. At 5 years, the risk of recurrence is
approximately 12% locally and 39% at distant sites [5].
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Metastatic SS portends a poor prognosis, with a median
survival of 22 months [6].
The majority of SS cases (95%) are characterized by a

fusion between the SS18 (previously known as SYT) gene
on chromosome 18 and one of several SSX genes (SSX1,
SSX2, or SSX4) on the X chromosome [7,8]. The result-
ing oncoproteins, particularly SS18-SSX2, are sufficient
to promote tumorigenesis [9-11]. Although the exact
mechanisms of oncogenesis by the fusion protein remain
poorly defined, several studies have implicated SS18-SSX
in aberrant transcriptional regulation, chromatin remod-
eling, and epigenetic gene silencing [12-15]. In addition,
SS18-SSX2 induces Bcl2 transcription, but represses
other anti-apoptotic genes (including Mcl1 and Bcl2a1)
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[16]. Overexpression of BCL2 is characteristic of SS
[17-19] and has been previously explored as a potential
therapeutic target. In FU-SY-1, an SS cell line, knock-
down of BCL2 using an antisense oligonucleotide sensi-
tized cells to the cytotoxic effects of doxorubicin [20].
Nevertheless, our understanding of SS pathogenesis has
yet to yield guidance for molecularly targeted therapy.
Treatment of unresectable or metastatic SS relies on a

limited number of cytotoxic agents [21]. Responses are
not typically durable and most patients will require sal-
vage therapy. Targeted therapies may hold promise in
the treatment of SS, but our understanding of the con-
text and the biology of molecular targets remain critical.
The mere presence of a molecular target does not indi-
cate ipso facto that it is involved in the initiation or pro-
gression of a disease. For example, a recent phase 2 study
in SS patients failed to demonstrate positive activity of ge-
fitinib even though patients were selected based on their
HER-1 expression status [22]. This result highlights the
importance of understanding the biology of the disease in
application of targeted therapy approaches.
Given the previously reported effects of SS18-SSX on

epigenetic gene silencing [12-15] and the significance of
the AKT signaling pathway in SS [23], we sought to de-
termine the effects of vorinostat (HDAC inhibitor) and
ridaforolimus (mTOR inhibitor) as single agents, in com-
bination with each other, and in combination with cyto-
toxic chemotherapies commonly used to treat SS.

Methods
Cell culture
HS-SY-II and SYO-I were provided by A. Kawai (National
Cancer Center Hospital, Tokyo, Japan) and M. Ladanyi
(Memorial Sloan Kettering Cancer Center, New York,
NY), respectively. Cell lines were authenticated using short
tandem repeat (STR) analysis. Cells were maintained in
RPMI1640 medium (Mediatech; Herndon, VA) supple-
mented with 10% fetal bovine serum (Atlas Biologicals,
Fort Collins, CO) and cultured at 37°C in a humidified
and 5% CO2 atmosphere.

Drugs
Both vorinostat and ridaforolimus were provided by
Merck (Whitehouse Station, NJ). Doxorubicin and mel-
phalan were obtained from Sigma-Aldrich (St. Louis,
MO). All drugs were stored as 10 mM stock solutions.
Vorinostat was dissolved in DMSO, ridaforolimus in
ethanol, doxorubicin in sterile water, and melphalan in
ethanol containing 0.5% HCl.

Cell viability assay
Cells were seeded in quadruplicate in 96-well plates at a
density of 4.0 × 103 cells per well for 24 hours, followed by
incubation with vehicle control or drug(s) for 72 hours.
All control and experimental wells received equivalent
concentration of vehicle. MTS reagent (CellTiter 96®
AQueous One Solution Cell Proliferation Assay; Promega)
was added to each well directly into the culture medium
and incubated at 37°C for 3 hours in a humidified, 5%
CO2 atmosphere, as described in the kit’s instructions. Fol-
lowing incubation, absorbance was recorded at wavelength
of 490 nm.

Calculation of IC50
We determined the IC50, defined as the concentration of
drug needed to decrease cell viability by 50%, for each
agent alone and in combination with other agents. To
determine IC50, cell viability was measured in response
to a series of 6 drug concentrations; starting with the
smallest, each subsequent concentration was doubled.
The dose–response curve for each agent was plotted
(drug concentrations on the x-axis and % of viable cells
on the y-axis ranging from 0 to 1). Linear regression was
conducted and IC50 was estimated using the following
equation, derived from the fitted line (Y = aX + b):

IC50 ¼ 0:5 – b
a

Calculation of combination index (CI) values
To determine whether a combination of drugs is syner-
gistic, additive, or antagonistic, cells were treated with
multiples of each drug’s IC50. CI was calculated using
the median-effect analysis method of Chou and Talalay
[24,25], as described below:

CI ¼ D1

Dxð Þ1
þ D2

Dxð Þ2
where D1 and D2 are doses of drugs 1 and 2 that have

x effect when used in combination, and (Dx)1 and (Dx)2
are doses of drugs 1 and 2 that have the same x effect
when used alone as single agents. In our study, x was
defined as the IC50. The Chou and Talalay method was
developed as a result of more than 40 years of research,
resulting in the introduction of “combination index” to
quantitatively express effects of drug combinations [26].
When compared to other methods in evaluating drug
combination effects, CI results led to the same conclu-
sions as other methods did [27]. Taken together, CI is
widely used and accepted as a reliable method to analyze
the interactions and effects of drug combinations.

Western blot analysis
Cells were seeded in 6-well plates at a density of 0.5 × 106

per well for 24 hours, followed by incubation with vehicle
control, ridaforolimus (15 nM), vorinostat (500 nM), or
their combination for 72 hours. Cells were rinsed with
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PBS, then scraped in lysis buffer (Cell Signaling Tech-
nology; Danvers MA), supplemented with protease and
phosphatase inhibitor cocktails (Roche Applied Science;
Indianapolis, IN). Lysates were centrifuged for 5 minutes
at 13,000 × g and quantified using the Protein Assay Re-
agent from Bio-Rad (Hercules, CA). Equal amounts of
proteins (35 μg) were loaded onto 10% NuPage gels
(Invitrogen; Carlsbad, CA). Following transfer, blocking,
and incubation with primary and secondary antibodies,
proteins were visualized by electrochemiluminescence
(Perkin-Elmer; Boston, MA) and exposed to HyBlot CL
films (Denville Scientific; Metuchen, NJ). Phospho-
serine 473 AKT and total AKT antibodies were obtained
from Cell Signaling Technology (Danver, MA). β-actin
was purchased from Sigma-Aldrich (St. Louis, MO).
Secondary antibodies coupled to horseradish peroxidase
were obtained from GE HealthCare (Piscataway, NJ).
Densitometric semi-quantification of bands was con-
ducted using the ImageJ software (National Institutes of
Health). Levels of p-AKT-ser473 bands were normalized
to their corresponding total-AKT bands, which were
normalized to their corresponding β-actin bands.

Statistical analysis
All data are presented as means ± standard errors of the
means (SE) obtained from at least three independent ex-
periments. To determine statistical significance of differ-
ences observed, Student’s t-tests were performed with p <
0.05 being considered significant.

Results
Sensitivity of cells to ridaforolimus, vorinostat, and
cytotoxic agent
To obtain baseline information regarding the sensitivity
of HS-SY-II and SYO-I to the agents of interest, cells
were treated with molecularly targeted therapies (HDAC
inhibitor, vorinostat; mTOR inhibitor, ridaforolimus) and
cytotoxic agents (doxorubicin and melphalan) as single
agents. After 72 hours, cell viability was measured as de-
scribed in the methods section. The mean IC50s of each
agent in both cell lines are summarized in Table 1. We
Table 1 IC50 in nM of single agent treatments in HS-SY-II
and SYO-I

Treatments HS-SY-II SYO-I

Ridaforolimus 10.9 ± 2.7 nM* 23.1 ± 4.6 nM*

Vorinostat 440 ± 46.7 nM 561 ± 40.4 nM

Doxorubicin 9.4 ± 1.4 nM 7.4 ± 1.1 nM

Melphalan 687 ± 117.6 nM 859 ± 113.7 nM

Data presented in Table 1 represent the mean ± SE from at least 8
independent experiments.
*Indicates statistical significance of p < 0.05, when the IC50 of a given agent
was compared between the two cell lines.
conducted t-tests to determine if the relative sensitivities
of the two cell lines for a given drug are statistically sig-
nificant. HS-SY-II is more sensitive to ridaforolimus than
SYO-I in a statistically significant manner (p < 0.05). There
were no other statistically significant differences in relative
sensitivities between the two cell lines. Figure 1 shows
sample dose–response curves for each agent in HS-SY-II
(Figure 1A) and SYO-I (Figure 1C).

Combination treatment effects
HS-SY-II and SYO-I were co-treated with ridaforolimus
and vorinostat. In addition, cells were treated with each
cytotoxic drug (doxorubicin and melphalan) in combin-
ation with either ridaforolimus or vorinostat. Cell viability
was measured after 72 hours. The IC50 values of each agent
alone and in combination are represented in Figures 1B
(HS-SY-II) and 1D (SYO-I). In HS-SY-II, the IC50 of rida-
forolimus alone was 10.9 ± 2.7 nM, which was decreased to
2 ± 0.6 nM when combined with vorinostat (p < 0.05), 2.8 ±
1.1 nM with doxorubicin, and 1.6 ± 0.8 nM with melphalan
(p < 0.05). In HS-SY-II, the IC50 of vorinostat alone was
440 ± 46.7 nM, which was decreased to 26.9 ± 6.5 nM when
combined with ridaforolimus (p < 0.05), 231 ± 26.4 nM with
doxorubicin (p < 0.05), and 135 ± 49.7 nM with melphalan
(p < 0.05). In HS-SY-II, the IC50 of doxorubicin alone was
9.4 ± 1.4 nM, which was decreased to 0.82 ± 0.2 nM when
combined with ridaforolimus (p < 0.05) and 3.7 ± 0.5 nM
with vorinostat (p < 0.05). In HS-SY-II, the IC50 of melpha-
lan alone was 687 ± 117.6 nM, which was decreased to
54.5 ± 16.9 nM when combined with ridaforolimus (p <
0.05) and 259 ± 103.4 nM with vorinostat. In SYO-I, the
IC50 of ridaforolimus alone was 23.1 ± 4.6 nM, which was
decreased to 6.8 ± 3.2 nM when combined with vorinostat
(p < 0.05), 5.9 ± 3.5 nM with doxorubicin (p < 0.05), and
5.4 ± 2.9 nM with melphalan (p < 0.05). In SYO-I, the IC50

of vorinostat alone was 561 ± 40.4 nM, which was de-
creased to 178 ± 46.6 nM when combined with ridaforoli-
mus (p < 0.05), 221 ± 21.9 nM with doxorubicin (p < 0.05),
and 194 ± 57.8 nM with melphalan (p < 0.05). In SYO-I,
the IC50 of doxorubicin alone was 7.4 ± 1.1 nM, which was
decreased to 1.82 ± 0.86 nM when combined with ridafor-
olimus (p < 0.05) and 3.5 ± 0.4 nM with vorinostat. In
SYO-I, the IC50 of melphalan alone was 859 ± 113.7 nM,
which was decreased to 184 ± 78.3 nM when combined
with ridaforolimus (p < 0.05) and 455 ± 110.3 nM with
vorinostat.
The CI of ridaforolimus/vorinostat was 0.28 ± 0.06 and

0.63 ± 0.14 in HS-SY-II and SYO-I, respectively, indicating
synergism between the two agents in both cell lines. The
difference in CI of ridaforolimus/vorinostat in the two cell
lines was statistically significant (p < 0.05). The combina-
tions of ridaforolimus/doxorubicin and ridaforolimus/mel-
phalan also exhibited synergism in both cell lines (CI
ranged from 0.50 to 0.59). Additive effects were observed
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Figure 1 Cell proliferation assay (MTS) to determine IC50 of single agent and combination treatments in HS-SY-II and SYO-I. A and C,
representative dose–response curves of HS-SY-II (A) and SYO-I (C) treated with ridaforolimus, vorinostat, doxorubicin, and melphalan. B and D,
graphs representing the mean ± SE IC50 values for single agents and combination treatments in HS-SY-II (B) and SYO-I (D) from at least 3
independent experiments. *Indicates statistical significance of p < 0.05.
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when vorinostat was combined with doxorubicin in both
cell lines (CIs were 1.1 ± 0.06 in HS-SY-II and 0.98 ±
0.11 in SYO-I). Vorinostat/melphalan was synergistic in
HS-SY-II (CI 0.81 ± 0.08), but additive in SYO-I (0.90 ±
0.02). However, the difference in CI values of vorino-
stat/melphalan between the two cell lines was not statis-
tically significant. The CIs for all drug combination are
summarized in Table 2.
Table 2 Combination Indices (CI) for combination treatments

HS-SY-II

Ridaforolimus Vorinostat

Vorinostat 0.28 ± 0.06* n/a

Doxorubicin 0.56 ± 0.13 1.1 ± 0.06

Melphalan 0.51 ± 0.06 0.81 ± 0.08

Data presented in Table 2 represent the mean ± SE from at least 3 independent exp
*Indicates statistical significance of p < 0.05, when the CI for a given combination w
Because of the synergistic activity of the ridaforolimus/
vorinostat combination, other cell lines representing
various tumor types were assessed, including osteosar-
coma (U2OS), metastatic melanoma (Stew1 and Stew2),
pancreatic cancer (Panc1 and BxPC3), and lung cancer
(A549). The combination was synergistic in all cell lines
tested (CI ranged from 0.37 to 0.77), except in Panc1,
where it was additive (CI was 0.92) (data not shown).
in HS-SY-II and SYO-I

SYO-I

Ridaforolimus Vorinostat

Vorinostat 0.63 ± 0.14* n/a

Doxorubicin 0.50 ± 0.10 0.98 ± 0.11

Melphalan 0.59 ± 0.17 0.90 ± 0.02

eriments.
as compared between the two cell lines.
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Effect of vorinostat on ridaforolimus-induced
phosphorylation of AKT
We sought to determine if ridaforolimus would increase
the levels of phosphorylated AKT. HS-SY-II and SYO-I
were treated with vorinostat (500 nM), ridaforolimus (15
nM), or their combination for 72 hours. These concen-
trations were approximately those that achieved the IC50

in the in vitro viability assay (refer to Table 1). Cells were
harvested and subjected to immunoblot analysis for
phospho-AKT-serine473 (p-AKT-ser473). As expected,
ridaforolimus treatment increased levels of p-AKT-
ser473 in both HS-SY-II and SYO-I, while vorinostat
alone exerted no significant effect on p-AKT-ser473
levels as compared to vehicle-treated cells (Figure 2). In
both cell lines, co-treatment with ridaforolimus and vor-
inostat suppressed p-AKT-ser473 levels compared to the
elevated levels seen when cells were treated with ridafor-
olimus alone. Semi-quantification of p-AKT-ser473 is
depicted in Figure 2.

Discussion
We evaluated the effects of a number of cytotoxic and
molecularly-targeted agents on the viability of two SS
cell lines, HS-SY-II and SYO-I. Using an in vitro cell via-
bility assay, we observed a synergism in both HS-SY-II
and SYO-I when cells were co-treated with ridaforoli-
mus and vorinostat. Synergism was also observed in HS-
SY-II and SYO-I when ridaforolimus was combined with
doxorubicin or melphalan. Combination of vorinostat
with doxorubicin yielded additive effects in both cell
lines, while combination of vorinostat with melphalan
was synergistic in HS-SY-II and additive in SYO-I.
Our in vitro data demonstrating synergistic and additive

effects with combination of either ridaforolimus or vorino-
stat with cytotoxic chemotherapies (e.g., doxorubicin) may
Figure 2 Effects of ridaforolimus and vorinostat on AKT in
HS-SY-II and SYO-I. Representative Western blot analysis of cell
lysates of HS-SY-II and SYO-I treated with ridaforolimus (15 nM),
vorinostat (500 nM), or their combination for 72 hours. Cell lysates
were subjected to immunoblot analysis with phospho-AKT-ser473,
total AKT, and β-actin antibodies. This experiment was undertaken
twice. Semi-quantification of p-AKT-ser473 is depicted under each
band. Levels of p-AKT-ser473 bands were normalized to their
corresponding total-AKT bands, which were normalized to their
corresponding β-actin bands.
have clinical relevance. Ridaforolimus or vorinostat may
serve as chemotherapy-sparing agents by reducing the
dose of the cytotoxic therapies needed to achieve simi-
lar or better tumor control. Doing so would potentially
delay or prevent dose-limiting toxicities. This may be
especially relevant in the case of doxorubicin, a back-
bone therapy for STS, but one that is hampered by
dose-limiting cardiotoxicity.
Previously, others have shown that several mTOR in-

hibitors induced activation of AKT through a negative
feedback, which may be partially responsible for devel-
oping mTOR inhibitor resistance [28,29]. In our studies,
ridaforolimus induced the activation of AKT in both SS
cell lines. The addition of vorinostat abrogated the
ridaforolimus-induced activation of AKT in both SS cell
lines. A recent study demonstrated that HDAC 3, which
belongs to the HDAC class I protein family, is necessary
for activation of the AKT/mTOR pathway [30]. Since
vorinostat inhibits HDAC class I and II enzymes [31,32], it
is possible that vorinostat attenuates ridaforolimus-
induced activation of AKT through its inhibition of
HDAC 3. Other studies, however, are needed to explain
how vorinostat attenuates the ridaforolimus-mediated ac-
tivation of AKT in HS-SY-II and SYO-I.
HDACs are involved in modulating several signaling

pathways and cellular processes [33]. Inhibition of HDAC
by vorinostat has been shown to induce cell cycle arrest,
autophagy, and apoptosis [34-39]. These effects are medi-
ated, at least partially, through vorinostat’s effects on sev-
eral signaling pathways, including AKT, mTOR, MAPK,
JAK-STAT, NF-κB, and others [33,40-45]. The vorinostat-
mediated effects on these signaling pathways likely con-
tribute to the synergism observed between ridaforolimus
and vorinostat. Of interest, in renal cell cancer, vorinostat
enhanced the activity of temsirolimus by suppressing
levels of survivin, a member of the inhibitor of apoptosis
(IAP) gene family [46]. Transcriptional regulation of
survivin is complex, mediated by cell cycle dependent
mechanisms as well as stimulation by growth factor and
cytokines [47]. Levels of survivin mRNA is stabilized via
the mTOR pathway upon stimulation with insulin-
growth factor [48,49], which may explain how mTOR in-
hibition sensitizes cells to apoptosis. Future investigations
will focus on understanding the underlying mechanisms
responsible for the synergy between ridaforolimus and
vorinostat.

Conclusions
Our preliminary findings demonstrate an in vitro syn-
ergy between ridaforolimus and vorinostat in SS cells.
Although further investigations are necessary, this com-
bination may have a broad anti-neoplastic activity in a
variety of tumor types. We also found that addition of
vorinostat abrogates the ridaforolimus-induced AKT
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activation. Since AKT activation is a possible mechanism
of resistance to mTOR inhibitors, adding vorinostat (or
another HDAC inhibitor) may be a route to circumvent
AKT-mediated resistance to mTOR inhibitors.
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