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A B S T R A C T   

The interaction mechanism between zein and chlorogenic acid (CA) and the effect of interaction on the per-
formance of coaxial nanofiber films were investigated. The interactions between zein and CA were characterized 
by multiple spectroscopic methods. Ultraviolet spectrum analysis revealed the formation of a zein–CA complex. 
Fluorescence analysis pointed out that the quenching of zein by CA was static. FTIR and thermodynamic analyses 
showed that hydrogen bonds and electrostatic interactions dominated the interaction between zein and CA. Zein- 
based nanofiber films were successfully prepared by coaxial electrospinning. The interaction between zein and 
CA enhanced the mechanical properties but reduced the thermal stability of nanofiber films. The presence of CA 
endowed nanofiber films with antioxidant and antibacterial properties. This research provides significant insight 
into the effect of protein–polyphenol interactions on the properties of electrospun nanofiber films, which can be 
applied in the field of active packaging to improve food safety.   

1. Introduction 

Zein is present in corn endosperm and accounts for 44–79% of the 
total corn protein. It is the major protein in corn gluten meal, a co- 
product of corn starch produced by a wet process and a renewable 
resource (Glusac & Fishman, 2021). Zein is a safe, nontoxic, biocom-
patible, and biodegradable substance that is generally recognized as a 
safe (GRAS) natural biomacromolecule (Kasaai, 2018). It is commonly 
used as a base material for the preparation of nanofiber films (Xue et al., 
2022) and nanoparticles (Li, Wei, Sun, & Xue, 2022). Also, zein can form 
complexes with polyphenols via non-covalent interactions (Wang et al., 
2022). Most polyphenols have antibacterial and antioxidant functions, 
so combining zein with bioactive phenolic compounds to prepare edible 
active packaging has attracted great interest. Altan and Çayır (2020) 
studied zein nanofiber films encapsulated with carvacrol, and the results 
showed that the loading of carvacrol enhanced the thermal stability of 
the nanofiber films. Huang, Ge, Zhou & Wang(2022) encapsulated 
eugenol in zein-polylactic acid films and found that with the increase of 
eugenol concentration in films, the inhibition ability of films against 
Escherichia coli and Staphylococcus aureus increased. The zein-polylactic 
acid-eugenol film has the potential for active packaging. 

Chlorogenic acid (CA), 3-o-caffeoylquinic acid, is a common poly-
phenol found in coffee beans and honeysuckle. Studies have confirmed 
that it has biological (antioxidant, antibacterial, and antiviral) activities 
(Sun et al., 2021), metal chelation (Milić et al., 2011) and other activ-
ities. It also prevents the degradation of other bioactive compounds 
(Kopjar, JakŠIĆ, & PiliŽOta, 2012). In recent years, to improve the 
bioavailability of CA and optimize the structural and functional prop-
erties of proteins, some scholars have studied the interaction mechanism 
of CA with proteins and their influences on protein conformation and 
properties. Zhang et al. (2021b) studied the interactions between whey 
proteins and CA and determined that CA had the highest binding affinity 
with α-lactalbumin, mainly through hydrophobic force. Using multi-
spectral and molecular docking methods, Perumal, Marimuthu, and 
Chen (2021) found that the interaction between CA and ovalbumin 
reduced the content of α-helix structure of ovalbumin. Zhang et al. 
(2021a) found that the interaction between CA and gliadin and glutenin 
has a significant synergistic antioxidant effect. 

Both zein and CA are derived from food and can be obtained in large 
quantities from by-products or food processing waste. Using them as 
materials to prepare active packaging can increase its added value, 
reduce production costs, and also reduce the environmental pollution 
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caused by traditional packaging materials. However, there are few re-
ports on the interaction mechanism between zein and CA and the 
preparation of active packaging based on zein-CA interaction. In this 
study, the interaction mechanism between zein and CA was fully char-
acterized using multiple spectra techniques. Based on this study, the 
effect of interactions on the properties of CA-loaded zein-based nano-
fiber films was further investigated, and the potential of the nanofiber 
films as active packaging materials was evaluated. This work may offer 
important information for research and development of low-cost and 
environmentally friendly active packaging, especially in the aspect of 
the mechanical, antioxidant, and antibacterial characteristics of 
packaging. 

2. Materials and methods 

2.1. Materials 

Zein was obtained from Wako Pure Chemical Industries, ltd. (Tokyo, 
Japan). The crude protein content of zein was 84.4%. Chlorogenic acid 
(99.7% purity) was obtained from TmStandard (Beijing, China). DPPH 
(1,1-diphenyl-2-picrylhydrazyl) was obtained from Haoyuan (Shanghai, 
China) and ABTS (2,2′-azinobis-3-ethylbenzthiazoline-6-sulfonate) was 
obtained from Sigma-Aldrich (Sa. Louis, MO, USA). Other chemicals and 
reagents used were of analytical grade. 

2.2. Preparation of complex 

The zein-CA mixture was prepared with reference to the method of 
Wang et al. (2022) with some modifications. Both zein and CA powders 
were dissolved in an aqueous solution of ethanol 85% v/v. The two 
solutions were mixed in different ratios and vortexed for 20 min (the 
final zein concentration was 0.2 mg/mL and the CA concentration was 
5–40 µM). Dissolution and mixing solutions were carried out in the dark 
at 25 ◦C. 

2.3. UV–vis spectrum 

The UV spectra were determined with reference to the procedure of 
Liu et al. (2017) with some modifications. A series of UV–vis spectro-
scopic measurements were performed on the zein, CA, and zein-CA so-
lutions using a UV–vis spectrophotometer (UV-2600, Shimadzu, Japan) 
operating in the scanning range of 200–400 nm. A quartz cuvette with a 
path length of 1 cm was used for the test. 

2.4. Fluorescence spectroscopy 

The fluorescence spectra of the zein and zein–CA solutions were 
recorded using the fluorescence spectrophotometer (RF-5301PC, Shi-
madzu, Japan) at 25 ◦C, 30 ◦C, and 35 ◦C. The distribution of fluores-
cence intensity in the range of 290–450 nm was observed under 
excitation light of 280 nm. For both excitation and emission, a slit width 
of 3 nm was used. Each sample was scanned thrice to obtain an average 
value. A formula was used to adjust the fluorescence result to remove the 
inner-filter effects. (van de Weert & Stella, 2011). 

Fc = F0 × e(Aex+Aem)/2 (1)  

where F0 and Fc are the fluorescence intensities before and after 
correction. Aex and Aem are the absorbances of CA at 280 nm and 304 
nm, respectively. 

2.5. FTIR spectroscopy 

The zein–CA solution was then frozen and dried. Fourier transform 
infrared spectra (VERTEX-70, Bruker, America) were acquired using the 
method reported by Liu et al. (2021a). The scanning wavelength range 

was 4000–400 cm− 1, and the spectra were obtained at a resolution of 4 
cm− 1 with the co-addition of 32 scans. The samples (0.002 g) were 
blended with KBr (0.2 g). The mixtures were ground into a uniform 
powder under infrared light, and the film was formed after pressing for 
1 min. As a baseline, pure KBr was tested. 

2.6. CD spectra 

The secondary structures of the zein and zein–CA solutions were 
analyzed using circular dichroism (J-820, Jasco, Japan), which covered 
a scanning range of 190–260 nm. The baseline was 85% (v/v) ethanol. 
We used the following equation (Tiwari, Ali, Ishrat, & Arfin, 2021) to 
express CD results based on residue ellipticity (MRE): 

MRE208 =
observed CD (millidegree)

Cp n l × 10
(2) 

In this equation, Cp is the molar concentration of the protein, n is the 
number of amino acid residues in zein (in this case 266), and L (0.1 cm) 
is the path length. The calculation equation for the α-helix content of the 
sample was as follows (Tiwari, Ali, Ishrat, & Arfin, 2021): 

α − helix(%) = −
[MRE208 − 4000]

33000 − 4000
× 100 (3)  

2.7. Preparation of electrospun films 

The preparation of electrospun solutions and the production of 
nanofiber films were performed according to the method of Colussi, 
Ferreira da Silva, Biduski, Mello El Halal, da Rosa Zavareze, & Guerra 
Dias (2021) with some modifications. First, 25 wt% zein solution and 15 
wt% polyvinylpyrrolidone (PVP) solution were prepared by stirring zein 
and PVP in 85% (v/v) ethanol–water for 2 h. The 25 wt% zein solution 
was mixed with CA in the dark for 30 min. In brief, the core solution 
contained 25 wt% zein with varying CA contents (0.5, 1.0, 1.5, and 2.0% 
w/w). Then, the shell solution was collected by blending a 25 wt% zein 
solution and a 15 wt% PVP solution at the same mass ratio for 30 min. 

Coaxial electrospinning was used to obtain active nanofiber films. A 
syringe, a drum collector, and a high-voltage power source make up the 
electrospinning apparatus. The nanofibers were collected on tinfoil that 
covered the drum collector. The parameters of coaxial electrospinning 
were set as follows: applied voltage, 18 kV; collector speed, 1500 rpm; 
shell flow rate, 5 mL/h; core flow rate, 2 mL/h; and distance, 13 cm. The 
temperature and relative humidity in the experimental environment 
were maintained at 25 ± 2 ◦C and 50 ± 5%, respectively. 

2.8. Thermal performances 

The thermal properties of nanofiber films with zein alone and zein 
loaded with different CA contents were measured using differential 
scanning calorimetry (Q2000, TA, America) according to the procedure 
of Liu, Ma, McClements, and Gao (2017) with some modififications. 
Samples (4–5 mg) were weighed and heated in nitrogen at a rate of 
10 ◦C min− 1 from 20 ◦C to 250 ◦C. 

2.9. Mechanical performances 

With reference to the method of Yao, Gao, Chen, and Du (2022), the 
mechanical properties of the nanofiber films were measured using a 
texture analyzer (INSIRON-5869, Instron, America) according to the 
GB/T 1040.1-2006 protocol. The nanofiber films were sliced into 10 
mm × 50 mm strips. Each nanofiber film was sliced into three uniform 
strips for measurement. The crosshead speed of the instrument was 10 
mm/min, and the clamping distance was 20 mm. 
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2.10. Antioxidant capacity 

The scavenging ability of nanofiber films with different CA contents 
to DPPH and ABTS free radicals can characterize their antioxidant ca-
pacity. For testing, 10 mg of nanofiber films were dissolved in 1 mL of 
85% (v/v) ethanol–water for 1 h as the sample solution. 

Some minor modifications were made in reference to Neo et al. 
(2013). The supernatant of the sample was blended with DPPH solution 
in a ratio of 1:30, and then stored in an opaque box for 15 min. A 
measurement of the absorbance was made at 517 nm. 

According to the method of Colussi, Ferreira da Silva, Biduski, Mello 
El Halal, da Rosa Zavareze, and Guerra Dias (2021), potassium persul-
fate and ABTS were combined in equal proportion and reacted in 
darkness for 12 h. The supernatant of the sample was mixed with the 
ABTS diluent at a ratio of 1:20 and left to react for 15 min in an opaque 
box before the absorbance at 734 nm was recorded. 

ABTS and DPPH solutions without nanofiber films were used as 
controls. The results were determined as: 

Radical scavenging activity(%) =
Acontrol − Asample

Acontrol
× 100 (4)  

2.11. Antimicrobial activity 

The nanofiber films were tested for their antimicrobial activity 
against Staphylococcus aureus (S. aureus) by using the agar plate diffu-
sion method (Kang et al., 2017). The nanofiber films were made into 
circular pieces with a diameter of 6 mm. For disinfection, the samples 
were irradiated with UV light for 30 min before use. Sterilized nanofiber 
films were glued to the agar medium and incubated in a 37 ◦C incubator 
for 24 h. The antibacterial ability of the nanofiber films was assessed 
based on the size of the inhibition zone. 

2.12. Statistical analysis 

Three times were repeated in all experiments. All charts were drawn 

using Origin, and statistical analyses were conducted using the SPSS 
software. The test results are showed as a mean ± standard deviation. 
The statistical significance was set at p < 0.05. 

3. Results and discussion 

3.1. UV spectrum 

UV spectroscopy is a credible tool to detect the formation of new 
complexes. Fig. 1A shows the UV absorption spectra of zein, CA, and 
zein–CA. Zein displayed strong absorption peaks at 210 nm and 278 nm, 
respectively. Zein’s absorption peak at 278 nm was because of the aro-
matic ring’s π–π* transition on the tyrosine residue (Liu et al., 2021a). 
The absorption peaks of CA are located at 302 and 330 nm, respectively. 
The absorbance of the zein-CA was higher than that of the same con-
centration of CA and zein. In addition, zein’s absorption peak at 278 nm 
increased with increasing CA content while experiencing a red shift. In 
summary, all the results indicated that CA interacted with zein to form 
the zein-CA complex and that the interaction changed the tertiary 
structure of zein (Zhong, Zhao, Dai, McClements, & Liu, 2021). 

3.2. Fluorescence spectroscopy 

Fluorescence spectroscopy is an efficient technique for exploring 
interactions between zein and CA. The quenching mechanism, binding 
sites, binding constants, and types of binding forces between proteins 
and polyphenols can be analyzed using the fluorescence quenching data 
(Xu, Hao, Sun, & Tang, 2019). Zein has a high concentration of tyrosine 
residues but a substantially lower concentration of tryptophan residues; 
as a result, its typical maximum fluorescence peak is approximately 304 
nm (Shukla & Cheryan, 2001). At different temperatures, zein inter-
acting with CA results in the fluorescence quenching spectra shown in 
Fig. 1B–D. Increasing the CA concentration at three different tempera-
tures caused a gradual decrease in the fluorescence intensity at the 
wavelength of 304 nm. This phenomenon effectively proves that CA has 
a fluorescence-quenching effect on zein. Generally, the fluorescence 

Fig. 1. A: UV–vis absorption spectra of zein, CA, and zein–CA; B: Fluorescence spectra of zein–CA at 25 ℃; C: Fluorescence spectra of zein–CA at 30 ℃; D: Fluo-
rescence spectra of zein–CA at 35 ℃; E: Stern–Volmer plots of zein–CA at different temperatures; F: Double logarithmic plots of zein-CA at different temperatures. 
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quenching mechanism can be divided into static quenching and dynamic 
quenching, and the quenching mechanism can be judged by the 
quenching rate constant Kq. To deeply explore the quenching mecha-
nisms between zein and CA, the Stern–Volmer equation was adopted. 

F0/Fc = 1+Kqτ0[Q] = 1+Ksv[Q] (5)  

where Kq is the quenching rate constant, τ0 is the average lifetime of 
molecules without CA, generally 10− 8 s; [Q] is the concentration of CA, 
and Ksv is the quenching constant. Fig. 1E shows the Stern-Volmer curves 
at various temperatures. The relationship between F0/Fc and [Q] was 
linear (R2 = 0.980, 0.985, and 0.989). Based on the slope of the equa-
tion, Ksv values were calculated. At 25 ℃, 30 ℃, and 35 ℃ the Ksv values 
were 2.92 × 104 L mol− 1, 3.05 × 104 L mol− 1, and 3.26 × 104 L mol− 1 

respectively, and gradually increased with increasing temperature. Kq 
was 2.92 × 1012 L mol− 1⋅s− 1, 3.05 × 1012 L mol− 1⋅s− 1, and 3.26 × 1012 

L mol− 1⋅s− 1. The maximum dynamic quenching rate constant (2 × 1010 

L mol− 1⋅s− 1) was lower than the minimum Kq. The results were similar 
to those of Zhong (Zhong, Zhao, Dai, McClements, & Liu, 2021), and it 
could be concluded that the quenching mode of zein–CA was static 
quenching. The binding constants and binding sites of zein–CA were 
obtained by the double logarithmic equation: 

log
[

F0 − Fc

Fc

]

= logKa + nlog[Q] (6)  

where Ka is the binding constant between zein and CA, and n is the 
number of binding sites. The results obtained from this equation can be 
found in Table 1. At different temperatures, the numbers of binding sites 
between zein and CA were all approximately equal to 1, suggesting that 
only one CA molecule was bound to each zein molecule. Moreover, the 
binding constant between proteins and polyphenols was an important 
indicator of their affinity. The value of Ka gradually decreased from 1.24 
× 105 L mol− 1 to 0.87 × 105 L mol− 1 as the temperature was raised, 
indicating that the affinity between zein and CA was weaker at higher 
temperatures. Calculation of thermodynamic parameters for the inter-
action between zein and CA using the van ’t Hoff equation: 

RlnK = ΔS − ΔH/T (7)  

ΔG = ΔH − TΔS = − RT lnK (8)  

where R is the gas constant (8.314 J mol− 1 K− 1). T is the absolute 
temperature. ΔH, ΔS, and ΔG can be obtained from this equation, and 
the results can be found in Table 1. Proteins can interact with small 
molecules through hydrophobic interactions, hydrogen bonding, elec-
trostatic interactions, and van der Waals forces. The type of non- 
covalent interaction between protein and small molecule can be 
judged by the magnitude of thermodynamic parameters. The negative 
value of the Gibbs free energy change (ΔG) suggested the spontaneity of 
the interaction between zein and CA. According to the conclusion of 
Wang et al. (2021), ΔS > 0 and ΔH < 0, indicating a significant role for 
electrostatic interactions in binding zein to CA. 

3.3. FTIR spectroscopy 

FTIR is used to analyze the interactions between molecules. It has the 
characteristics of fast testing speed, high sensitivity, and low sample 
consumption. Diagram 2A shows the Fourier transform infrared spectra 
of zein, CA, and their mixed systems. The absorption of natural zein 
powder at 3415 cm− 1 corresponds to the O–H stretching vibration. The 
absorption peak at 1639 cm− 1 of the amide I band corresponded to C––O 
stretching, and the absorption peak at 1544 cm− 1 of the amide II band 
was due to C–N stretching and N–H bending vibration (Yin, Yang, 
Zhao, & Li, 2014). When zein was combined with CA, the absorption 
peak at 3415 cm− 1 was transferred to 3311 cm− 1, indicating the for-
mation of a hydrogen bond between zein and CA. The changes of 1639 
cm− 1 and 1544 cm− 1 to 1656 cm− 1 and 1541 cm− 1 revealed that there 
was electrostatic interaction between zein and CA, respectively. These 
results were consistent with the interaction between zein and quercetin 
previously reported by Sun et al. (2015). 

3.4. CD spectra 

The effects of small molecules on the secondary structure of the 
protein were researched using CD spectra. The CD spectra of zein shows 
two negative peaks at 208 and 221 nm, which are classic α-helix peaks, 
as seen in Fig. 2B (Gordon, Sharon, & David, 2007). The negative peak at 
208 nm was put down to π–π* transitions. The negative peak at 221 nm 
might be resulted from n–π* transitions of the α-helix and random coil 
(Tan, Zhou, Guo, Zhang, & Ma, 2021). The binding of CA caused a 
decrease in the band of natural zein at 208 nm and 221 nm. This clearly 
indicates a diminution in the content of α-helix structure in zein. Ac-
cording to Eqs. (2) and (3), the α-helix content of natural zein was 
61.15%. The α-helix content of zein was reduced from 59.54% to 
57.59% upon binding to 20 μM CA and 40 μM CA respectively. The 
results show that the presence of CA changed the secondary structure of 
zein. This might be because of electrostatic interactions and hydrogen 
bonding between the hydroxyl groups on the benzene ring of CA and 
amino acid residues on the zein surface (Liu et al., 2007). These results 
imply that the interaction of zein with CA leads to slight conformational 
changes in the protein. When studying the binding mechanism of CA and 
the whey protein, Zhang et al. (2014) found that the α-helix structure of 
β-lactoglobulin was also lessened following the interaction between CA 
and β-lactoglobulin. A decrease in the α-helix content of the protein may 
indicate a partial unfolding of the protein structure, which would make 
it less stable. 

3.5. Thermal performances 

The thermal performance of all coaxial nanofiber films was analyzed 
by DSC, and the results are depicted in Fig. 3A. As the denaturation of 
the nanofiber films was linked to the three-dimensional structure of zein, 
we only concentrated on this process in our work. Previously, Liu, Ma, 
McClements, and Gao (2017) reported that the thermal denaturation 
temperature (Td) of zein was 91.5 ◦C. However, the Td of the zein based 
nanofiber film obtained here was quite different. The difference in Td 
may result from the use of different zein sources and the addition of PVP. 
As indicated in Fig. 3A, the Td of the nanofiber films was reduced with 
increasing CA content (P < 0.05), among which the Td of the nanofiber 
film without CA was the highest (121.73 ± 2.5 ℃). The Td of the 
nanofiber film containing 2.0% CA, on the other hand, decreased by 
14 ◦C. The Td of the nanofiber films loaded with CA was lower than that 
without CA. The addition of CA reduced the α-helix content of zein as 
determined by CD. Therefore, the decrease in Td may be ascribed to the 
hydrogen bonding and electrostatic interactions between CA and zein, 
which induced disorder in the system and weakened the thermal sta-
bility of coaxial nanofiber films (Li et al., 2021). 

Table 1 
The binding constant Ka, number of binding sites n and thermodynamic pa-
rameters ΔH, ΔS and ΔG of zein–CA at different temperatures.  

System T 
(℃) 

n Ka 

(105 L 
mol− 1) 

ΔH (kJ/ 
mol) 

ΔS (J/ 
mol⋅K) 

ΔG (kJ/ 
mol)  

25  1.15  1.24    − 3.489 
zein- 

CA 
30  1.12  0.97  − 2.736  2.527  − 3.504  

35  1.10  0.87    − 3.519  
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3.6. Mechanical performances 

Mechanical strength and tensile properties of packaging materials 

are essential in food packaging. Fig. 4A shows the stress–strain curves of 
coaxial nanofiber films with various CA contents. The mechanical 
properties of the coaxial nanofiber films steadily improved as the CA 

Fig. 2. A: FTIR spectra of CA, zein and zein–CA; B: CD spectra of zein and zein–CA with different concentrations of CA.  

Fig. 3. A: DSC curves of nanofiber films with different CA additions; B: Antioxidant activity of nanofiber films with different CA additions.  

Fig. 4. Mechanical properties of nanofiber films with different CA additions: (A) stress–strain curves; (B) elastic modulus; (C) elongation at break; and (D) ten-
sile strength. 
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content of the core solution increased. Fig. 4B, C, and D show the elastic 
modulus, elongation at break, and tensile strength of coaxial nanofiber 
films with different CA contents. The elastic modulus of the coaxial 
nanofiber films increased from 510 to 1070 MPa with increasing CA 
content, suggesting an enhanced resistance against film deformation. 
The addition of CA enhanced the rigidity and brittleness of the coaxial 
nanofiber films (P < 0.05). Phenol-protein interchain interactions 
reduced the influence of the plasticizer within the film, resulting in 
increased rigidity. Similar results were reported by Nie, Gong, Wang, 
and Meng (2015). In coaxial nanofiber films without CA, the elongation 
at break was 1.85% and the tensile strength was 7.86 MPa. The elon-
gation at break of the nanofiber films initially increased and then 
decreased with increasing CA addition, reaching the highest value 
(2.18%) when the CA addition was 1.0%, and decreasing to the lowest 
value (2.15%) when the CA content was 2.0%, but the change was not 
significant (P > 0.05). When 0.5–2.0% CA was added to the core solu-
tion, the tensile strength increased gradually from 10.57 MPa to 18.27 
MPa (P < 0.05). The tensile strength of zein nanofiber film with 2.0% CA 
increased by 132.44%. The above results are caused by hydrogen bonds 
formed between the carboxyl groups of zein and the hydroxyl groups of 
CA, which enhance the interactions between zein molecules (Zhang 
et al., 2021). This was further confirmed using FTIR and CD analysis. 
These interactions contribute to a more dense structure, hence 
improving the tensile strength of the nanofiber films. The pomelo peel 
flour–based films with tea polyphenols prepared by Wu et al. (2019) 
showed a similar result. The addition of polyphenols could significantly 
improve the tensile strength of nanofiber films, which might be used as 
packaging materials. 

3.7. Antioxidant capacity 

In Fig. 3B, the antioxidant capacity of nanofiber films was assessed 
using DPPH and ABTS scavenging assays. The scavenging rates of DPPH 
and ABTS free radicals by the zein-based nanofiber film without CA were 
16% and 61%, respectively. This was due to the antioxidant properties 
of zein (Zhang, Luo, & Wang, 2011). With an increase in the CA content, 
the DPPH and ABTS scavenging abilities of zein-based nanofiber films 
increased from 46% to 72% and 64% to 66%, respectively, and reached 
the highest values when the CA content was at 2.0%. In conclusion, the 
total antioxidant capacities of the zein-based nanofiber films consider-
ably increased (P < 0.05) as the CA content of the films multiplied. This 
indicates that CA was successfully encapsulated in the nanofiber film. 
For effective application of nanofiber films as active packaging to ensure 
the quality of food, the antioxidant capacity of coaxial nanofiber films 
can be optimized by adjusting the amount of added CA. 

3.8. Antimicrobial activity 

The antimicrobial activity test is an indicator to evaluate zein-based 
nanofiber films loaded with chlorogenic acid as an active packaging 
material. Retail food products are particularly susceptible to contami-
nation by S. aureus, which can cause foodborne poisoning. In China, 
foodborne bacterial outbreaks caused by S. aureus were reported to ac-
count for about 20%-25% of the total. As shown in Fig. 5, the zein-based 
nanofiber film without CA loading did not show any inhibition zone for 
S. aureus, indicating that zein and PVP had no antimicrobial activity. 
When 0.5%, 1.0%, 1.5%, and 2.0% CA were added to the zein-based 
nanofiber films, inhibition zones appeared near the nanofiber film, 
indicating that the nanofiber film loaded with CA had an inhibitory ef-
fect on S. aureus. However, all nanofiber films loaded with CA presented 
small inhibition zones for S. aureus (Fig. 5). The sizes of the inhibition 
zones of the nanofiber films with 0.5%, 1.0%, and 1.5% CA were similar, 
whereas the inhibition zone of the nanofiber film with 2.0% CA was 
slightly larger than that of the other groups. The antimicrobial activities 
of the nanofiber films were related to the CA content and the distance of 
CA from the inside of the fiber to the surface (Kang et al., 2017). Even 
though the size of the inhibition zone of CA-loaded zein-based nanofiber 
films against S. aureus in this study was small, it can still be demon-
strated that the loading of CA can make zein-based nanofiber films have 
antibacterial effect against S. aureus and can be used as a potential active 
food packaging material. 

4. Conclusions 

A multispectral method was used to research the interaction between 
zein and CA in this paper. The UV spectra demonstrated that CA inter-
acted with zein to form the zein-CA complex. The fluorescence spectra 
showed that the quenching mode of CA for zein was static quenching 
and that the spontaneous binding of CA and zein was fueled by elec-
trostatic interactions. The binding of CA to zein was demonstrated by 
infrared spectra to have been primarily mediated by hydrogen bonds 
and electrostatic interactions. Based on circular dichroism analysis, 
zein’s secondary structure was altered by its interaction with CA. In 
addition, zein was mixed with PVP as a shell solution and with various 
concentrations of CA as the core solution for coaxial electrostatic spin-
ning. The effect of the interaction between zein and CA on the properties 
of nanofiber films was studied. The results show that CA was successfully 
encapsulated in the nanofibers, which existed in the form of continuous 
non-beaded shell cores. The interaction between zein and CA reduced 
the thermal stability, augmented the mechanical properties and anti-
oxidant capacity of the nanofiber films, and improved their antibacterial 
effect. In this study, CA and zein were combined and encapsulated in 

Fig. 5. Antimicrobial activity of nanofiber films with different CA additions.  

X. Wang et al.                                                                                                                                                                                                                                   



Food Chemistry: X 16 (2022) 100454

7

nanofibers, revealing the influence of the interaction between zein and 
CA on the physicochemical and functional properties of nanofiber films. 
Our findings offer an effective solution for the comprehensive utilization 
of plant protein and plant active ingredients and provide new ideas for 
the exploitation of low-cost and environmentally friendly active 
packaging. 
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