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Editorial on the Research Topic

Tau Pathology in Neurological Disorders

The histological alterations now known as neurofibrillary tangles (NFTs) were first described in
1906 by Alois Alzheimer using light microscopy and silver staining (1); in the late 1960’s it was
shown by electron microscopy that they were made of paired helical filaments (PHFs) and a small
percentage of straight filaments (SFs) (2, 3). Around this time, it was also shown that abundant
NFTs were associated with cognitive decline (4, 5). Between 1985 and 1991 it was shown by
immunohistochemistry, biochemical approaches and molecular cloning that PHFs and SFs are
made of hyperphosphorylated tau protein (6–11) a microtubule-associated protein first described
in 1975 (12). Tau filaments from Alzheimer’s disease were shown to be made of a structured core
and the less structured fuzzy coat (10, 13, 14). These pioneering accomplishments paved the way to
further recognize the complexity of tau translation and splicing leading to the identification of the
different tau isoforms in the healthy brain and modification such as phosphorylation, truncation
and conformational changes in neurodegenerative diseases (7, 15–18). In normal human brain, six
tau isoforms are expressed from a single gene by alternative mRNA splicing (19, 20). They differ
by the presence or absence of two amino-terminal inserts and an extra repeat of 31 amino acids
in the C-terminal region. Depending on its presence, one can divide tau isoforms into two groups,
three isoforms with three repeats and three isoforms with four repeats. Both groups of isoforms
are expressed at similar levels in normal brain. The repeats and some adjoining sequences make
up the microtubule-binding region of tau. They also form part of the filament core, suggesting
that physiological function and pathological assembly are mutually incompatible. In Alzheimer’s
disease, all six tau isoforms are present in PHFs and SFs (15). Electron microscopy and image
reconstruction showed that tau filaments from Alzheimer’s disease are made of two identical
C-shaped protofilaments (21). However, the resolution was insufficient to see individual amino
acids. This changed in 2017, when the structure of the Alzheimer tau fold was obtained at near-
atomic resolution using electron cryo-microscopy (cryo-EM) (22). The same tau fold has been
described in multiple individuals with Alzheimer’s disease (23), as well as in some cases with prion
protein amyloidosis (24) and in primary age-related tauopathy (PART) (25). Different tau folds
have been described in Pick’s disease (23), chronic traumatic encephalopathy (26), and corticobasal
degeneration (27).
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These findings tell us that Alzheimer NFTs are made of
filamentous tau, but they do not say anything about the relevance
of tau assembly for the disease process. This required human
genetics. In June 1998, three publications reported mutations
in MAPT, the tau gene, in familial forms of frontotemporal
dementia (28–30). Even though MAPT mutations do not cause
Alzheimer’s disease, these findings proved that dysfunction of tau
protein is sufficient to cause neurodegeneration and dementia.
To date, 65 missense, deletion and intronic mutations in MAPT
have been shown to cause disease. Gene dosage mutations have
also been reported (31). Importantly, filamentous tau assemblies
were present in all cases. Depending on themutations, assemblies
are made of either 3R, 4R, or 3R+4R tau. Similar findings have
been described for idiopathic human tauopathies. Thus, Pick’s
disease is a 3R tauopathy, whereas progressive supranuclear
palsy, globular glial tauopathy, corticobasal degeneration, and
argyrophilic grain disease are 4R tauopathies. Alzheimer’s
disease, familial British dementia, familial Danish dementia,
chronic traumatic encephalopathy and Guam-Parkinsonism-
Dementia are 3R+4R tauopathies.

In 2009, it was shown that assembled tau exhibits prion-
like properties in experimental systems (32, 33). It is now well-
established that a tau seed can induce the assembly of monomeric
protein, but it remains to be established what role the prion-
like spreading of assembled tau plays in human brain. Although
the staging of tau pathology is associated with development of
dementia (34–37) and is consistent with prion-like spreading, it
cannot prove its existence. Perhaps the best evidence for prion-
like spreading in human brain comes from a study showing
the absence of assembled tau in denervated frontal cortex from
Alzheimer’s disease (38). Using sucrose gradient fractionation of
the brains frommice transgenic for humanmutant P301S tau and
a cellular assay, it has been shown that small tau filaments are
the most potent seeds (39). It remains to be determined which
species of assembled tau cause neurodegeneration. It has been
suggested that tau oligomers may play an important role (40–42).
Current knowledge also suggests that the intercellular transfer of
tau aggregates is dependent on the tau species (43) and is likely
mediated through mechanisms such as the release of tau seeds
into the extracellular space in a free form or within vesicles, such
as exosomes, which enter recipient neighboring cells by fluid-
phase or receptor-mediated endocytosis or by vesicle fusion. The
transfer of tau seeds to recipient cells can also occur through
nanotubes [reviewed in (44)]. The recipient cells can be either
neurons or other brain cell types such as microglia, astrocytes,
oligodendrocytes and endothelial cells as highlighted in this
Research Topic.

Notwithstanding that the presence and importance of tau
and its modifications in neuropathology were first studied
in Alzheimer’s disease, tau inclusions are also represented in
other neurodegenerative diseases grouped under the umbrella
term “tauopathies.” The strong association between NFTs
and cognitive capabilities in the continuum of Alzheimer’s
disease, and observed also in Down syndrome, was described
in a wealth of literature (34, 45–57). These observations
were also corroborated by the recent report of an autosomal
dominant Alzheimer’s disease case who presented mild cognitive

impairment at the age of 70, 3 decades later of what
expected in the family and who presented with extreme
amyloid burden but minimal tau pathology (58). In addition
to Alzheimer’s disease, tau pathology has been described in
other neurodegenerative diseases which lack significant Aβ

pathology including Pick’s disease, progressive supranuclear
palsy, corticobasal degeneration, and frontotemporal dementia
and parkinsonism linked to chromosome 17, among others
(30, 59–62) [reviewed in (63, 64)]. In consequence the term
“tauopathy” used to describe the pathology in a family
with MAPT mutation (61) encompassing now all the above
neurodegenerative diseases.

Still, despite the colossal amount of knowledge on tau
biology gathered so far, significant questions related to how tau
transitions from the homeostatic into the disease state remain
at least partially unanswered: (1) How do the differential levels
of tau post-translational modifications and aggregation affect
tau propagation and its biological activity? (2) What is the
contribution of tau regions outside the microtubule binding
domain to tau physiology and pathology? (3) Which factors
define the phenotypic heterogeneity of tauopathies; is miRNA-
mediated regulation of tau involved? (4) What are the functional
consequences of tau interaction with cellular organelles such
as the nucleus and mitochondria? (5) How and how much
does the transmission of tau to non-neuronal cells contribute to
tauopathy progression and what is the functional consequence
of such transmission in the recipient cells? (6) What is the
contribution of tau pathology to the malfunction of the brain
vasculature and neurovascular unit in Alzheimer’s disease? (7)
To which extent does tau intersect with other pathologies to
drive neurodegeneration and cognitive dysfunction? (8) How
does the current knowledge of tau biology translate into tau-
targeted therapies, and can these be of benefit in tauopathies
other than Alzheimer’s?

We present this Research Topic and e-book to provide an
insight into some of these questions and highlights the most
recent advances in understanding the molecular and cellular
mechanisms underlying the evolution of tau pathology in
Alzheimer’s disease and in other tauopathies.

In this Research Topic, the extent of tau post-translational
modifications, the assembly states and conformations of tau,
the distribution of tau in different cell types, the spreading of
tau to cells and tissues and the toxic effects of abnormal tau
are comprehensively reviewed by Kang et al. who conclude that
“although heterogeneity [of tau biology] in the here and now is
an inconvenient truth, embracing this effect, defining its origins
and then adjusting approaches may pave the way for more
sophisticated testing and more realistic interventions.”

The extent of tau post-translational modifications across
tauopathies, their frequency, and their effect on tau function,
aggregation and degradation are further reviewed by Alquezar
et al. It is noteworthy that the vast number of sites on the
tau protein that can be targeted by specific modifications,
often on the same amino acid residue, opens the door for
a competition between post-translational modifications that
defines a dynamic code regulating tau function, aggregation and
degradation and could therefore explain the heterogeneity of
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tauopathies. The significance of tau phosphorylation is further
emphasized by Duquette et al. who discuss that the pattern
of tau hyperphosphorylation varies greatly in physiological
and pathological conditions. Tau hyperphosphorylation appears
mainly protective and reversible in brain development and in
hibernating animals. However, in pathological conditions the
pattern of tau hyperphosphorylation is disease-specific in the
same way as the atomic structure of their intrinsic tau filaments
as revealed by cryo-EM.

The disease-specificity of tau phosphorylation is further
highlighted in amyotrophic lateral sclerosis (ALS) and in ALS
frontotemporal spectrum disorder (ALS-FTSD) as reviewed by
Strong et al. where the distinctive pathological phosphorylation
at Thr175 promotes exposure of the phosphatase activating
domain in the tau N-terminus thereby activating GSK3β-
mediated phosphorylation at Thr231 leading to the formation
of tau oligomers. Indeed, it has been shown that tau
phosphorylation and aggregation are intimately linked and tau
hyperphosphorylation by proline-directed stress kinases, such
as GSK3β favors tau oligomerization (65). Novel information
regarding the reason for which oligomeric tau might be more
neurotoxic than fibrillar tau is provided by Jiang et al. Using
a seeding assay in primary neuron cultures expressing human
4R0N tau Jiang et al. demonstrate that oligomeric seeds of
tau show a greater co-localization with RNA binding proteins
associated with stress granules, an element that could contribute
to increased pathology.

The molecular organization of the tau protein in relation to
the functional interactions of diverse tau regions, including the
particular features of the tau non-microtubule binding region
are eloquently reviewed by Brandt et al. Of relevance, tau
knockout in mouse models results in a several of effects, with
only some of them related to microtubule-dependent processes.
This highlights the role of the N-terminal region of tau in the
organization and function of membrane organelles, such as the
plasma membrane (66, 67) and synaptic vesicles as well as its
involvement in tauopathies.

Tau aggregates are mostly found within neurons where they
disrupt synaptic plasticity, cell signaling, and DNA integrity
eventually leading to cell death. Indeed, stress and pathological
conditions promote tau accumulation in cellular compartments
other than axons which are considered their main sub-cellular
localisation. As such, tau can also be found in the soma,
the dendrites, and the nucleus where it can interact with
nuclear components. As reviewed by Diez and Wegmann, the
dual localisation of tau in cytoplasm and nucleus suggests the
transport of tau between the two compartments by mechanisms
still to be defined given the absence of nuclear localisation signals.
The nuclear tau interaction with DNA appears to be regulated
by its phosphorylation and it has been suggested as protective
of double stranded DNA breaks and participant of regulation of
gene expression.

Such nuclear localization may also promote chromosome
stability. On the other hand, cytoplasmic tau could alter the
structure of the nuclear envelope and promote the aggregation
of nucleoporins in the cytoplasm. This would alter the

nucleocytoplasmic protein transport and therefore impacting
major cellular signaling pathways. In response to stress nuclear
tau can also translocate to the nucleolus and be found in stress
granules in the cytoplasm as revealed in ALS and ALS-FTSD
and discussed by Strong et al. Moreover, tau pathology impacts
negatively adult hippocampal neurogenesis in both Alzheimer’s
disease and tau mouse models as summarized by Houben et al.
This provides a new insight on a less documented tau-related
pathological pathway leading to cognitive deficits. However, the
studies carried so far have produced conflicting results.

The presence of tau aggregates is being increasingly reported
in non-neuronal brain cells. Whether such aggregates derive
directly from the intracellular microtubule tau detachment of
glial expressed tau or from the glial uptake of neuronal tau
is still a matter of debate (68–70). It is well-established that
astrocytes play a critical role in supporting neuronal function
and that pathological astrocytic changes are associated with
and precede neuronal loss in Alzheimer’s disease and overt
tau aggregation in mouse models of tau aggregation (71).
Interestingly, while tau deposition in astrocytes is mostly seen
in aging, it can also be found in tauopathies, although with
varying frequency according with the disease condition, as
reviewed by Reid et al. This deposition of tau impacts the
function of astrocytes through mechanisms which includes
disruption of calcium signaling, gliotransmitters release, and
immune responses consequentially affecting neuronal function.
In addition, astrocytes may participate in the spreading of tau via
the astrocytic water channel aquaporin-4 (AQP4) involved in the
elimination of aberrant proteins.

The disruption of astrocytic and microglial function by
tau may also participate in vascular dysfunction, an early
characteristic of Alzheimer’s disease (72). Canepa and Fossati
discuss studies in vitro, in animal and human supporting
the view that tau has deleterious effects on cellular and
molecular pathways in vascular and immune cells which lead
to the dysregulation of the neurovascular unit. These authors
also propose mechanisms mediating the effects of tau on
the cerebrovasculature, including tau-induced mitochondrial
dysfunction which would lead to increased reactive oxygen
species and decreased ATP production and caspase activation.
Further to it, Bryant et al. provide novel data showing that
microvessels isolated from the dorsolateral prefrontal cortex of
Alzheimer’s subjects display extensive tau pathology (Braak V/VI,
B3) and a strong upregulation of endothelial senescence and
leukocyte adhesion-related genes.

The disease-specificity of tau accumulation in glia and
the role of oligodendrocytes in tau spreading is further
highlighted by Zareba-Paslawska et al. Using a humanized tau
mouse line overexpressing all six human tau isoforms in a
murine tau knockout background inoculated with insoluble
tau extracts from corticobasal degeneration brain homogenates,
they show a 4R-tau dependent spreading primarily mediated
by oligodendrocytes.

Given the critical role of tau in Alzheimer’s and other
tauopathies, understanding how tau expression, splicing, post-
translational modifications and aggregation are regulated is
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essential. Boscher et al. describe the involvement of microRNAs
(miRNAs) in such regulation. In particular, loss of the miR-
132/212 cluster is strongly associated with memory decline and
increased tau pathology. Intriguingly, Boscher et al. show that
deletion of the miR-132/212 in PS19 mice, a model of tauopathy,
had little effects on disease phenotypes with divergent effects on
tau biology. They also discuss potential pitfalls explaining these
observations including the lack of adequate tools and animal
models to study the involvement of miRNAs in tau pathology.

As evidenced in this Research Topic, because of its key
function and its dysregulation and aggregation in Alzheimer’s
and other tauopathies, tau has become an attractive target
for therapy. Existing tau-targeting approaches, their advantages
and limitations were elegantly summarized by Masnata et al.,
with an emphasis on their potential in treating Huntington’s
disease, a secondary tauopathy. Some approaches target tau
phosphorylation using kinase inhibitors, phosphatase activators
or immunotherapy targeted at tau phosphorylation at sites that
are either hyperphosphorylated or exclusively phosphorylated
in Alzheimer’s. In the particular case of immunotherapy, a
few factors must be considered when designing antibodies
including the differential toxicity of tau seeds and the disease-
specificity of tau hyperphosphorylation, which precludes the use
of immunotherapy targets across tauopathies as discussed by
Duquette et al.

The disease-specific characteristics of tau aggregates across
tauopathies as revealed by cryo-EM, their trans-cellular
propagation and the information gathered from models used
to study tau aggregation further prompted the development
of approaches targeting tau self-assembly as discussed by
Oakley et al. and by Masnata et al. The present most promising
avenues include tau aggregation inhibitors, and active or passive
immunisation against either post-translational modifications
facilitating tau aggregation and conformationally altered forms
of tau or aggregated tau, thus preventing the formation of PHFs.

Tau spreading could also be targeted by inhibiting tau
receptors favouring spreading. A recent study by Rauch et al.
(73) showed that neuronal surface low-density-lipoprotein-
receptor-related protein-1 (LRP1) mediates internalization
and spreading of both physiological tau and pathogenic
tau oligomers, suggesting that LRP1 could be a suitable
target for intervention. Through their commentary on the
paper by Rauch et al., Fearon and Lynch highlight the
potential and limitations of LRP1 as a key player in tau
physiology and its potential as a therapeutic target for
tauopathies. As previously suggested in Fearon and Lynch’s
the in vitro and animal data do not always translate to
human studies.

Other approaches to mitigate the deleterious effects of
pathological tau are being examined such as modulating
MAPT gene expression. As revealed in preclinical studies, the
restoration of physiological miRNA levels could also provide an
attractive alternative.

As emphasized in several contributions to this Research Topic,
models mimicking tau biology in physiological and pathological
conditions, while allowing testing potential therapeutics they

present considerable limitations. To overcome these limitations
Shamir et al. introduce a neuron-like in vitro model of human
origin which shows the expected toxicity of human-derived PHF-
enriched tau and enables studies on the internalization and
interaction of tau antibodies with pathological tau.

A significant limitation of mouse tauopathy models is that
while mouse models provide invaluable insight into tau biology
and pathology, they do not recapitulate the human tau splicing
into six isoforms and the human 3R/4R ratio [reviewed in (74,
75)]. There are a few mouse models which mimic human tau
pathology leading to brain atrophy such as the PS19 and the
P301S tau (76, 77). More recently, P301S tau transgenic mice
with targeted replacement of endogenous ApoE with human
ApoE revealed the important role of ApoE in regulating tau-
mediated neurodegeneration. In this model, the expression of the
human ApoE4 protein caused the most severe tauopathy leading
to human-like brain atrophy (78). In this regard rat models of
tauopathy display significant advantages (74). For example, the
McGill-R962-hTau rat model of tauopathy, as similar models
under development, overexpresses the longest isoform of human
tau (2N4R) with the P301S mutation causative of FTDP-
17 under the control of the CaMKII alpha gene promoter.
These rats progressively develop human-like tau pathology
and related phenotype with tau hyperphosphorylation and
conformationally-altered tau, resulting in NFT-like inclusions
and neuroinflammation followed by neuronal loss, marked
by brain atrophy, ventricular dilation, demyelination, and
cognitive impairment (79). Of relevance to the study of the
human-like tauopathy and therapeutics rats are genetically and
physiologically closer to humans than mice and unlike mice they
display all six human tau isoforms, although not at the same
ratio. Furthermore, the rat endogenous ApoE protein has a high
homology with the human ApoE4 protein.

CONCLUSION

This collection of reviews covers a wide variety of progresses
regarding the participation of the tau protein in a diversity
of neurodegenerative conditions. These contributions bring
new ideas regarding physiological and pathological molecular
mechanisms involving this multi-faceted microtubule-associated
protein. These contributions offer an excellent background to
further define the differential pathological aspects of diverse
tauopathies. It supports the analysis of tau-mediated glia-neuron
interactions and their impact in the homeostatic maintenance of
the brain vascular bed. The main future challenge in the field will
remain the development of effective therapeutics able to halt or
delay the devastating consequences of brain tau pathology. This
e-book should be of much assistance to conceive and investigate
novel therapeutic approaches of eventual clinical value.
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