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Radiotherapy (RT) is a mainstay treatment in several types of cancer and acts by
mediating various forms of cancer cell death, although it is still a large challenge
to enhance therapy efficacy. Radiation resistance represents the main cause of
cancer progression, therefore, overcoming treatment resistance is now the greatest
challenge for clinicians. Increasing evidence indicates that immune response plays a
role in reprogramming the radiation-induced tumor microenvironment (TME). Intriguingly,
radiation-induced immunosuppression possibly overwhelms the ability of immune
system to ablate tumor cells. This induces an immune equilibrium, which, we
hypothesize, is an opportunity for radiosensitizers to make actions. Vitamin D has
been reported to act in synergistic with RT by potentiating antiproliferative effect
induced by therapeutics. Additionally, vitamin D can also regulate the TME and may
even lead to immunostimulation by blocking immunosuppression following radiation.
Previous reviews have focused on vitamin D metabolism and epidemiological trials,
however, the synergistic effect of vitamin D and existing therapies remains unknown.
This review summarizes vitamin D mediated radiosensitization, radiation immunity,
and vitamin D-regulated TME, which may contribute to more successful vitamin
D-adjuvant radiotherapy.
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INTRODUCTION

Radiotherapy (RT) is usually the definitive treatment for many types of tumors, including but not
limited to colorectal cancer, nasopharyngeal carcinoma, and cervical cancer (Chen et al., 2019;
Cohen et al., 2019; Dekker et al., 2019). Resistance to radiation is considered to be an important
reason for tumor recurrence and local failure, different cell molecular mechanisms are involved in
intrinsic and acquired resistance of cancer cells to therapeutics. Although some strategies, such as
radiosensitizers, have been investigated recently, sensitizers have been limited to preclinical studies
due to the toxic effects of these agents.

Vitamin D, which is a fat-soluble secosteroid mediating numerous physiological functions
(Maurya et al., 2020), has been demonstrated to participate in antitumor activity in many
cancers (Keum et al., 2019). Moreover, accumulating data suggest that vitamin D employs several
mechanisms to enhance the elimination of irradiated tumor cells (Sundaram and Gewirtz, 1999;
Chaudhry et al., 2001; Bristol et al., 2012; Sharma et al., 2014). Thus, a deeper understanding of how
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vitamin D functions in combination with RT in cancer may help
in developing effective sensitizers to overcome radioresistance.

It is worth noting that the immune system plays an important
role in the response to RT (Chen et al., 2019). Radiation can lead
to both positive and negative regulation of the immune response,
and this has been observed not only in tumor cells but also in the
tumor microenvironment (TME). Importantly, vitamin D is also
involved in the immune microenvironment (Charoenngam and
Holick, 2020), although the underlying mechanism has not been
clearly elucidated.

Although there is growing awareness of the importance of
vitamin D in tumor cell response to radiation, there have
been few reviews to report the underlying mechanisms. In this
review, we briefly introduce vitamin D and the mechanisms
influencing radiosensitivity. Additionally, we discuss how the
immune response is regulated in response to RT. Finally, we
present the modulation of TME by vitamin D and speculate
on the intricate association among vitamin D, radiation, and
anti-tumor immunity.

VITAMIN D METABOLISM AND
EPIDEMIOLOGY

Vitamin D is produced from 7-dehydrocholesterol in the human
skin after exposure to ultraviolet radiation in sunlight, therefore,
it can be influenced by season, latitude, skin pigmentation, and
cultural habits. In addition, dietary habits and supplementation
can also affect vitamin D levels (Amrein et al., 2020). A two-
step catalysis mediated by cytochrome P450 is the crucial
process in the production of the steroid hormone calcitriol
(biologically active form of vitamin D) (Jones et al., 2014). The
less active form of vitamin D, 25(OH)D3, is generated after the
first hydroxylation by vitamin D 25-hydroxylase (CYP2R1 and
CYP27A1) in the liver (Bikle, 2014). 25(OH)D3 is found to be
the major circulating form of vitamin D in the blood, however,
general agreement on the threshold levels has not been defined.
Recently, 25(OH)D levels of 75-150 nmol/L (30-60 ng/mL) have
been proposed to be the optimal range for vitamin D (Bischoff-
Ferrari et al., 2016). The association between 25(OH)D level
and cancer risk has been described in several solid cancers (Yao
et al., 2017; Ramakrishnan et al., 2019; Yuan et al., 2019), and
higher 25(OH)D circulating level contributes to better prognosis
in colorectal cancer (Markotic et al., 2019). Subsequently, the
kidneys utilize the circulating 25(OH)D3 as a substrate and
convert it into 1,25-dihydroxy-vitamin D3, which is hydroxylated
by CYP27B1 (Jones et al., 2014).

Previous finding supports the role of CYP24A1 in catabolizing
25(OH)D and preventing the formation of 1,25(OH)2D3 (Jones
et al., 2012). Interestingly, either activation of the catabolic
enzyme CYP24A1 by calcidol or calcitriol or inactivation
of CYP27B1 by calcitriol can lead to a negative feedback
loop to regulate the vitamin D level, broadening the role of
CYP24A1 as an important mediator of the rate limiting step
of not only vitamin D generation but also hormone self-
regulation, thus potentially ameliorating hypercalcemia. The
hypercalcemia induced by an increased concentration of calcitriol

or insufficiency in the blood due to its instability can undoubtedly
limit its clinical application. This has eventually led to the
exploration of calcitriol analogs that can exert equipotent or
increased anticancer actions with less side effects (Jones, 2010).

1,25(OH)2D3 is able to regulate the expression of several
genes depending on the tissues, cell types, and context (Carlberg
and Munoz, 2020). By binding to vitamin D receptor (VDR),
1,25(OH)2D3 facilitates dimerization with the retinoid X receptor
(RXR), which fosters nuclear translocation of this complex,
and subsequent binding to the vitamin D response elements
(VDREs) in the target gene, followed by recruitment of co-
modulators. Therefore, calcitriol can interfere with target gene
expression in the genomic pathway (Carlberg and Munoz, 2020).
It functions in the genomic way by which 1,25(OH)2D3-VDR-
RXR complex is involved, and the non-genomic way, by which
a 1,25D-membrane-associated, rapid response steroid-binding
protein (1,25D-MARRS) is involved (Hii and Ferrante, 2016).

Several studies have confirmed the ability of vitamin D to
affect cell proliferation and differentiation (Feldman et al., 2014;
Fernandez-Barral et al., 2020a), and that it has an important
role in decreasing the risk of developing multiple cancers (Wu
et al., 2019). The association between 1,25(OH)2D3 and cancer
was initially detected in 1981, when inhibition of melanoma
cells and differentiation induction of myeloid leukemic cells
were reported (Abe et al., 1981; Colston et al., 1981). Since
then, anticancer properties of vitamin D have been increasingly
confirmed through in vitro and in vivo studies (Lappe et al., 2017;
Jeon and Shin, 2018). Recent research has identified the crucial
impact of vitamin D on carcinoma cells, especially in colon and
breast cancers (Grant, 2020). In line with the antiproliferative
effects of 1,25(OH)2D3, high VDR expression has also been
shown in association with favorable prognosis (Feldman et al.,
2014; Carlberg and Munoz, 2020). Although these previous
studies have shown the positive role of VDR in patient prognosis,
VDR has also been found to be associated with increased cancer
risk (Zheng et al., 2017), indicating the controversial role of
VDR. Thus, VDR may be a possible prognostic biomarker in
patients. Furthermore, several findings support that vitamin D
supplementation contributes to favorable prognosis (Ng et al.,
2019; Urashima et al., 2019; Yonaga et al., 2019), especially the
prognosis improvement compared to those with treatment alone
(Wesselink et al., 2020).

ROLE OF VITAMIN D IN
RADIOSENSITIVITY

More recently, accumulating evidence has confirmed the
anticancer role of vitamin D in several cancer models. In addition
to the induction of differentiation and proliferation inhibition,
the role of vitamin D as a magnifier of radiation response is
emerging. Evaluation of combined therapy was performed in
preclinical studies, showing synergistic or additive antitumor
effectiveness. To date, the molecular mechanisms by which
vitamin D potentiates the antitumor effects of RT are only
partially known, and need further clarification. The antitumor
actions of vitamin D are carried out through several mechanisms,
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such as induction of apoptosis, inhibition of proliferation,
and suppression of angiogenesis. Additionally, vitamin D can
also potentiate the antitumor effects of RT through different
pathways. A summary of previous literature on the role of
vitamin D to enhance radiation sensitization in cancer is
presented in Figure 1.

Apoptosis
Cancer relapse occurs through multiple mechanisms, most
of which are mediated by insufficient apoptosis. Increased
DNA fragmentation induced by additive EB1089 in MDA-
MB-231 cells was associated with increased responsiveness to
radiation (Sundaram and Gewirtz, 1999). Although the number
of apoptotic cells triggered by radiation alone appeared to be
minimal in MCF-7 cells, the rate and extent of cytotoxicity
in irradiated cells were enhanced when combined with ILX-
23-7553 (vitamin D analog) (Chaudhry et al., 2001). It is
important to emphasize that vitamin D3 and EB1089 promote
the inactivation of BCL-2 (Simboli-Campbell et al., 1997),
which is an anti-apoptotic protein. Additionally, high radiation
doses have been correlated with more adverse events. In
prostate cancer, vitamin D3 achieved equal therapeutic efficacy
by inducing apoptosis along with marked attenuation of the
radiation dose, thereby mitigating the side effects associated
with a high radiation dose (Dunlap et al., 2003). In preclinical
studies, these high-dose strategies show a weaker relationship
with clinical RT, necessitating an experimental fractionation dose.
The combination of ILX-23-7553 with fractionated radiation
(5 × 2Gy, 3 days) demonstrated an advantage in inducing the
apoptosis of MCF-7 cells; conversely, it appeared to have no
impact on normal human fibroblasts, thus supporting the tumor-
specific role of ILX-23-7553 (Polar et al., 2003). Similarly, a
relationship between fractionated radiation and EB1089 has been
reported in breast cancer: combination treatment led to a higher
apoptotic rate than that with radiation alone and showed no
detectable toxicity in normal breast epithelial cells or BJ fibroblast
cells (DeMasters et al., 2004).

Moreover, it is known that radiation can directly induce cell
death by DNA damage or indirectly by production of reactive
oxygen species (ROS). When intrinsic resistance develops in
tumor cells, ROS clearance is enhanced to ameliorate the
oxidative stress. Xu et al. (2007) showed that RelB triggered by
radiation resulted in the protection of irradiated cells, whereas
vitamin D3 ablated this protection. As a member of the NF-κB
family, RelB can be inactivated by VDR-mediated transcriptional
repression. Similarly, in breast cancer cells pre-treated with
vitamin D3, sensitivity to radiation was increased accompanied
with down-regulation of RelB (Mineva et al., 2009), again
indicating that RelB was a target gene regulated by vitamin D in
response to radiation.

Autophagy
As a source of cellular stress, radiation can also induce autophagy,
which is a homeostasis mechanism for cellular stress and
is mediated by a series of autophagy-related proteins. This
process could also be influenced by vitamin D. Gewirtz (2014)
first summarized the four faces of autophagy, which are the

different types of autophagy that may play crucial roles in
response to conventional therapies: (i) cytotoxic autophagy, (ii)
cytoprotective autophagy, (iii) cytostatic autophagy, and (iv)
non-protective autophagy.

Cytotoxic Autophagy
Demasters et al. (2006) indicated that autophagic cell death
could be an important tumor cell elimination mechanism for
combinatorial EB1089 and radiation in breast cancer. Cytotoxic
autophagy is characterized by enhanced cell death, which is
accompanied with earlier occurrence and greater extent of
autophagosome, but no other apparent cell death type.

Cytoprotective Autophagy
Response to a single or combination treatment is not simply
the result of a uniform type of autophagy, there is evidence
that cytoprotective autophagy induced by radiation alone may be
converted to cytotoxic autophagy when combined with vitamin
D3 (Wilson et al., 2011). This further supports the view that
dual functions of autophagy may be exhibited concomitantly.
The cytoprotective form of autophagy is often considered as a
mechanism of drug and radiation resistance in tumors (Ko et al.,
2014). Consequently, autophagy inhibitors have been proposed
to counteract the elevated cytoprotective autophagy induced by
RT to improve radiosensitivity. Several studies have indicated
that vitamin D3 shifted the autophagy type from cytoprotective
to cytotoxic, which has been considered an autophagic switch
(Wilson et al., 2011; Bristol et al., 2012).

Cytostatic Autophagy
Both cytotoxic and cytoprotective autophagy are closely related
to the alteration of the autophagy flux level, whereas a cytostatic
form of autophagy has been shown to exert beneficial antitumor
effects on non-small cell lung carcinoma independent of the
autophagy flux alteration. In a study by Sharma et al. (2014),
EB1089 was revealed to increase radiation sensitization by
inducing a growth-arrest status with no autophagy alteration
or direct cell killing; interestingly, pharmacological inhibition
or genetic silencing of autophagy rescued the tumor cells from
the cytostatic status. EB1089 is possibly effective in switching
the autophagy to cytostatic mode which appears to be involved
in growth arrest. Therefore, autophagy primarily induced by
radiation can be maintained, whereas the nature can be shifted
to antitumor activity.

Non-protective Autophagy
Unlike cytoprotective autophagy, where autophagy inhibition
results in an enhanced response to treatment, or cytotoxic and
cytostatic autophagy where autophagy inhibition leads to reduced
therapy efficiency, inhibition of non-protective autophagy shows
no association with response to therapeutics. A study by
Chakradeo et al. (2015) confirmed this finding by investigating
whether cytoprotective autophagy induced by radiation in
multiple cell lines was blocked by pharmacological inhibition or
genetic silencing of autophagy genes. They found that inhibition
of autophagy failed to influence the radiation sensitivity of p53
null cells, which seems to support the mysterious non-protective
form of autophagy.
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FIGURE 1 | Vitamin D-induced molecular mechanisms involved in enhancing radiosensitivity in several tumors.

Senescence
In a previous study, EB1089 was found to enhance cell apoptosis
in response to radiation; the study also claimed that EB1089 had
no perceptible effect on preventing senescence but only delayed
the emergence of senescence (DeMasters et al., 2004). Similar
studies on vitamin D3 mediated radiosensitivity also mentioned
the occurrence of cell senescence (Demasters et al., 2006;
Wilson et al., 2011).

Therapy-Induced Senescence
Traditionally, senescence was considered irreversible; however,
recently, the focus has been on the capability to regain
proliferation instead of quiescence in response to radiation.
TIS was an accelerated form of senescence (or premature),
different from the replicative senescence in aging cells. There
is increasing evidence that low-dose radiation interferes with
TIS (Yu et al., 2018). Under this condition, senescent cells can
escape from direct damage due to RT and enter temporary
dormancy; once re-activated, the surviving cells re-emerge from
the dormant state and develop into a more aggressive phenotype
(Rodier and Campisi, 2011). This is also termed "pseudo-
senescence" or "senescence-like arrest." Some clinical reports have
demonstrated that patient prognosis was negatively correlated
with the expression of senescence markers when exposed to
radiation (Fischer et al., 2011).

Senescence-Associated Secretory Phenotype
Radiation influences not only irradiated cells but also the TME,
or the so called SASP (Faget et al., 2019). SASP can influence

the neighboring non-irradiated cells by releasing a series of pro-
inflammatory chemokines and cytokines such as IL-1β, IL-6, and
CXCL1 into the surrounding environment (Acosta et al., 2013).
Such molecules can hinder the success of RT. This bystander
effect induced by radiation might be the mechanism by which
a tumor treated with primary therapy becomes refractory to
further treatment. This premise has been supported by Huang
et al. (2014), who established a bystander model by treating
non-irradiated cells with a conditioned medium acquired from
irradiated senescent MDA-MB-231-2A cells. They demonstrated
that the conditioned medium could lead to the invasion and
migration of neighboring cells mediated by the JAK2-dependent
AKT and STAT3 pathways. This non-targeted effect of radiation
requires potential therapeutics for a better regulation between the
target site and the surrounding microenvironment.

Vitamin D and Senescence
Studies on the elimination of TIS are underway for the prevention
of disease relapse (Gorgoulis et al., 2019; Short et al., 2019).
Notably, VDRE is a promoter of the gene encoding p21; thus,
vitamin D3 could directly regulate p21 by binding to VDRE
(Ylikomi et al., 2002). Elevated levels of IL-6 and IL-8 are
associated with paracrine secretion in the SASP phenotype,
and vitamin D3 has been proven to exert anti-inflammatory
effects in prostate cancer through the inhibition of IL-6, IL-8,
and TNF-α (Giangreco et al., 2015). Mechanistically, vitamin
D was shown to inhibit the IL-6 production through the
inactivation of p38MAPK (Nonn et al., 2006). These observations
imply that vitamin D3 may be a potential senolytic that
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can eliminate senescence-related effects, thereby enhancing
sensitization to radiation.

Epithelial-to-Mesenchymal Transition
EMT is a reversible process, which usually involves an initial
loss of the differentiated phenotype to the migratory phenotype
as circulating form in the bloodstream, and subsequent
mesenchymal–epithelial transition (MET) for initial colonization
leading to metastatic niches, thus generating intratumoral
phenotypic heterogeneity (Angela Nieto, 2017). Usually, EMT is
accompanied with diminished apoptosis and increased stemness,
and both effects are linked to resistance to conventional therapies
(Dongre and Weinberg, 2019). Data on colorectal cancer have
shown that calcitriol significantly enhanced the therapeutic
effects of radiation regulated by EMT (Findlay et al., 2014). In this
study, Slug was involved, and overexpression of Slug in calcitriol-
sensitive cell lines abrogated the radiosensitization effect. DNA
damage repair is a major regulator of treatment response and also
involved in radioresistance. ZEB1 was reported to promote DNA
damage repair (Zhang et al., 2014). Besides, the presence of Snail
was correlated with decreased apoptosis mediated by p53 (Kurrey
et al., 2009). Furthermore, upregulation of Slug by IR reversely
contributed to inhibition of PUMA, thus decreasing apoptosis
(Wu et al., 2005). These data establish EMT as a sensitization
switch which regulates the treatment response, and harness of
EMT related transcriptional factors may be a potential strategy
for enhancing response to RT. Additionally, there is evidence
that calcitriol can directly influence tumor-initiating cells (TICs,
also known as cancer stem cells), which demonstrated that
calcitriol in combination with radiation could inhibit spheroid
formation more than either treatment alone; furthermore, this
effect could be abolished by the overexpression of β-catenin
(Jeong et al., 2015). It has been postulated that non-cancer stem
cells are more sensitive to treatment, and EMT can directly
characterize epithelial cells of the stem-cell properties, therefore,
understanding the impact of calcitriol on EMT and CSCs might
provide a novel insight into its effect on radiosensitivity.

Nevertheless, the scant molecular data have revealed
that vitamin D may enhance the response to radiation at
different levels. The reported molecular mechanisms involve
the potentiation of existing apoptosis and the inhibition of
protective autophagy. Moreover, the role of vitamin D in
senescence and EMT transition requires further investigation.
The available evidence strongly suggests that 1,25(OH)2D3 could
be considered for combination therapy for cancer.

RADIATION IMMUNITY

As summarized above, vitamin D demonstrates a synergistic
effect with radiation through various mechanisms. However,
given the complexity of the direct impact of radiation on tumor
cells and the indirect impact on the TME, it is worth noting the
role that immune response plays in the response to RT. It has
been traditionally thought that RT is an approach to suppress the
immune system when harnessed for allogeneic transplantation
(Rodier and Campisi, 2011). Recently, reactivation of the

immune system, or the 6th R of radiobiology, has been
proclaimed as the emerging target for RT (Fischer et al., 2011).
RT participates in numerous steps of the immunological process
(Figure 2). Therefore, the ultimate impact of vitamin D may be
dependent, in part, on the radiation-induced TME, and the role
that the immune system plays in the overall TME.

RT Induced Immuno-Stimulation
Immunogenic Cell Death
Evidence shows that ICD is the dominant process responsible for
the higher therapeutic efficacy of concurrent chemoradiotherapy
than single chemotherapy (Formenti and Demaria, 2008). The
effects of RT are far beyond tumor size reduction; RT converts
the irradiated site into an immunogenic hub by releasing damage
associated molecular patterns (DAMPs), the so-called “in situ
vaccine” that contributes to the priming of the systemic immune
response (Carvalho and Villar, 2018). Increasingly, evidence
indicates that radiation-induced DAMPs can exert adjuvanticity
by converting the “immune-cold” tumor into the “immune-
hot” tumor (Whiteside et al., 2016). “Cold” tumor normally
does not respond to conventional therapies. This conversion
relies on the ability of RT to induce primary tumor to be the
immunogenic hub, thus significantly improving the effector T
cell response (Zheng et al., 2016). A better appreciation of the
intricate interaction between immune cold-to-hot conversion
and radiotherapy is emerging (Galon and Bruni, 2019), which
could shed light on tumors respond poorly to existing treatments.
The mechanism of ICD includes CRT translocation to the
dendritic cell (DC) surface promoting antigen presentation,
release of HMGB1 from the dying cells to activate the Toll-
like receptor 4 (TLR4) pathway, and ATP binding to the P2X7
receptor in DCs (Apetoh et al., 2007; Obeid et al., 2007;
Ghiringhelli et al., 2009). Radiation can potentiate ICD through
any of these three steps (Golden et al., 2014). Various DAMPs can
be induced by radiation. HMGB1, as one of the DAMPs, has been
shown to boost antigen presentation by DCs; other factors such
as TLR4, which contributes to the binding of HMGB1 to DCs, are
also triggered in response to radiation (Apetoh et al., 2007).

Antigenicity
Tumors with a higher antigen load have a greater tendency to
induce the activation of naive T cells by DCs, leading to the
possibility of low-immunogenic tumors inducing an immune
response (Galluzzi et al., 2017). Following the release of tumor
associated antigens (TAA) such as DAMPs, tumor-specific T cells
are trafficked back to the tumor site, and the radiation-triggered
immune response can therefore be amplified (individualized
vaccination) (Vanpouille-Box et al., 2017). Radiation has been
proven to lead to the upregulation of MHC-I, which further
enhances the efficacy of antigen presentation (Reits et al., 2006).
A similar effect has been observed in DCs, manifesting as
improved maturation and recruitment of DCs to the irradiated
site. The T cell function in response to RT was first described
by Stone et al. (1979), who demonstrated that the attenuation
of the radiation efficacy correlated with immune insufficiency.
Experimental data have shown that the antitumor immune
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FIGURE 2 | Equilibrium between immuno-stimulation and immuno-suppression induced by radiation. Immuno-stimulation (Left): (cGAS-STING)
cGAS-STING-mediated type I interferons (IFNs) are released by sensing double-stranded DNA (dsDNA) and contribute to the immune response; (Immunogenic cell
death [ICD]) A schematic of the series of molecules binding to their receptors during immunogenic cell death. Immuno-suppression (Right): (Fractionation dose and
sequence) The dose of RT influences immunomodulation through the production of Three-Prime Repair Exonuclease 1 (TREX1); the introduction of immune
modifiers should be optimally timed; (Abscopal effects): The priming of antitumor immunity by local RT causes the distant tumor sites to shrink by activating systemic
immune response.

effects of RT could be attributed to CD8+ T cell infiltration
(Lee et al., 2009).

Chemokines and Cytokines
Specific chemokines and chemokine receptors are crucial for
T-cell trafficking to the tumor site. For instance, irradiated tumors
secrete C-X-C motif ligand 9 (CXCL9), CXCL10, and CXCL16,
which bind to their receptors C-X-C chemokine receptor type 3
(CXCR3) or CXCR6 expressed on T cells or T helper 1 cells (TH1),
and can facilitate the homing of CD8 T-cells to the irradiated
site (McLaughlin et al., 2020). DNA damage has recently been
identified to play a novel role in anti-tumor immunity induced
by RT (Harding et al., 2017; Mackenzie et al., 2017), and the
presence of double-stranded DNA (dsDNA), a recognized type
I interferon (IFN-I) initiator, has been shown to elicit a tumor-
specific T cell response (Deng et al., 2014; Vanpouille-Box et al.,
2017). The cGAS-STING (cyclic GMP-AMP synthase-stimulator
of interferon genes) pathway is of great significance as it is
involved in dsDNA sensing and production of IFN-I during
the radiation response (Deng et al., 2014; Harding et al., 2017;
Mackenzie et al., 2017). The micronuclei derived from the
damaged DNA can be transported by the nucleic acid sensors,
cyclic GMP-AMP (cGAMP), to the STING dependent pathway

and promote IFN-I production. Three-Prime Repair Exonuclease
1 (TREX1), upstream of cGAS, is a known exonuclease that can be
transferred by exosome and has been shown to be associated with
the degradation of dsDNA in irradiated cells (Diamond et al.,
2018). Exosome is a particular form of extracellular vesicles with a
size range of 40 to 160 nm in diameter and carries different types
of cargoes inside (Kalluri and LeBleu, 2020). Previous evidence
indicates that radioresistance is correlated with tumor derived
exosomes (Ni et al., 2019). The most straightforward reply for
how exosome respond to radiation is the alteration of its content
because of altered TME induced by radiation (Diamond et al.,
2018). The production of TREX1 is radiation dose-dependent
and may lead to immune failure when receiving RT at a dose
more than 12 Gy (Vanpouille-Box et al., 2017). Therefore, the
commonly seen therapeutic resistance in response to high-dose
RT may result from concentration-dependent TREX1, which
can modulate cytosolic dsDNA and thus influence the immune
response. It is important to understand that the tumor-cell-
intrinsic sensing remains unclear. There is evidence that caspase
9 (CASP9) signaling hijacked by the irradiated tumor cells can
result in acquired resistance to radiation by the inhibition of
innate DNA sensing (Han et al., 2020). When CASP9 was
blocked using a pan-caspase inhibitor, a thousand-fold increase
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in IFN-I appeared in response to RT. Caspase appears to be
involved in the immune response to radiation mediated by the
innate DNA sensor.

RT Induced Immuno-Suppression
Immuno-Suppression
Since cancer is commonly based on the equilibrium between pro-
immune and anti-immune effects in a degree sufficient to cause
substantial cell death, T cells can induce successful immunization
for achieving tumor elimination. An inhibitory TME often
acts as a signal for immunosuppression, and this aberrant
milieu influences the intrinsic properties of the surrounding
cells. Specific immune suppressive cytokines are important
for this milieu. Transforming growth factor-β (TGF-β), which
can be induced by radiation, has been shown to impair
antigen-presentation by DCs and can impede effector T cell
differentiation (Tauriello et al., 2018). A study has indicated that T
cell-mediated tumor rejection was acquired only when combined
with anti-TGF-β (Vanpouille-Box et al., 2015). In addition, the
remarkable myeloid-derived suppressor cells (MDSCs) induced
by RT can also lead to immunosuppression mediated by TGF-
β (Vatner and Formenti, 2015). Meanwhile, up-regulation of
MDSCs in response to radiation is also associated with increased
anti-programmed death-ligand 1 (PD-L1) expression on the cell
surface of MDSCs (Dovedi et al., 2017). MDSCs can differentiate
into mature macrophages, and there is evidence that radiation
can cause the macrophage polarization into the M2 phenotype,
thus attenuating the response to therapy (Tsai et al., 2007).
Moreover, suppressive chemokines such as C-C motif chemokine
2 (CCL2) or CCL5 released from irradiated cells can recruit
MDSCs and regulatory CD4 T cells (Tregs) to the tumor site
(Connolly et al., 2016). Intriguingly, although IFN-I derived
from the cGAS-STING pathway plays an important role in the
antitumor immune response induced by RT, long-term chronic
interferon-driven basal interferon-stimulated gene (ISG) was also
correlated with T cell dysfunction (McLaughlin et al., 2020).
Thus, the dual target roles of IFN-I need further investigation for
effectively mitigating immunosuppression.

Abscopal Effect
The ability of RT to inhibit tumor growth far from the irradiated
site is called the abscopal effect (Formenti and Demaria, 2009).
The link between the abscopal effect and systemic immunity
was first reported by Demaria et al. (2004), who claimed that
the antitumor immune response triggered by radiation can
also elicit effective eradication of the non-irradiated tumor
site. As an immunogenic hub, the field directly exposed to
radiation sustains the in situ vaccine effect; however, this may
be insufficient. The possible theories regarding how radiation
can trigger the abscopal effect are based on the equilibrium
between the immunostimulatory and immunosuppressive
effects. As explained above, radiation not only has an
immunostimulatory effect on the irradiated site but also
promotes an immunosuppressive response in the surrounding
environment. In a preclinical experiment, the abscopal effect was
observed under blockade of immunosuppression (Levy et al.,
2016), which supports the potential use of immune modifiers

for this effect. Logically, TAAs play the role of mediators in the
abscopal effect by shuttling outside the radiation field; however,
when administered alone, radiation or immune checkpoint
inhibitors (ICIs) did not inhibit growth in all the metastatic
niches, suggesting that the antigenic overlap between the
irradiated and non-irradiated sites was required to elicit an
abscopal effect (Formenti et al., 2018). Activation of systemic
antitumor immunity undergoes numerous processes including
neoantigens releasing and priming of T cell infiltration. Notably,
the abscopal effect is previously rare and single-site irradiation
only shows some modest success, does not substantially increase
the response rate (Luke et al., 2018). Therefore, we should rethink
the importance of tumor heterogeneity. Radiation to multiple
sites has been suggested to surmount this barrier and lead to
optimal effectiveness of RT, which can be a meaningful strategy
to prime systemic immune response (Brooks and Chang, 2019).

Radiation Fractionation and Sequence
Of note, the promotion or inhibition of the immune response
triggered by radiation depends on various factors, such as the
fractionation dose. A radiation dose of more than 7.5 Gy but not
5 Gy was revealed to stimulate the systemic immune response in a
low immunogenic tumor (Stone et al., 1979), and a mathematical
model appeared to allow the maximum immunity level in a range
of 10-13 Gy (Lee et al., 2009). Conventional dose fractionation or
single high-dose RT increases the amount of MDSCs, conversely,
this can be reverted by hypofractionation (McLaughlin et al.,
2020). There is evidence that 8 Gy × 3 fractions or 6 Gy × 5
fractions, but not a single high dose, can activate the immune
response more intensively (Apetoh et al., 2007). Furthermore,
a single dose of 20 Gy did not have a synergistic effect with
additive immune modifiers. TREX1 induced by RT might help
to elucidate the abrogation of the immune response (Nonn
et al., 2006). Commonly, antitumor immune response with
radiation alone has a limited effect, and optimal stimulation of
the adaptive immunity requires the aid of ICIs. Recently, immune
checkpoints, such as the programmed cell death protein 1 (PD-
1) or cytotoxic T lymphocyte-associated protein 4 (CTLA-4), as
co-inhibitory receptors on T lymphocytes, have been selected as
targets to reactivate T cell function (Harding et al., 2017). This
application of ICIs can make the paradigm shift to RT and vice
versa. Additionally, the increased antitumor activity also depends
on whether the immune modifiers are administered, before, after,
or concurrently with RT. This might be due to the functional
mechanisms of modifiers to inhibit immunosuppression. For
example, therapeutic benefit could be acquired only when anti-
PD-L1 was applied concomitantly with RT (Mackenzie et al.,
2017). It seems that the effectiveness of anti-PD-L1 therapy
depends on the upregulation of PD-L1 on the cell surface, which
should be first activated by radiation.

A likely explanation for the mixed results is that a specific
therapeutic window is needed for RT to remove the immune
barriers when acting synergistically with immune adjuvants.
Additional evidence on how conventional fractionation or
hypofractionation influences the immune system should be
acquired for harnessing the benefits of combination treatment.
There is a very delicate balance between the immunostimulation
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and immunosuppression induced by RT; consequently, effective
cancer treatment is determined by an optimal fractionation
scheme combined with specific immune modifiers along with
suitable timing.

VITAMIN D AND IMMUNITY

Although the crucial role of the TME during RT is widely
accepted, studies on how the radiation-induced TME can
be reprogrammed by adjuvants are scarce. Recent study has
demonstrated that vitamin D can also modulate tumor stromal
cells (Sherman et al., 2014), and the excellent review has
summarized the effects of vitamin D on the TME (Wu et al.,
2019). The primary association between vitamin D and immunity
is mainly thought to be based on energy metabolism and
defense against infections. However, in recent years, vitamin
D has been shown to be a multifaceted regulator of the
immune system (Hanel and Carlberg, 2020). Vitamin D has
been used for the treatment of autoimmune disorders by
attenuation of the inflammatory immune response (Dimitrov
et al., 2017), and it has also been shown to benefit organ transplant
patients by inhibiting autoimmunity (Zhou et al., 2017). In
fact, although vitamin D induces partial immunosuppression
in normal tissues, the long-term effect of chronic inflammation
control prevents tumorigenesis, allowing for the antitumor
immunity induced by vitamin D.

Study has shown that the immune system can also affect
vitamin D production (Liu et al., 2006). A high level of 25(OH)D3
in plasma led to a lower risk in the colorectal cancer subtype
with an intense immune reaction, but had no effect on low
degree reaction subtypes (Song et al., 2016). This further supports
that sufficient immunity is necessary for vitamin D to exert its
antitumor effect. Apart from kidney tubular cells, immune cells
also express CYP27B1 and VDR, which reinforces the important
role of vitamin D in regulating immune functions (Wei and
Christakos, 2015; Christakos et al., 2016). Many types of immune
cells such as DCs, CD4, and CD8 T cells expressing VDR (Lu
et al., 2018) and CYP27B1 can produce the active metabolite
1,25(OH)2D3, which can maintain a healthy immune system
(Barragan et al., 2015).

Inflammation
Not only the infiltrating immune cells but also cytokines and
chemokines in the TME usually influence the tumor response
to treatment (Diakos et al., 2014). Vitamin D regulates the
inflammatory microenvironment through several mechanisms
(Liu et al., 2018). NF-κB plays an important role in regulating
immune response (Miraghazadeh and Cook, 2018), and evidence
supports the role of VDR antagonist in suppressing p65 activation
(Tse et al., 2010). It was also found that vitamin D increased
the infiltration of CD8+ T cells, and this was due to the
suppression of IL-6 in the TME (Karkeni et al., 2019). Moreover,
1,25(OH)2D3 was effective in suppressing IL-8, which was based
on the inhibition of NF-κB activation (Yang et al., 2018).

Cancer-Associated Fibroblasts
CAFs are a heterogeneous population of cells in the TME, derived
from tumor cells or tumor stroma cells, and are usually involved

in tumor progression and therapeutic resistance (Augsten, 2014).
Therefore, a strategy to target the CAFs is necessary (Chen and
Song, 2019). Recent data indicate that calcipotriol (VDR agonist)
can enhance the therapeutic efficacy by reducing inflammation
and fibrosis in pancreatic cancer (Sherman et al., 2014). In line
with these data, analyses of patients have reported that high VDR
expression in CAFs is associated with better prognosis (Ferrer-
Mayorga et al., 2017). These findings are clinically relevant,
which indicates that VDR agonists can exert antitumor actions
on tumor stromal cells and patients in carcinoma VDR-negative
status may still benefit from vitamin D treatment. In recent years,
recognition of the crucial role played by exosome in cancer has
led to the novel insight for selectively targeting cancer cells (Knox
et al., 2020). In this context, a study (Kong et al., 2019) reported
that vitamin D decreased the amount of exosomes secreted by
the CAFs and thus inhibited the tumor promoter miR-10a-5p in
pancreatic cancer.

Cancer Stem Cells
CSCs are a subpopulation of cells characterized by self-
renewal due to the accumulation of genetic and epigenetic
alterations, and possibly make an important contribution
to therapeutic resistance. Moreover, inhibition of CSCs
by vitamin D has been described in prostate and breast
malignancies as a promising treatment strategy (So and
Suh, 2015). 1,25(OH)2D3 has been found to reduce sphere
formation in breast cancer, with downregulation of stem
cell markers and NOTCH pathway genes (Shan et al., 2017).
Organoids have been proposed to represent the in vivo
situation, as three-dimensional structures generated by primary
normal or cancer stem cells isolated from the patients. On
the one hand, 1,25(OH)2D3 can induce cell differentiation
in colon tumor organoids and lead to a more epithelial
phenotype (Fernandez-Barral et al., 2020b). On the other
hand, 1,25(OH)2D3 upregulates stemness-related genes and
downregulates differentiation genes in normal rectum organoids
(Costales-Carrera et al., 2020). These results demonstrate the
different roles of vitamin D in normal stem cells and colon
CSCs. Recently, it has been demonstrated that vitamin D
induced significant downregulation of stemness-related genes
compared to imatinib alone, indicating the apparent amplified
function of vitamin D on CSCs (Kotlarz et al., 2019). Likewise,
reduction of MCF-7 stem cell subpopulation can be induced
by VDR overexpression, which elevates sensitivity to tamoxifen
(Zheng et al., 2018).

The above data clearly demonstrate that 1,25(OH)2D3 can
suppress tumor progression by modulating the TME. Initially,
it has been shown that immune cells and tumor stromal cells
express VDR, which contributes to 1,25(OH)2D3 responsiveness.
Supporting this, vitamin D correlates inversely with the CAFs
in the surrounding TME. In addition, the inhibition of
CSCs is probably also a consequence of TME regulation by
1,25(OH)2D3. Similar functional effects were observed on the
novel three-dimensional structures of organoids. Taken together,
vitamin D modulates the TME in diverse ways, which strongly
indicates the multi-level anticancer actions of vitamin D in
various cancers.
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FUTURE PERSPECTIVES

This review aimed to bring together two different fields, namely,
vitamin D and radiation, which have rarely been linked before.
We used the TME as the bridge between the two fields.
However, further investigation is required before we can fully
elucidate the impact of vitamin D on radiation. Notable evidence
reported in previous studies has highlighted the importance
of the TME in the treatment response of cancer. Molecular
scenarios induced by radiation in cancer also demonstrate the
remarkable functions of the TME. We hypothesize that, if
the immunosuppression caused by radiation can be weakened
or subtracted by vitamin D, the equilibrium will be broken
and immunostimulation will be in dominancy. Supporting this,
suitable vitamin D intervention in combination with radiation
can induce an antiproliferative additive effect, and this effect
of RT may be derived from not only directly causing cancer
cell death but also indirectly reprogramming the TME. This
may widen the perspective on vitamin D with regard to its
immune modulatory role, which is essential for the treatment
of autoimmune disorders. Overall, radiation therapy is complex
with the involvement of intricate immune modulation and
multiple types of cancer cell death. Additional research is needed
to elucidate the underlying mechanisms and the potential utility
of vitamin D in RT.

Nonetheless, more investigations are needed to confirm
whether there is existing resistance to vitamin D itself,
accompanied with the detection of a vitamin D response-
dependent biomarker, which could facilitate the selection of
patients with a higher likelihood of response to vitamin D,
and decide the biologically optimal dose of vitamin D for

achieving maximum health benefit. Is there a scheme to
satisfy the target doses by controlling the local concentration
of calcitriol? For greater benefits, the development of VDR
agonists is recommended, which is deemed to acquire the equi-
effective but less hypercalcaemia effect. The timing of vitamin D
initiation during combination therapy is another important issue.
For best regimen, whether the agent should be supplemented
continuously or not? Does radiation alter vitamin D metabolism
indirectly? These explorations may contribute to the discovery
of potential cost-effective and efficient agent for combination
treatment with conventional therapeutics.
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