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Abstract: Endogenous factors involved in the progression of cisplatin nephropathy remain undeter-
mined. Here, we demonstrate the toxico-pathological roles of indoxyl sulfate (IS), a sulfate-conjugated
uremic toxin, and sulfotransferase 1A1 (SULT1A1), an enzyme involved in its synthesis, in cisplatin-
induced acute kidney injury using Sult1a1-deficient (Sult1a1-/- KO) mice. With cisplatin administra-
tion, severe kidney dysfunction, tissue damage, and apoptosis were attenuated in Sult1a1-/- (KO)
mice. Aryl hydrocarbon receptor (AhR) expression was increased by treatment with cisplatin in
mouse kidney tissue. Moreover, the downregulation of antioxidant stress enzymes in wild-type (WT)
mice was not observed in Sult1a1-/- (KO) mice. To investigate the effect of IS on the reactive oxygen
species (ROS) levels, HK-2 cells were treated with cisplatin and IS. The ROS levels were significantly
increased compared to cisplatin or IS treatment alone. IS-induced increases in ROS were reversed
by downregulation of AhR, xanthine oxidase (XO), and NADPH oxidase 4 (NOX4). These findings
suggest that SULT1A1 plays toxico-pathological roles in the progression of cisplatin-induced acute
kidney injury, while the IS/AhR/ROS axis brings about oxidative stress.

Keywords: sulfotransferase 1A1 (SULT1A1); indoxyl sulfate (IS); aryl hydrocarbon receptor (AhR);
reactive oxygen species (ROS); acute kidney injury (AKI)

1. Introduction

Nephropathy associated with acute kidney injury (AKI) is a serious adverse side
effect of cisplatin (cis-diamminedichloroplatinum (II)), occurring in about one-third of the
treated patients [1,2]. AKI is a dose-limiting factor in cisplatin treatment and, a decrease
in dosage and/or discontinuation of cisplatin treatment is a clinical issue, especially in
patients for whom the treatment is significantly effective. There are many reports about the
cellular and molecular mechanisms of cisplatin-induced AKI [3–7]. Cisplatin accumulates
in renal proximal tubular epithelial cells at about five times the serum concentration and
is most highly concentrated in the proximal tubule S3 segment, which is thought to be a
toxico-pathogenic target of cisplatin [8]. Organic cation transporter 2 classified as a solute
carrier (SLC) 22 family member localized in the basolateral membrane of renal tubular
cells is thought to mediate active cellular uptake of cisplatin, thereby causing proximal
tubular cell-specific damage [8–11]. It is known that various factors such as intracellular
inflammatory responses, oxidative stress, DNA damage, and apoptosis are involved in the
molecular mechanisms of cisplatin-induced AKI [12]. However, the factor that accelerate
the progression and deterioration of cisplatin-induced AKI remains undetermined. We
previously reported that a typical sulfate-conjugated uremic toxin, indoxyl sulfate (IS),
was closely involved in cisplatin nephrotoxicity in an experimental animal model [13,14].
Morisaki et al. [15] reported that IS accumulation in serum and kidney was markedly
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elevated in cisplatin-treated rats whereas kidney injury was largely prevented by the
administration of AST-120, a charcoal adsorbent that decreases intestinal indole derived
from the metabolism of tryptophan by gut microbiota, thereby reducing hepatic production
of IS. Furthermore, quercetin, a phytochemical polyphenol, significantly suppressed the
serum blood urea nitrogen (BUN) level in cisplatin-treated rats and protected them against
kidney injury by decreasing renal tissue accumulation of IS [14]. IS is produced in the liver
by CYP2E1- and/or CYP2A6-mediated oxidation of indole, followed by sulfotransferase-
mediated sulfonation of indoxyl, which then generates IS. An in vitro assay using rat
liver fractions revealed that quercetin had a potent inhibitory effect on the sulfonation of
indoxyl, thereby suppressing hepatic production of IS [14]. A previous study showed that
sulfotransferase (SULT) 1A1 was responsible for the sulfonation activity of indoxyl, whereas
other sulfotransferase isoforms, SULT2A1 and SULT1E1, showed no sulfonation activity
for indoxyl [16]. However, there is no in vivo evidence for the toxico-pharmacological
roles of SULT1A1-mediated IS production in cisplatin-induced nephropathy. The current
study using Sult1a1-deficient (Sult1a1-/- KO) mice provides the first evidence that SULT1A1
contributes as a key modulator in the progression of cisplatin-induced AKI by producing
IS that evokes reactive oxygen species (ROS) through an aryl hydrocarbon receptor (AhR)
and downregulation of antioxidant enzymes in the kidney.

2. Results

2.1. Effect of Cisplatin Treatment on IS Concentration in Serum of WT and Sult1a1-/- (KO) Mice

Cisplatin treatment resulted in marked increases in serum IS levels in WT mice,
whereas this increase was significantly suppressed in Sult1a1-/- (KO) mice (Figure 1). These
results indicated that hepatic SULT1A1 was involved in the production and accumulation
of IS during cisplatin-induced kidney injury.

Figure 1. Indoxyl sulfate (IS) concentration in the serum of wild-type (WT) and Sult1a1-/- (KO) mice
72 h after treatment with saline or cisplatin: each column represents the mean ± S.D. of 4–8 mice.
** p < 0.01; N.S.: not significant.

2.2. Effect of Cisplatin Treatment on Kidney Function and Damage in WT and Sult1a1-/-

(KO) Mice

Cisplatin treatment caused a considerable increase in the levels of BUN and serum
creatinine in WT mice (Figure 2a,b), but they were significantly attenuated in Sult1a1-/- (KO)
mice. Figure 2c shows histological alterations in the kidney of WT and Sult1a1-/- (KO) mice
after cisplatin treatment. In WT mice, cisplatin caused severe histological tubular injuries
with the formation of casts derived from sloughed cells, cellular debris, tubular dilation
with widening of the lumen, and atrophy of the tubular epithelium. However, tubular
injuries caused by cisplatin treatment were markedly attenuated in Sult1a1-/- (KO) mice.
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Figure 2. Effect of cisplatin treatment on kidney function and damage in WT and Sult1a1-/- (KO)
mice: (a,b) the effect of cisplatin treatment on (a) BUN and (b) serum creatinine, where each column
represents the mean ± S.D. of 4–8 mice, * p < 0.05, ** p < 0.01, and N.S. represents not significant, and
(c) the effect of cisplatin treatment on kidney tissue histology (hematoxylin and eosin (HE) staining).
The arrows indicate tubular cast deposition. Scale bar, 100 µm (up), 50 µm (down).

2.3. Effect of Cisplatin Treatment on Apoptosis in WT and Sult1a1-/- (KO) Mice Kidney

We examined renal apoptosis by TdT-mediated dUTP Nick End Labeling (TUNEL)
staining. The number of TUNEL-positive cells in the kidney was counted. Cisplatin
treatment markedly increased the number of apoptotic cells in the kidneys of WT mice, but
the apoptosis was significantly suppressed in the kidneys of Sult1a1-/- (KO) mice (Figure 3).

Figure 3. Detection of TUNEL-positive cells in the kidney of WT and Sult1a1-/- (KO) mice: the
arrows indicate typical apoptotic cells. Scale bar, 100 µm. Each column represents the mean ± S.D. of
4–8 mice. * p < 0.05; ** p < 0.01; N.S., not significant.

2.4. Effect of Cisplatin Treatment on the mRNA Expression of Oxidative Stress and
Inflammation-Related Factors of WT and Sult1a1-/- (KO) Mice

Next, we examined the effects of cisplatin treatment on the expression of various
factors associated with inflammation and oxidative stress in the kidney. The mRNA expres-
sion of interleukin-6 (IL-6) showed a tendency to be elevated in cisplatin-treated WT mice,
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and this effect was suppressed in Sult1a1-/- (KO) mice but the difference was not significant
(Figure 4a). IS has been reported to directly activate AhR and to generate oxidative stress
through NADPH oxidase-4 (NOX4) in human umbilical vein endothelial cells [17]. AhR
expression tended to increase in the kidney of both WT mice and Sult1a1-/- (KO) mice
treated with cisplatin (Figure 4b). A similar expression profile was observed for xanthine
oxidase (XO) (Figure 4c). Cisplatin treatment increased the expression of heme oxygenase
(HO)-1 and quinone oxidoreductase (NQO)-1, both of which are downstream factors of
the oxidative stress responsive transcription factor Nrf2 (Figure 4d,e). NADPH oxidase
4 (NOX4) was suppressed by cisplatin treatment in WT mice, whereas this effect was
suppressed in Sult1a1-/- (KO) mice (Figure 4f). The expressions of superoxide dismutase
(SOD) 1, SOD2, glutathione peroxidase 1 (GPx1), and catalase (Cat) were decreased by
cisplatin treatment in WT mice (Figure 4g–j). The suppressions of SOD1 and GPx1 were
partially inhibited in the kidneys of Sult1a1-/- (KO) mice. These results suggest that IS
induces oxidative stress by suppressing antioxidant enzyme expression.

Figure 4. Effect of cisplatin treatment on mRNA expression of (a) interleukin-6 (IL-6), (b) aryl hydrocarbon receptor (AhR),
(c) xanthine oxidase (XO), (d) heme oxygenase-1 (HO-1), (e) quinone oxidoreductase-1 (NQO1), (f) NADPH oxidase 4
(NOX4), (g) superoxide dismutase (SOD) 1, (h) SOD2, (i) glutathione peroxidase 1 (GPx1), and (j) catalase (Cat) in the
kidneys of WT and Sult1a1-/- (KO) mice: each column represents the mean ± S.D. of 4–8 mice. * p < 0.05; ** p < 0.01; N.S.,
not significant.
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2.5. Effect of Treatment with or without Cisplatin and IS on HK-2 Cells

In order to further investigate the role of IS in cisplatin-induced AKI, we examined
the cytotoxic effect and reactive oxygen species (ROS) production using an immortalized
proximal tubule epithelial cell line from normal adult human kidney, HK-2 cells. As
shown in Figure 5, HK-2 cells treated with both cisplatin and IS had significantly lower cell
viability than the cells treated with IS alone.

Figure 5. Effect of treatment with cisplatin and/or IS on HK-2 cells: (a) appearance of HK-2 cells and (b) cell survival rates
after 24 h treatment with or without cisplatin (5 µg/mL) and/or IS (500 µM). Each column represents the mean ± S.D. of
triplicate samples. ** p < 0.01; N.S., not significant.

2.6. Effect of Treatment with Cisplatin and/or IS on ROS Level in HK-2 Cells

The in vivo data from this study revealed that antioxidant enzyme expression was
decreased in cisplatin-treated mouse kidneys. Next, we investigated the ROS levels in
HK-2 cells. ROS levels were increased in HK-2 cells treated with IS (Figure 6). Combination
treatment with cisplatin and IS resulted in significant higher ROS levels compared to IS
treatment alone. In addition, ROS levels increased in a time-dependent manner.

Figure 6. Effect of treatment with cisplatin and/or IS on the reactive oxygen species (ROS) level in
HK-2 cells: the data were corrected with the control for each time point. Each column represents the
mean ± S.D. of triplicate samples. * p < 0.05; ** p < 0.01.
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2.7. AhR Protein Expression in HK-2 Cells Treated with or without Cisplatin and IS

The in vivo data gathered herein suggested that AhR mRNA expression might increase
in the kidneys of cisplatin-treated mice. AhR expression was also examined in HK-2 cells.
AhR expression decreased in HK-2 cells treated with IS alone (Figure 7). However, when
the cells were treated with both cisplatin and IS, this downregulation was less pronounced.

Figure 7. Effect of treatment with cisplatin and/or IS on AhR expression in HK-2 cells: each column
represents the mean ± SD of triplicate samples. * p < 0.05; ** p < 0.01.

2.8. AhR, XO, and NOX4 Downregulation Decreased ROS Levels Induced by IS

Next, we investigated the ROS levels in HK-2 cells transfected with siAhR, siXO, and
siNOX4. The ROS levels were decreased in HK-2 cells treated with IS alone (Figure 8).
Moreover, the ROS levels in HK-2 cells treated with both cisplatin and IS were also de-
creased by siAhR, siXO, and siNOX4. This result suggests that AhR, XO, and NOX4 are
partly involved in the increase in ROS induced by IS.

Figure 8. Effect of treatment with cisplatin and/or IS on ROS levels in HK-2 cells with or without
knockdown of AhR, XO, and NOX4: the data were corrected with the control siControl. Each column
represents the mean ± SD of triplicate samples. * p < 0.05; ** p < 0.01; N.S., not significant.

3. Discussion

In this study, to the best of our knowledge, for the first time, we identified that
SULT1A1 exacerbates cisplatin-induced kidney injury by mediating the production of
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IS. Cisplatin elevated the IS concentration in WT mice, but it was decreased in KO mice
(Figure 1), indicating that SULT1A1 plays an important role in IS production in cisplatin-
induced AKI. By inhibiting sulfate conjugation in the liver, the remaining indoxyl could be
glucuronidated by UDP-glucuronyltransferase, thereby generating indoxyl glucuronide
(IG) as an alternative metabolic pathway. IG is known to be easily removed by dialysis
and/or excreted through glomerular filtration in urine owing to its hydrophilic prop-
erty and low protein-binding ability; it also exhibits hydroxyl radical-scavenging activity,
suggesting that it is less toxic than IS [18]. In addition to the significant decrease in IS
accumulation in Sult1a1-/- (KO) mice, kidney function and histological damage were signif-
icantly reduced (Figures 1 and 2). These results suggest that SULT1A1 plays an important
role in the pathology of cisplatin-induced AKI by controlling the production of IS.

It was also observed that renal cell apoptosis was significantly decreased in Sult1a1-/-

(KO) mice (Figure 3). In vitro data showed that the cell survival rate may be lower in HK-2
cells treated with both cisplatin and IS than in those treated with cisplatin alone (Figure 5).
Renal tubular cell death is thought to be a secondary consequence of cellular dysfunction
including oxidative stress. Apoptosis and necrosis underlie cell death, which triggers
inflammatory processes, accelerating renal tubular injury [19]. The present data demon-
strated that IS was an exacerbating factor in cisplatin-induced kidney injury, accompanied
by the stimulation tubular apoptosis.

Oxidative stress is another important factor involved in the exacerbation of cisplatin-
induced AKI. Oxidative stress induces excessive ROS accumulation, which is caused by
an imbalance between oxidants and antioxidants [20]. Recep et al. reported that the
oxidant parameters were increased and that the antioxidant parameters were decreased in
cisplatin-induced AKI [21]. We examined various oxidative stress-related factors because
the factors intervening between IS accumulation and oxidative stress production in the
kidney were not clear. Among the oxidative stress-related factors (Figure 4a–j), it was found
that XO, an oxidant enzyme, was upregulated in cisplatin-treated WT and Sult1a1-/- (KO)
mice (Figure 4c). Meanwhile, the cisplatin-induced upregulation of antioxidant enzymes,
SOD1, SOD2, GPx1, and Cat in WT mice may be suppressed in cisplatin-treated Sult1a1-/-

(KO) mice (Figure 4g,h). This may result in increased ROS accumulation with induced
oxidative stress.

On the other hand, AhR expression was elevated by cisplatin treatment both in vivo
and in vitro (Figures 4b and 7). A previous report suggested that TGF-β1 increased AhR
expression in naïve CD4+ cells [22]. It has also been reported that TGF-β1 expression is
increased in cisplatin-induced AKI mouse kidneys [23]. Thus, cisplatin treatment could
enhance AhR expression via TGF-β1. In addition, IS treatment decreased AhR expres-
sion, suggesting the possibility that IS may bind to AhR as a ligand. A previous study
also reported that AhR was ubiquitinated and degraded by the proteasome system after
binding to its ligand [24]. It has recently been reported that IS is an endogenous agonist
of AhR [25–28]. AhR is a ligand-activated transcription factor involved in the biological
detoxification of ligands [29]. Under normal conditions, AhR is located in the cytoplasm
in an inactive state as part of a complex with stabilizing proteins, such as heat-shock
protein 90, a co-chaperone p23 (P23), and an X-associated protein 2 [30]. After ligand
binding, AhR is activated by a conformational change, followed by phosphorylation by
protein kinase C; thus, it translocates to the nucleus as the ligand-bound AhR complex [31].
In the nucleus, this complex releases AhR, which binds to the AhR nuclear translocator
(ARNT), forming a ligand-bound AhR-ARNT dimer. This heterodimer binds to specific
DNA sequences (referred to as DRE or XRE for dioxin- or xenobiotic-responsive elements)
located within the promoters of target genes, such as cytochrome P450 (CYP)1A1, CYP1A2,
CYP1B1, cyclooxygenase-2 (COX-2), NQO-1, UDP-glucuronosyltransferase (UGT1a1), and
XO/xanthine dehydrogenase [32,33]. Therefore, the present findings suggest that IS may
accumulate in the renal tissue and activates AhR, thereby enhancing the expression of
oxidative stress-related factors, which leads to an increase in ROS.
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Next, we examined the ROS levels in HK-2 cells. In our study, the ROS levels were
significantly increased in HK-2 cells after cisplatin and IS combined treatment, as expected
(Figure 6). At the same time, although the expression of AhR was downregulated after
treatment with both cisplatin and IS, the most important point was that its expression
appeared at a significantly higher level than when treated with IS alone (Figure 7). Because
cisplatin upregulated AhR expression, the ROS levels were increased following treatment
with both cisplatin and IS.

Recently, Nakagawa et al. reported that IS induced the production of ROS via the AhR-
NOX pathway in vascular tissue [34]. AhR is known to transcriptionally activate XO [35].
It has been reported that IS induces ROS by activating NOX4 [36]. Thus, we examined ROS
levels in HK-2 cells transfected with siAhR, siXO, or siNOX4 (Figure 8). The ROS levels
were decreased in HK-2 cells treated with IS. However, none of the knockdowns completely
suppressed ROS in HK-2 cells treated with both cisplatin and IS. ROS are produced mainly
in two pathways: one is dependent on the activation of NOX located in the cell membrane,
and the other produces ROS as a byproduct of ATP production in the mitochondria. IS is
known to induce mitochondrial dysfunction [37]; moreover, cisplatin-induced AKI is linked
with mitochondrial dysfunction [38]. Furthermore, ROS production is elevated in damaged
mitochondria. IS may also be associated with another NOX isoform and mitochondrial
ROS production caused by mitochondrial dysfunction in cisplatin-induced AKI. Taken
together, these findings suggest the involvement of SULT1A1 and IS in the progression
or deterioration of cisplatin-induced kidney injury via the cisplatin/IS/AhR/ROS axis
(summarized in Figure 9).

Figure 9. Proposed schematic representation summarizing the toxicological involvement of IS in the
pathogenesis mechanism of acute kidney injury induced by cisplatin: with accumulation of serum IS,
exposure the kidney to IS increases. In renal tubular cells, cisplatin partially enhances AhR expression.
IS interacts as a ligand with a AhR complex composed of heat-shock protein 90 and a 43 kDa protein,
triggering a conformational change in AhR to a form exhibiting higher affinity for DNA. The IS–
AhR complex translocate to the nucleus and binds specific DNA sequences called XRE (xenobiotics
response element) by forming a heterodimer with Arnt, thereby activating gene expression that leads
to oxidative stress. IS accumulates in renal tissue and decreases antioxidant enzymes that may be
involved in ROS elevation. ROS elevation may result in apoptosis and tissue damage.

In summary, although our study is limited to the toxicological roles of IS and its
hepatic production enzyme SULT1A1 in cisplatin-induced AKI and has not explored the
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involvement of other harmful uremic toxins such as p-cresyl sulfate or trimethylamine-
N-oxide, our data identified for the first time the toxicological and pathological roles of
IS and SULT1A1 in cisplatin-induced AKI. In particular, we identified novel mechanism
indicating the involvement of the cisplatin/IS/AhR/ROS axis in producing oxidative stress.
IS is involved not only in cisplatin-induced AKI but also as a factor in the development
of ischemic AKI and chronic kidney disease (CKD) with renal interstitial fibrosis [39–41].
Furthermore, as it has been demonstrated that IS is also involved in heart and vascular
tissues as a toxic endogenous factor through the induction of oxidative stress [42], it is
important to suppress IS production or accumulation. Thus, hepatic SULT1A1 may be
useful as a therapeutic target for diseases in which IS accumulation induces toxic damage
or injury.

4. Materials and Methods
4.1. Reagents

IS was obtained from Sigma-Aldrich Co. (St. Louis, MO, USA). Cisplatin was pur-
chased from Nippon Kayaku (Tokyo, Japan).

4.2. Sult1a1-Deficient Mice

Sult1a1-deficient mouse embryos (Deltagen, San Carlos, California, USA) were pur-
chased, melted, and transplanted in an expedient parent at the Kumamoto University
Institute of Resource Development and Analysis (IRDA), producing the hetero mouse.
These mice were bred in the Animal Resources and Development Center (CARD) of Ku-
mamoto University. Homogenized mice were subsequently produced.

4.3. Animal Experiments

All procedures for animal experiments were approved by the Kumamoto University
animal ethics committee (Identification code: A 2019-046, approval date: 2019), and the
animals were treated in accordance with the guidelines of the United States National
Institutes of Health regarding the care and use of animals for experimental procedures
and with the Guidelines of Kumamoto University for the care and use of laboratory
animals. Normal male C57BL/6J (wild-type (WT)) mice were purchased from CLEA Japan,
Inc. (Tokyo, Japan). Six-week-old mice were housed in a standard animal maintenance
facility at a constant temperature (22 ± 2 ◦C) and humidity (50%–70%) and a 12/12-h
light/dark cycle for approximately one week before the day of the experiment, with food
and water available ad libitum. Mice were administered cisplatin or saline (25 mg/kg) by
intraperitoneal injection. The serum and tissue samples were collected 72 h after cisplatin
administration. Serum BUN, and the creatinine concentrations were measured using the
Fuji dry chem Nx500 (Fujifilm, Kanagawa, Japan).

4.4. Liquid Chromatography/Mass Spectrometry/MS (LC/MS/MS) Analysis

IS concentrations were measured using an API 3200TM LC/MS/MS system (AB
SCIEX, Foster City, CA, USA) with a triple quadruple mass spectrometer following negative
ion mode: IS, m/z 212.08; IG, m/z 308.21. The source parameters were optimized to obtain
the highest analysis peak. Chromatographic separation was performed on a Symmetry™
C18 (5 µm, 3.9 × 150 mm) column (Waters Corp, Milford, MA, USA). The samples were
eluted at a flow rate of 0.2 mL/min using a mobile phase consisting of 10 mM ammonium
acetate: acetonitrile (73:27 v/v) at 40 ◦C. The MS/MS operating conditions were as follows:
charged aerosol detection gas at 3.0 psi, curtain at 40 psi, ion source gas (GS) 1 at 50 psi,
GS2 at 30 psi, IS at −4500 V, and temperature at 500 ◦C.

4.5. HE Staining

Kidney samples were fixed in 10 % neutral-buffered formalin for 24 h and embedded
in paraffin. Paraffin-embedded specimens were cut into 2 µm sections and mounted
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onto glass slides. The sections were deparaffinized and stained with hematoxylin and
eosin (HE).

4.6. TUNEL Assay

To examine the appearance of apoptotic cells in the kidney, specimens from WT and
Sult1a1-/- (KO) mice were TUNEL-stained using an in situ apoptosis detection kit (Takara
Bio Inc., Shiga, Japan). Under light microscopy (200× magnification), the number of
TUNEL-positive cells in the area covering the majority of corticomedullary junctions in a
slide were counted by researchers blinded to the samples. The number of TUNEL-positive
cells in five areas of a section for each mouse was counted. Data from mice in the same
treatment group were averaged.

4.7. Quantitative PCR Assay

The kidney tissue was homogenized, and total RNA was isolated by a phenol-
chloroform extraction method using Trizol (Thermo Fisher Scientific, Waltham, MA, USA).
cDNA was generated using the PrimeScript RT reagent kit (Takara Bio Inc., Osaka, Japan)
according to the manufacturer’s instructions. Each PCR assay was performed using 1 µL of
cDNA and each primer at 0.3µM in a LightCycler® 480 System (F. Hoffmann-La Roche Ltd.,
Basel, Switzerland) with TB Green Premix DimerEraserTM (Takara Bio Inc., Shiga, Japan).
The primers were purchased from Sigma (St Louis, MO, USA). The primer sequences for
each gene are shown in Table 1 below. Amplification was performed using the LightCycler®

480 System (F. Hoffmann-La Roche Ltd., Basel, Switzerland), and each reaction was per-
formed under the following conditions: initialization for 30 s at 95 ◦C, followed by 50 cycles
of amplification, with 5 s at 95 ◦C for denaturation and 30 s at 72 ◦C for annealing and
elongation. The expression levels were normalized to those of Glyceraldehyde 3-phosphate
dehydrogenase (GAPDH).

Table 1. The primer sequences for each gene

Gene Forward (5′–3′) Reverse (5′–3′)

IL-6 TACCACTTCACAAGTCGGAGGC CTGCAAGTGCATCATCGTTGTTC

GPx1 CGCTCTTTACCTTCCTGCGGAA AGTTCCAGGCAATGTCGTTGCG

Cat CGGCACATGAATGGCTATGGATC AAGCCTTCCTGCCTCTCCAACA

HO-1 AACAAGCAGAACCCAGTCTATGC AGGTAGCGGGTATATGCGTGGGCC

NQO-1 AGGGTTCGGTATTACGATCC AGTACAATCAGGGCTCTTCTCG

NOX4 CGGGATTTGCTACTGCCTCCAT GTGACTCCTCAAATGGGCTTCC

SOD1 GGTGAACCAGTTGTGTTGTCAGG ATGAGGTCCTGCACTGGTACAG

SOD2 TAACGCGCAGATCATGCAGCTG AGGCTGAAGAGCGACCTGAGTT

XO GCTCTTCGTGAGCACACAGAAC CCACCCATTCTTTTCACTCGGAC

AhR AGGCTAAGAGAGCCTTGTCT TCCAACACTTTCTGGACAGG

GAPDH CGACTTCAACAGCAACTCCCACTCTTCC TGGGTGGTCCAGGGTTTCTTACTCCTT

4.8. Cell Cultures

HK-2 cells derived from human proximal tubular cells were cultured in DMEM/F12
with HEPES (GIBCO, Tokyo, Japan) supplemented with 10% fetal bovine serum (FBS) in a
37 ◦C, humidified incubator with 5% CO2.

4.9. Analysis of Cell Survival Rate

Cells were incubated in 24-well plates (1.0 × 105 cells/mL) for 24 h and were treated
with cisplatin (5 µg/mL) and/or IS (500 µM) in serum-free DMEM/F12 with HEPES.
Following exposure, the medium was removed from the wells and the cells were cultured
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DMEM/F12 with HEPES containing 25 µL CCK-8 (DOJINDO, Kumamoto, Japan) in each
well at 37 ◦C for 1 h. Cell viability was measured using a plate reader.

4.10. ROS Analysis

HK-2 cells were incubated in 96-well plates (1.0 × 104 cells/mL) for 24 h, were
washed with PBS, and were incubated with 5 µM CM-H2DCFDA (Thermo Fisher Scientific,
Waltham, MA, USA) for 30 min. After incubation, CM-H2DCFDA was removed from the
wells and the cells were treated with cisplatin (5 µg/mL) and/or IS (500 µM). Following
exposure, fluorescence intensity was measured using a micro plate reader SH-9000 Lab
(Hitachi, Tokyo, Japan).

4.11. Transfection with Small Interfering RNA (siRNA)

HK-2 cells were incubated in 96-well plates (1.0 × 104 cells/mL) for 24 h and were
transiently transfected with AhR (sc-29654, Santa Cruz Biotechnology, Dallas, Texas, USA),
XO (sc-41691, Santa Cruz Biotechnology, Dallas, Texas, USA), and NOX4 (sc-41586, Santa
Cruz Biotechnology, Dallas, Texas, USA) siRNA (50 nM) using Lipofectamine RNAi MAX
(Thermo Fisher Scientific, Waltham, MA, USA) according to the manufacturer’s protocol.
After transfection and incubation for 48 h, the experiments were performed. Silencer
negative control siRNA (Thermo Fisher Scientific, Waltham, MA, USA) was used as the
control (siControl).

4.12. Western Blotting

Cells were lysed in ice-cold lysis buffer. After measuring the protein content using the
bicinchoninic acid assay (Thermo Fisher Scientific, Waltham, MA, USA), each sample was
mixed with loading buffer (2% w/v sodium dodecyl sulfate (SDS), 125 mM Tris-HCl pH 7.2,
20% v/v glycerol, and 5% v/v 2-mercaptoethanol) and incubated at 95 ◦C for 2 min. The
samples were subjected to sodium dodecylsulfate-polyacrylamide gel electrophoresis using
a 7.5% gel and transferred onto a polyvinylidene difluoride membrane (Immobilon-P; EMD
Millipore, Billerica, MA, USA) by semi-dry electroblotting. The membrane was blocked for
1 h at room temperature with 5%v/v non-fat dry milk (Cell Signaling Technology, Denver,
CO, USA) in 50 mM Tris-buffered saline (pH 7.6) containing 0.3%v/v Tween 20 and then
incubated overnight at 4 ◦C with a primary antibody specific for AhR (sc-133088, Santa
Cruz Biotechnology, Dallas, Texas, USA) or β-actin (A5441, Sigma, St. Louis, MO, USA).
The blots were then washed with Tris-buffered saline containing Tween 20 and incubated
with secondary antibody (NA-931, GE Healthcare Ltd., Chicago, IL, USA) for 1 h at room
temperature. Immunoblots were visualized with an ECL system (ECL Advance Western
Blotting Detection Kit; GE Healthcare Ltd., Chicago, IL, USA).

4.13. Statistical Analysis

The data were analyzed statistically by analysis of variance, followed by Tukey–
Kramer or Scheffe’s multiple comparison test. A p-value of <0.05 was considered statisti-
cally significant. All data are presented as the mean ± standard deviation (SD).
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