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Epilepsy is a common neurological disorder characterized by recurrent and unprovoked
seizures thought to arise from impaired balance between neuronal excitation and
inhibition. Our understanding of the neurophysiological mechanisms that render the brain
epileptogenic remains incomplete, reflected by the lack of satisfactory treatments that
can effectively prevent epileptic seizures without significant drug-related adverse effects.
Type 2 K+-Cl− cotransporter (KCC2), encoded by SLC12A5, is important for chloride
homeostasis and neuronal excitability. KCC2 dysfunction attenuates Cl− extrusion and
impairs GABAergic inhibition, and can lead to neuronal hyperexcitability. Converging lines
of evidence from human genetics have secured the link between KCC2 dysfunction
and the development of epilepsy. Here, we review KCC2 mutations in human epilepsy
and discuss potential therapeutic strategies based on the functional impact of these
mutations. We suggest that a strategy of augmenting KCC2 activity by antagonizing
its critical inhibitory phosphorylation sites may be a particularly efficacious method of
facilitating Cl− extrusion and restoring GABA inhibition to treat medication-refractory
epilepsy and other seizure disorders.
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INTRODUCTION

A seizure is a transient increase in the brain’s electrical activity that may be triggered by a
variety of factors, including medications (Chen et al., 2016), metabolic alterations (Imad et al.,
2015), and infections (Zoons et al., 2008). When seizures arise spontaneously, they are considered
to be epileptic. Epilepsy is the most common serious brain disorder worldwide (World Health
Organization, 2019) characterized by recurrent and unprovoked seizures that can cause loss of
consciousness and/or abnormal motor behavior depending on the afflicted brain region (Stafstrom
and Carmant, 2015). The disorder affects 0.5% of the general population (Sander and Shorvon,
1996) and is associated with increased rates of mortality (Zieliński, 1974), cognitive impairment
(Aldenkamp, 2006), and psychosocial dysfunction (Pershad and Siddiqui, 1992) at an annual cost
to the US economy of $12 billion (Begley et al., 2000).
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Epilepsy is classically thought to arise from an imbalance
between neuronal excitation and inhibition, leading to a
hyperexcitable state that is prone to seizure activity. Antiepileptic
drugs (AEDs) are the mainstay therapy for epilepsy that aim to
restore this balance in neuronal excitability by either suppressing
excitatory neurotransmission or augmenting inhibition. Despite
decades of medical research and development of novel third-
generation AEDs, a third to a half of epilepsy patients on
medications continue to have seizures (medication refractory
epilepsy; Kwan and Brodie, 2000; Shorvon and Luciano, 2007;
Cascino, 2008). Furthermore, AEDs often exert significant
drug-related adverse effects, including dizziness, nausea, fatigue,
depression, learning and memory impairments, and ataxia
(Perucca and Meador, 2005). The lack of a truly satisfactory
AED reflects our incomplete understanding of epileptogenesis,
the set of pathogenic alterations that render neuronal networks
hyperexcitable and thus vulnerable to pathological seizure
activity. There is an urgent clinical need for novel insights into
cellular and molecular mechanisms of epileptogenesis in order to
develop more efficacious AEDs that can achieve seizure freedom
with minimal or no side effects.

Human genetic studies have associated mutations in the
neuron-specific type 2 K+/Cl− cotransporter KCC2 with the
development of epilepsy (Kahle et al., 2014; Puskarjov et al.,
2014; Stödberg et al., 2015; Saitsu et al., 2016; Saito et al., 2017;
Till et al., 2019). Preclinical studies suggest that modulation
of KCC2 activity by targeting critical regulatory domains
may be exploited to suppress seizure activity (Moore et al.,
2018), highlighting the key role of KCC2 in the regulation
of neuronal excitability in physiological and epileptogenic
states. In this article, we review the KCC2 mutations that
are associated with the development of epilepsy in humans.
We also discuss the therapeutic ramifications of these findings
and postulate that KCC2 may be a potentially powerful
therapeutic target for the development of novel AEDs to treat
refractory epilepsy.

Type 2 K+-Cl− COTRANSPORTER (KCC2)
IN CHLORIDE HOMEOSTASIS AND
SYNAPTIC INHIBITION

Neuronal excitability describes the propensity of a postsynaptic
neuron to generate an action potential, a rapid rise and fall
in membrane potential that occurs when the neuron reaches
a threshold level of membrane depolarization. Consequently,
neuronal excitability is governed by a dynamic balance
between excitatory and inhibitory inputs. Excitatory inputs
are depolarizing and thus raise the neuronal membrane
potential towards the threshold, whereas inhibitory inputs are
hyperpolarizing and lower the potential away from threshold.
In the central nervous system, neuronal inhibition occurs
primarily via activation of ligand-gated γ-aminobutyric acid
(GABA) type A receptors (GABAARs) that are highly permeable
to Cl−, and to a lesser extent, HCO3

− (Kaila and Voipio,
1987). Ligand binding to GABAARs on the postsynaptic
neuron opens a central pore to trigger a hyperpolarizing Cl−

influx that lowers the probability of action potential being
generated by neuron. The strength of synaptic inhibition is thus
dependent on a low intra-neuronal concentration of Cl−, which
provides the basis for an electrochemical gradient that permits
passive movement of Cl− through the plasma membrane upon
GABAAR activation.

The electroneutral K+/Cl− cotransporter KCC2 (encoded
by SLC12A5) is a key determinant of Cl− homeostasis in
neurons of the central nervous system (Kahle and Delpire,
2016; Moore et al., 2017). Under normal physiological settings,
KCC2 uses the outwardly directed K+ gradient generated
by the N+-K+ ATPase pump to extrude Cl− against its
electrochemical gradient from neuronal cells in humans and thus
maintains low intra-neuronal Cl− concentrations required for
hyperpolarizing GABAergic currents. In a likely over-simplified
but useful scheme, intra-neuronal Cl− concentrations are
high during early brain development secondary to low
KCC2 activity (Li et al., 2002; Stein et al., 2004) and high
influx of Cl− via Na+-K+-Cl− cotransporter 1 (NKCC1;
Plotkin et al., 1997; Yamada et al., 2004) in young neurons,
leading to membrane depolarization following ligand binding
to GABAAR (Ben-Ari et al., 1989). As the brain matures,
NKCC1 activity is downregulated whereas KCC2 activity is
upregulated (Plotkin et al., 1997; Stein et al., 2004), leading
to hyperpolarizing GABAergic responses, though recent data
shows that the expression changes of these molecules vary
within the heterogeneous neuronal populations within the
brain (Sedmak et al., 2016). Although other KCC isoforms
exist, KCC2 is unique in that its expression is primarily
localized to central nervous system neurons (Williams et al.,
1999; Payne et al., 2003) and it remains constitutively
active even under isotonic conditions (Khirug et al., 2005;
Mercado et al., 2006). Importantly, at least in the setting
of normal neurophysiology, KCC2 is able to remove extra
Cl− introduced by GABAergic neurotransmission and thus
recover low intracellular Cl− levels in neurons (Kaila et al.,
2014; Doyon et al., 2016). These properties indicate that
KCC2 is a major extruder of Cl− in mature neurons that
establishes the inwardly directed Cl− electrochemical gradient
across the plasma membrane necessary for the emergence
and maintenance of inhibitory hyperpolarizing responses upon
activation of GABAARs.

KCC2 MUTATIONS AND HUMAN EPILEPSY

The importance of KCC2 in maintaining the strength of
synaptic inhibition highlights its potential involvement
in epilepsy, a disorder of neuronal hyperexcitability that
has been thought to arise from failed neuronal inhibition.
Preclinical studies in multiple organisms show that genetic
KCC2 deficiency results in diminished Cl− extrusion, neuronal
hyperexcitability, and epileptic seizures (Hübner et al., 2001;
Hekmat-Scafe et al., 2006; Tanis et al., 2009). Accordingly,
downregulation of KCC2 levels is observed in human idiopathic
epilepsy (Huberfeld et al., 2007). Recent studies have now
demonstrated the presence of KCC2 mutations in human
epilepsy patients, providing strong evidence for the role
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TABLE 1 | KCC2 (SLC12A5) mutations in human epilepsy.

Exon NT change AA change Type Inheritance Phenotype Ethnicity Reference

21 c.2855G>A p.R952H Missense AD IGE; Febrile Seizures French Canadian; Australian Kahle et al. (2014) and
Puskarjov et al. (2014)

23 c.3145C>T p.R1049C Missense AD IGE French Canadian Kahle et al. (2014)
9 c.1277T>C p.L426P Missense AR, compound heterozygous EIMFS Swedish Stödberg et al. (2015)
13 c.1625G>A p.G551D Missense
8 c.932T>A p.L331H Missense AR, homozygous EIMFS Pakistani Stödberg et al. (2015)
3 c.279 + 1G>C p.E50_Q93del Deletion AR, compound heterozygous EIMFS Japanese Saitsu et al. (2016)
6 c.572C>T p.A191V Missense
8 c.967T>C p.S323P Missense AR, compound heterozygous EIMFS Malaysian Saitsu et al. (2016)
10 c.1243A>G p.M415V Missense
8 c.953G>C p.W318S Deletion AR, compound heterozygous EIMFS Japanese Saitsu et al. (2016)
18 c.2242_2244del p.S748del Missense
9 c.1196C>T p.S399L Missense AR, compound heterozygous EIMFS Japanese Saito et al. (2017)
20 c.2639G>T p.R880L Missense
11 c.1417G>A p.V473I Missense AD IGE Hungarian Till et al. (2019)

AA, amino acid; AD, autosomal dominant; AR, autosomal recessive; EIMFS, epilepsy of infancy with migrating focal seizures; IGE, idiopathic generalized epilepsy; NT, nucleotide.

of KCC2 in seizure disorders. All of the KCC2 mutations
discovered in human epilepsy thus far are summarized
in Table 1.

Idiopathic Generalized Epilepsy 14 (OMIM#
616685, Autosomal Dominant)
Kahle et al. (2014) used a targeted DNA-sequencing approach
to screen the cytoplasmic C-terminal region of SLC12A5 which
is an important regulatory region of transporter function.
They identified two different heterozygous missense variants
in SLC12A5 (R952H, 606726.0004 and R1049C, 606726.0005)
that were enriched among individuals of French Canadian
origin with idiopathic generalized epilepsy-14 (EIG14; 616685)
compared to controls. Both variants exhibited reduced Cl−

extrusion capacity, although unlike the R952H variant, the
R1049C variant exhibited normal surface expression with
decreased intrinsic cotransporter activity. Both variants
also showed decreased phosphorylation of the serine 940
(S940) residue (Kahle et al., 2014), which normally promotes
KCC2 activity (Lee et al., 2011). The overall effect impaired
the function of KCC2. The variants were inherited from
an unaffected parent in several cases, consistent with
incomplete penetrance, consistent with other large genomic
studies of human idiopathic generalized epilepsy (Mefford
et al., 2011). Puskarjov et al. (2014) reported the R952H
mutation in an Australian family with early childhood
onset of febrile seizures. Segregation of the variant in this
kindred was difficult because of uncertain phenotyping,
but there was some evidence of incomplete penetrance.
Electrophysiological and biochemical assays suggest that
the R952H variant exhibits impaired Cl− extrusion likely
due to reduced surface expression. Overexpression of this
variant in KCC2-deficient mouse cortical neurons failed to
rescue defects in dendritic spine development, suggesting
a potential role of the R952H variant in formation and
maturation of cortical dendritic spines. Puskarjov et al. (2014)
suggested that the decrease in KCC2-dependent hyperpolarizing
inhibition would promote seizures, and that decreased dendritic

spine formation could lead to desynchronization of overall
excitability. Importantly, the function of KCC2 in the dendritic
spine does not depend on transporter function but rather
involves interactions between KCC2 and other proteins
(Llano et al., 2015). The most recent study has identified
a new missense KCC2 variant, V473I, that causes IGE in
a Hungarian patient who is heterozygous for the mutation
(Till et al., 2019).

Early Infantile Epileptic Encephalopathy 34
(OMIM# 616645, Autosomal Recessive)
The strongest genetic evidence for KCC2 dysfunction in
epilepsy is demonstrated by studies of patients in families
with a severe infantile epilepsy syndrome termed epilepsy
of infancy with migrating focal seizures (EIMFS; Stödberg
et al., 2015; Saitsu et al., 2016; Saito et al., 2017). To date,
nine probands with monogenetic KCC2-related EIMFS
have been reported. By whole-exome sequencing of two
unrelated families, Stödberg et al. (2015) discovered that
affected children with EIMFS harbored biallelic SLC12A5
loss-of-function mutations. Two affected children from a
consanguineous family harbored the homozygous mutation
L311H that localizes to an extracellular loop. The L426P
(localizing to a transmembrane domain) and G551D (localizing
to an intracellular loop) variants were found as compound
heterozygous mutations in two affected children from another
family. All of the KCC2 mutations identified by Stödberg
et al. (2015) resulted in diminished Cl− extrusion and reduced
cell surface expression. Follow-up studies identified eight
additional recessive KCC2 mutations that cause EIMFS (Saitsu
et al., 2016; Saito et al., 2017), including the E50_Q93del
variant that causes skipping of exon 3 and the S749del variant
that causes an amino acid deletion (Saitsu et al., 2016).
Functional characterization of some of these EIFM-causing
KCC2 mutations (E50_Q93del, A191V, S323P, M415V)
suggested that they attenuated neuronal Cl− extrusion
without altering cell surface expression and distribution
(Saitsu et al., 2016). It is important to note that all of the
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homozygous or compound heterozygous EIMFS patients
inherited KCC2 mutations from unaffected heterozygous
parents, in contrast to the R952H and R1049 variants that
were sufficient to cause epilepsy disorders in heterozygous
individuals (Kahle et al., 2014; Puskarjov et al., 2014). The reasons
underlying these phenotypic differences are not understood,
although some have hypothesized that mutations located in
different KCC2 domains exert different effects on functional
activity that underlie variations in phenotypic manifestations
(Kahle et al., 2016a).

AUGMENTING KCC2 ACTIVITY TO
RESTORE SYNAPTIC INHIBITION AS A
THERAPEUTIC AVENUE FOR EPILEPSY

The presence of KCC2 mutations in human epilepsy
indicates that accumulation of intracellular Cl− secondary
to KCC2 dysfunction may be responsible for driving
neuronal hyperexcitability underlying the development of
epilepsy syndromes. The association between loss-of-function
KCC2 mutations and epilepsy also suggests that augmenting
KCC2 activity to enhance Cl− extrusion may confer the opposite
effect of rendering neuronal cells more resistant to seizures,
representing a potentially powerful therapeutic avenue for
idiopathic epilepsy. Indeed, high levels of neural activity due to
seizures may promote the intracellular accumulation of Cl− that
exceeds the normal Cl− extrusion capacity of KCC2, leading to
GABAergic depolarizing currents and loss of synaptic inhibition
that underlie epileptogenesis (Ellender et al., 2014; Magloire
et al., 2019). Augmenting KCC2 function could theoretically
extrude excessive Cl− and restore neuronal inhibition in
hyperexcitable states.

Targeting critical phosphorylation sites of KCC2 regulation
is one promising strategy to enhance KCC2 function for
therapeutic benefit. KCC2 activity is bidirectionally regulated
at key phosphorylation sites: S940 phosphorylation increases
KCC2 function (Lee et al., 2011), whereas phosphorylation
of T906 and T1007 inhibits its function (Rinehart et al.,
2009). Dephosphorylation of T906 and T1007 upregulates
Cl− extrusion from neurons (Friedel et al., 2015; Titz
et al., 2015; Heubl et al., 2017). To test the hypothesis
that increasing KCC2 activity is anticonvulsant in vivo,
Moore et al. (2018) generated knock-in mice in which
threonines 906 and 1007 were substituted for alanines
(KCC2-T906A/T1007A) to genetically prevent phospho-
dependent inactivation, resulting in higher basal neuronal
Cl− extrusion (Moore et al., 2018). Strikingly, KCC2-
T906A/T1007A mice exhibited profound resistance to
chemoconvulsant-induced seizures without altered basal
neuronal excitability. These findings suggest that modulation
of KCC2 phosphorylation sites may be leveraged to strengthen
synaptic inhibition for therapeutic benefit in epilepsy
syndromes. For clinical translation, KCC2 function could
be enhanced by inhibition of the upstream with no lysine
(WNK) and Ste20-related proline-alanine kinase (WNK-
SPAK) cascade that normally inhibits KCC2 function by

promoting T906 and T1007 phosphorylation (Kahle et al.,
2005, 2014, 2016b; Friedel et al., 2015; Kahle and Delpire,
2016; Heubl et al., 2017). Indeed, small molecule inhibitors
of the WNK-SPAK pathway are being developed (Yamada
et al., 2016). In addition to targeting the WNK/SPAK pathway,
other pharmacological strategies to enhance KCC2 activity
are also being investigated. A large screening of molecules
to identify putative KCC2 agonists was first proposed
by Gagnon et al. (2013). Another screening was recently
carried out to detect small molecules capable of enhancing
KCC2 expression levels (Tang et al., 2019). The ability
to augment KCC2 function via different pharmacological
approaches will enable flexibility in the selection of the
ideal KCC2 modulator that is tailored to the underlying
epileptogenic process.

Although efforts to identify KCC2 modulators reflect its
promise as a druggable target in epilepsy, there remain several
caveats. First, it is unclear which pharmacological approach
or combination of approaches to enhance KCC2 activity
would rescue the defects in expression and function due to
KCC2 mutations observed in epilepsy syndromes. Second,
it remains uncertain whether there may be unintended
adverse effects that arise from increased KCC2 activity.
Indeed, a major shortcoming of current AEDs is not only
their inability to prevent seizures in a large population of
patients but also their association with drug-related side
effects such as cognitive disturbance (Park and Kwon,
2008). Potentiating KCC2 activity does not alter basal
neuronal excitability (Moore et al., 2018), and a previously
identified KCC2 activator (CLP257) produces analgesia
without motor side effects often seen with other analgesics
(Gagnon et al., 2013). While these preliminary findings suggest
that enhancing KCC2 may be a safe therapeutic avenue to
prevent seizures without altering the function of healthy
neurons, more systematic studies are still needed to fully
characterize potential side effects of the approach before
clinical translation.

CONCLUSION

Epilepsy is a common brain disorder characterized by
recurrent and unprovoked seizures thought to be caused
by neuronal hyperexcitability. A third to half of epilepsy
patients continue to have seizures despite medications (Kwan
and Brodie, 2000; Shorvon and Luciano, 2007; Cascino,
2008), underscoring the clinical need for the identification
of novel therapeutic targets. KCC2 functions as a major
Cl− extruder in mature neurons to establish an inwardly-
directed electrochemical gradient of Cl− necessary for the
maintenance of fast synaptic inhibition. In the settings of
diminished KCC2 activity secondary to risk factor and causal
mutations in human epilepsy patients, intracellular Cl−

concentrations accumulate, leading to impaired hyperpolarizing
responses that render neurons hyperexcitable. In contrast,
increasing KCC2 function by overexpression or modulation
of key phosphorylation sites confers an anticonvulsant
effect. Altogether, the presence of KCC2 mutations in
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epilepsy coupled with preclinical proof-of-principle for
KCC2 as a therapeutic target motivates a rich stream
of future studies to further investigate the mechanistic
roles of KCC2 in epileptogenesis and how manipulation
of KCC2 activity can be leveraged pharmacologically for
therapeutic benefit in epilepsy syndromes and conditions
of hyperexcitation.
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