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Abstract: With the extension of the applications of sandwich panels with corrugated core, sound
insulation performance has been a great concern for acoustic comfort design in many industrial fields.
This paper presents a numerical and experimental study on the vibro-acoustic optimization of a finite
size sandwich panel with corrugated core for maximizing the sound transmission loss. The numerical
model is established by using the wave-based method, which shows a great improvement in the
computational efficiency comparing to the finite element method. Constrained by the fundamental
frequency and total mass, the optimization is performed by using a genetic algorithm in three
different frequency bands. According to the optimization results, the frequency averaged sound
transmission of the optimized models in the low, middle, and high-frequency ranges has increased,
respectively, by 7.6 dB, 7.9 dB, and 11.7 dB compared to the baseline model. Benefiting from the vast
number of the evolution samples, the correlation between the structural design parameters and the
sound transmission characteristics is analyzed by introducing the coefficient of determination, which
gives the variation of the importance of each design parameter in different frequency ranges. Finally,
for validation purposes, a sound insulation test is conducted to validate the optimization results in
the high-frequency range, which proves the feasibility of the optimization method in the practical
engineering design of the sandwich panel.

Keywords: sandwich panel; corrugated core; vibro-acoustic optimization; coefficient of determina-
tion; sound insulation

1. Introduction

Because of its high stiffness to mass ratio and excellent impact resistance property,
lightweight sandwich panels are largely used in civil construction, high-speed vehicle,
ship structure, and aerospace industries [1,2]. A typical sandwich panel usually consists
of two face sheets and a core layer. According to the different types of the core, sandwich
panels can be broadly separated into two categories, homogeneous core sandwich panels
and non-homogeneous (structure supported) core sandwich panels. Due to the lack of
mechanical strength, the former type (e.g., foam core sandwich panel) is commonly used
in the applications under light load condition. To overcome this drawback, the latter type,
non-homogeneous sandwich panel, uses structural stiffener as the core layer. The core
structure not only provides additional mechanical strength and bending stiffness but can
also keep the lightweight characteristics of the sandwich panel. With the extension of
the applications of sandwich panels, the vibro-acoustic properties, especially the sound
insulation performance, have attracted great attention for acoustic comfort design in many
industrial fields [3].

Due to the geometry diversity of the structural core, the mechanism of sound transmis-
sion through structure supported sandwich plate is complicated. Under this circumstance,
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many theoretical models were proposed to study the basic vibro-acoustic behaviors of
structure supported sandwich plate. In the early stage, beginning with investigating
sound transmission through building element, Sharp [4] studied the sound insulation
performances of structure reinforced double wall structure and proposed an analytical
model to predict the sound transmission loss. In this model, the structural reinforcement
was assumed as totally rigid, and the link impedance was introduced to evaluate the
sound transmission via structural path. Fahy [5] calculated the sound reduction index of
double-leaf partitions with timber and steel studs based on the same rigid assumption.
The comparison between the calculated results and experimental data indicated that this
highly idealized theoretical model works well when the two face sheets are linked by
inelastic studs.

As for the elastic structure linked sandwich plates, Brunskog [6] presented a deter-
ministic prediction model for airborne sound insulation performances of an infinite double
leaf structure. In his study, both the structural and acoustical (acoustic cavities) sound
transmission paths are considered. However, as a simplification, the periodically placed
orthogonal studs were treated as bar-like beams, and only the axial displacement was
considered. Taking the flexural vibration of structural stiffeners into consideration, Xin
and Lu [7] proposed an analytical model to evaluate the sound transmission of lightweight
all-metallic sandwich panels. In their study, the structural stiffeners were simplified as
translational and rotational springs with concentrated mass. Meanwhile, the structural–
acoustical coupling effect was assumed to take place only between the acoustic cavity and
the two face sheets. The results indicated that the core geometry exerts a significant effect
on the sound insulation performance of the sandwich plate.

Due to the complexity of the vibro-acoustical coupling system, most of the aforemen-
tioned theoretical models can only handle the sandwich plates whose core structures are
relatively simple (e.g., periodic orthogonality stiffeners). For those sandwich structure with
complex core, such as honeycomb core, homogenization techniques [8] are used to reduce
the structural core to an equivalent homogeneous material, and as a result, the sandwich
plate can be treated as a simple layered structure [9]. However, the homogenization model
can only provide approximate results due to the ignoring of physical details of the sandwich
structure. To gain a full understanding of sound transmission through the sandwich plate,
the conventional finite element method is preferred to perform the sound transmission
analysis of the sandwich structure with complex core [10]. For instance, Ruzzene [11]
studied the vibration and sound radiation properties of the sandwich structure with a
honeycomb truss core with the spectral finite element method, and the sound transmission
reduction indexes of sandwich beams with different core configurations were evaluated
and compared. Kim and Han [12] performed an investigation on the acoustic characteristics
of honeycomb sandwich composite panels by using the finite element method associated
with the boundary element method.

According to the results obtained from the aforementioned analytical and numer-
ical investigations on the sound transmission through sandwich structures, the sound
transmission characteristics and the stiffness-to-weight ratio of the sandwich panels are
very sensitive to the core topology and material properties. In order to improve the
sound insulation properties of the sandwich structure without losing any mechanical
strength, the vibro-acoustic optimization of the sandwich structures has been studied by
many researchers [13–15].

Under the constraints of total structural mass and the first fundamental frequency,
Denli and Sun [16] conducted optimization of sandwich beam with cellular cores with
the aim of maximizing the sound transmission loss (STL) in different frequency bands.
Because all the nodal displacements were considered as the design variables, the sensitivity
functions were introduced to improve the computational time and accuracy. Despite the
significant reduction of sound radiation was achieved in this study, the optimization led
to cellular cores with random and nonperiodic geometry, which have very low manufac-
turability. Franco et al. [17] presented a structural-acoustic optimization for minimizing
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the structural acoustic response of sandwich panels with various core configurations (e.g.,
random core and truss-like core). The study of optimization used the MSC/NASTRAN
optimizer (SOL 200) based on modified method of feasible directions. The optimization
results indicated that the structural acoustic response of the sandwich structure could be tai-
lored for specific applications. In this study, the finite element method was used to calculate
the objective function, which is suitable for modeling complex geometries. Most recently,
Thompson and Galgalikar [18] also used the finite element method with MODEFRONTIER,
a general purpose optimization software, to conduct a structural–acoustic optimization
targeting at maximizing the STL response of the sandwich panel with honeycomb core
with in-plane orientation. Unlike the conventional optimization procedure, the geometrical
parameters of a unit cell were treated as the design parameters to keep the periodicity of
the core structure. In addition to obtaining a significant increase of STL, the optimization
results indicated that the acoustic response of the sandwich panel strongly depends on the
number of unit cells in the horizontal and vertical direction.

Despite the fact that the detailed structural–acoustic response of the sandwich struc-
ture can be determined numerically, e.g., through the use of the finite element method (FEM)
or the boundary element method (BEM), computational efficacy is still a drawback [19]. For
the optimization procedure, which usually contains massive loop computations, a more
efficient alternative method is needed.

As a derivation of the indirect Trefftz approach [20], the wave-based method (WBM)
was first proposed by Desmet [21] in the 90s. It differs from the element-based methods
(e.g., FEM) in that, instead of discretizing the physical field into a large number of tiny
elements, the WBM divides the targeting problem domain into a small number of sub-
domains. In each subdomain, the field variables are approximated by a weighted sum
of a series of frequency dependent wave functions, and each wave function is the exact
solution of the governing differential equations. In this respect, the WBM leads to a much
smaller number of system DOFs than the conventional element-based methods [22]. Thus
far, the WBM has been successfully implemented in solving the bounded acoustic prob-
lems [23], acoustic radiation and scattering problems [24], structural vibration [25], and
simple acoustical–structural coupling problems [26]. As opposed to the large (geometrical)
flexibility in element-based methods, the WBM is limited to only a limited number of
(convex) subdomains to remain computationally favorable.

In this paper, the sandwich panel with corrugated core is modeled as a vibro-acoustic
coupled system, where the effect of the acoustic cavities in the core layer has also been
taken into consideration. The vibro-acoustic response of the system is calculated by using
the wave-based method. In association with the genetic algorithm (GA) and with the
advantage of the high computational efficiency of WBM, a vibro-acoustic optimization is
performed to maximize the sound transmission loss of the sandwich structure.

This paper is organized as follows. Firstly, the model configuration is presented to
offer a basic understanding of the problem. Then, based on the governing equations of the
vibro-acoustic system, the wave-based method is implemented to solve the vibro-acoustic
response of the sandwich structure. By using the Rayleigh’s integral, the radiated sound
power is obtained from the vibrating system. Secondly, the genetic algorithm is used to
perform the vibro-acoustic optimization aiming at maximizing the sound transmission
loss in different frequency ranges. According to the optimization history, a statistical
analysis is implemented to calculate the coefficient of determination (COD) of each design
parameter and reveal the strength of the relationship between each design parameter and
the STL. Finally, a confirmatory sound insulation test on a real sandwich panel specimen is
conducted to verify the optimization configuration.

2. Theoretical Formulation
2.1. Model Configuration

A typical sandwich panel usually consists of two face sheets and a structural core
layer. Among various types of core structure, the corrugated core has attracted growing
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attention thanks to its cost and manufacturing advantages [27]. The structure is a sandwich
panel with trapezoidal corrugated core, as shown in Figure 1.
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Figure 1. Model geometry of sandwich panel with trapezoidal corrugated core.

Due to the existence of periodical stiffening structure, the original rectangular cavity
between the two face panels is divided into several trapezoidal sub-cavities.

As shown in Figure 2, since the vibro-acoustic coupling effect between the internal
acoustic cavities and the structure is taken into consideration, the classic mass–air–mass
resonance in a simple double-leaf structure is turned into the complex vibro-acoustic
coupling between each trapezoidal acoustic cavity and its surrounding structure. Thus, the
incident sound wave can be transmitted to the top face sheet through the structural and
acoustical borne paths and finally radiate to the semi-infinite domain.
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2.2. Theoretical Formulation

Considering the periodical one-way stiffened feature of the corrugated core, the sand-
wich panel studied in this paper is assumed to have an infinite length in the reinforced
direction [28]. As a result, the dynamic response of the sandwich panel can be simpli-
fied into a plane strain problem, and only the cross section of the sandwich structure is
considered.

In terms of structure, the sandwich panel can be treated as an assembly of several
single panel, as shown in Figure 3.

Materials 2021, 14, x FOR PEER REVIEW 4 of 32 
 

 

2. Theoretical Formulation 
2.1. Model Configuration 

A typical sandwich panel usually consists of two face sheets and a structural core 
layer. Among various types of core structure, the corrugated core has attracted growing 
attention thanks to its cost and manufacturing advantages [27]. The structure is a sand-
wich panel with trapezoidal corrugated core, as shown in Figure 1. 

 
Figure 1. Model geometry of sandwich panel with trapezoidal corrugated core. 

Due to the existence of periodical stiffening structure, the original rectangular cavity 
between the two face panels is divided into several trapezoidal sub-cavities. 

As shown in Figure 2, since the vibro-acoustic coupling effect between the internal 
acoustic cavities and the structure is taken into consideration, the classic mass–air–mass 
resonance in a simple double-leaf structure is turned into the complex vibro-acoustic cou-
pling between each trapezoidal acoustic cavity and its surrounding structure. Thus, the 
incident sound wave can be transmitted to the top face sheet through the structural and 
acoustical borne paths and finally radiate to the semi-infinite domain. 

 
Figure 2. The vibro-acoustic coupling between the structure and trapezoidal acoustic cavities. 

2.2. Theoretical Formulation 
Considering the periodical one-way stiffened feature of the corrugated core, the 

sandwich panel studied in this paper is assumed to have an infinite length in the rein-
forced direction [28]. As a result, the dynamic response of the sandwich panel can be sim-
plified into a plane strain problem, and only the cross section of the sandwich structure is 
considered. 

In terms of structure, the sandwich panel can be treated as an assembly of several 
single panel, as shown in Figure 3. 

 
Figure 3. Model of a single elastic panel. 

According to the Kirchhoff theory [29] and Navier equations [30], the governing 
equations of the free transverse and longitudinal vibration of a thin panel can be expressed 
as 

Figure 3. Model of a single elastic panel.



Materials 2021, 14, 7785 5 of 31

According to the Kirchhoff theory [29] and Navier equations [30], the governing equa-
tions of the free transverse and longitudinal vibration of a thin panel can be expressed as

( ∂4w
∂x4 + 2 ∂4w

∂x2∂y2 +
∂4w
∂y4 )−

ρhω2

D w = 0

∂2u
∂x2 +

1−ν
2

∂2u
∂y2 + 1+ν

2
∂2v

∂x∂y + ω2· ρ(1−ν2)
E u = 0

∂2v
∂y2 +

1−ν
2

∂2v
∂x2 +

1+ν
2

∂2u
∂x∂y + ω2· ρ(1−ν2)

E v = 0

(1)

where w is the transverse displacement, and u is the longitudinal displacement.
In addition,

D =
E(1 + iη)h3

12(1− ν2)
(2)

where ν is the Poisson’s ratio, and ρ and h are the material density and thickness of the
panel, respectively. Associating with the elasticity modulus E, in order to consider the
material damping, the damping factor η is added and leads to a complex elasticity modulus
i =
√
−1.
With the assumption of infinite length, as shown in Figure 4, Equation (1) degenerate to

∂4w(τ)
∂τ4 − k4

b·w(τ) = 0

∂2u(τ)
∂τ2 + k2

l ·u(τ) = 0
(3)

where τ is the local coordinate of the panel, and

kb =
4

√
ρhω2

D
, k2

l = ω2·ρ(1− ν2)

E
(4)

where kb and kl are the bending and longitudinal wave number, respectively.
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Figure 4. Degradation model of flexural vibration problem of elastic panel.

For the structural part, since the sandwich structure is an assembly of several single
plates and both the transverse and longitudinal displacements are expressed by the summa-
tion of corresponding wave functions, the governing equations of the whole structure can
be assembled based on the displacement compatibility conditions and force equilibrium
conditions. A demonstration of the connection relations between five sub-plates is shown
in Figure 5. According to the force–displacement relation, all the internal forces can be
calculated by using the following relations:

θ =
dw
dτ

, Mx = D
d2w
dτ2 , Qx = −D

d3w
dτ3 , Fx =

Eh
(1− ν2)

du
dτ

(5)
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As for the acoustic cavity, the governing equation of the sound pressure inside is the
Helmholtz equation [24]:

∇2 pa(r) + k2 pa(r) = 0, k =
ω

c
(6)

where c is the sound speed inside the acoustic cavity, and k is the acoustic wave number.
According to the basic concept of the WBM, both the structural displacement and sound
pressure can be approximated by a summation of the specific wave functions [22].

ŵ(r) =
ns
∑

n=1
Ψb,n(r)·ξn + w̃a(r) + w̃q(r) + w̃F(r)

û(r) =
2
∑
i

Ψl,i·ζl,i

p̂(α)(r) =
ma
∑

m=1
∈m ·Φ(α)

m (r) + p̂q
(α)(r)

(7)

where Ψb,n and Ψl,i are the structural wave functions, which are also the exact solution of
Equation (1). ∈m is the acoustic wave function contribution coefficient, and ξn and ζl are
the structural wave function contribution coefficients. p̂q is the particular solution of the
nonhomogeneous Helmholtz equation.

Ψb,n = eknτ , kn = {−jkb, jkb,−kb, kb} (8)

Ψl,i =
{

ejklτ , e−jklτ
}

(9)

Since there is a direct coupling between the acoustic cavity and structure, w̃a represent
the particular solution induced by the sound pressure inside the cavity. The additional
terms, w̃F and w̃q, are the particular solution caused by the existence of external excitation
and acoustic source, respectively.

For the acoustic cavity, Φm is the acoustic wave function, which satisfies the Helmholtz
equation and is defined as:

Φm(x, y) =

{
Φm,a = cos(kx,a·x)·e−jky,ay

Φm,b = e−jkx,bx· cos(ky,b·y)
(10)
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(kx,a, ky,a) =

 ( aπ
Lx

,+
√

k2 − ( aπ
Lx
)2)

( aπ
Lx

,−
√

k2 − ( aπ
Lx
)2)

a = 0, 1, 2, · · · (11)

(kx,b, ky,b) =


(+

√
k2 − ( bπ

Ly
)

2
, bπ

Ly
)

(−
√

k2 − ( bπ
Ly
)

2
, bπ

Ly
)

b = 0, 1, 2, · · · (12)

Due to the irregularity of the acoustic cavity, the wave functions are defined in the
envelope rectangle shown in Figure 6.
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Corresponding to each acoustic wave function, the cavity sound pressure induced
transverse displacement of the plate can be expressed as

w̃a,m(τ′) = e(−jky,m(y0+τ′ · sin α))(
(C1−k4

b)· cos(kx,m ·(x0+τ′ cos α))

D
[
(C1−k4

b)
2
+C2

2

]
−C2· sin(kx,m ·(x0+τ′ cos α))

D
[
(C1−k4

b)
2
+C2

2

] )

w̃a,m(τ′) = e(−jkx,m(y0+τ′ · cos α))(
(C1−k4

b)· cos(ky,m ·(y0+τ′ sin α))

D
[
(C1−k4

b)
2
+C2

2

]
−C2· sin(ky,m ·(y0+τ′ sin α))

D
[
(C1−k4

b)
2
+C2

2

] )

(13)

where {
C1 = 1

2 [(kx,m· cos α + ky,m· sin α)4 + (−kx,m· cos α + ky,m· sin α)4]

C2 = j
2 [(−kx,m· cos α + ky,m· sin α)4 − (kx,m· cos α + ky,m· sin α)4]

(14)

When the panel is subjected to a concentrated point force F0(τ = τF), the particular
solution is [31]

w̃F(τ) =
−jF0

4Dk4
b
(e−jkb |τ−τF | − j·e−kb |τ−τF |) (15)

In this paper, because the sandwich panel is subjected to the acoustic plane wave
excitation, as shown in Figure 7, the particular solution for a single flat panel can be
expressed as follows [31]:
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w̃F(τ
′) = −jp0

4Dk3
b
[ i(e−i(τ′kb+x0kx+y0ky)−e−i(kx(τ′ cos(γ)+x0)+ky(τ′ sin(γ)+y0))

kb−cos(γ)kx−sin(γ)ky

− e−i(x0kx+y0ky)(e−τ′kb−e−iτ′ cos(γ)kx+sin(γ)ky))
ikb+cos(γ)kx+sin(γ)ky

+ i(e−i(kb(L−τ′)+kx xL+kyyL)−e−i(kx(τ′ cos(γ)+x0)+ky(τ′ sin(γ)+y0))
kb+cos(γ)kx+sin(γ)ky

− i(e−i(kx(τ′ cos(γ)+x0)+ky(τ′ sin(γ)+y0))−ekb(τ
′−L)−i(kx xL+kyyL))

kb+i(cos(γ)kx+sin(γ)ky)
]

(16)
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Figure 7. A straight plate under plane wave excitation.

Since there are direct couplings between the sandwich structure and the interior
acoustic cavities, Figure 8 gives a simple demonstration of a panel–cavity coupled system
which consists of two adjacent sub-domains Ω(α) and Ω(β).
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Figure 8. A complete vibro-acoustic system.

Take sub-domain Ω(α) as an example, to enforce the boundary condition, a weighted
residual formulation is used.∫

Γv
W(α)(r)·R(α)

v (r)ds +
∫

Γp
−℘(W(α)(r))·R(α)

p (r)ds

+
∫

ΓZ
W(α)(r)·R(α)

z (r)ds

+
∫

Γs
W(α)(r)·R(α)

s (r)ds

+
NΩ
∑

β=1,β 6=α

∫
ΓI

W(α)(r)·R(α,β)
I (r)ds = 0

(17)

In this sub-domain, there are five kinds of boundary condition: Γv is the particle
velocity boundary condition (including acoustic rigid wall), Γp is the sound pressure
boundary condition, ΓZ is the acoustic impedance boundary condition, Γs is the vibro-
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acoustic coupling boundary condition, and ΓI is the acoustic continuity boundary condition.
On each kind of boundary, the residual function is defined as

γ ∈ Γv : R(α)
v (r) = ℘( p̂(α)(r))− v∗n(r)

γ ∈ Γp : R(α)
p (r) = p̂(r)− p∗(r)

γ ∈ Γz : R(α)
z (r) = ℘( p̂(r))− p̂(r)

Z∗n(r)

γ ∈ Γs : R(α)
s (r) = ℘( p̂(r))− ns·n(α)·jωŵs(r)

γ ∈ ΓI : R(α,β)
I (r) =

(
℘( p̂(α)(r))− p̂(α)(r)

Zint

)
+

(
℘( p̂(β)(r)) + p̂(β)(r)

Zint

)
(18)

The linear differential operator ℘(·) is defined as

℘(·) = j
ρ0ω

∂·
∂n

(19)

where ρ0 is the density of the acoustic medium. According to the conventional Galerkin
procedure, the weighted function can also be written as a summation of the same acoustic
wave function given in Equation (10):

W(r) =
ma

∑
m=1
∈̃m·Φm(r) (20)

Substituting Equations (7) and (19) into the boundary weighted residual formulation (17)
leads to the linear equations of the acoustic cavity:

[MAA MAS]·[η] = [b] (21)

MAA =


A(1,1) C(1,2)

p · · · C(1,Na)
p

C(2,1)
p A(2,2) · · · C(2,Na)

p
...

...
. . .

...
C(Na ,1)

p C(Na ,2)
p · · · A(Na ,Na)

 (22)

MAS =


C(1,1)

sp C(1,2)
sp · · · C(1,Ns)

sp

C(2,1)
sp A(2,2)

sp · · · C(2,Ns)
sp

...
...

. . .
...

C(Na ,1)
sp C(Na ,2)

sp · · · A
(Na ,Ns)
sp

 (23)

where
[η] =

[
∈(1) ∈(2) · · · ∈(Na) ξ(1)ξ(2) · · · ξ(Ns)

]T
(24)

[b] =
[

b(1) b(2) · · · b(Na)
]T

, b
(α)

= f(α,α) +
Na

∑
β=1,β 6=α

f(α,β) (25)

where Na and Ns are the total number of acoustic cavities and sub-plates, A is the boundary
condition matrix, Csp is the vibro-acoustic coupling matrix, and Cp is the coupling matrix
between adjacent acoustic cavities; the details of those matrices are given in Appendix A.
Assuming the total number of acoustic wave functions is ma, f is a ma × 1 vector related to
the predefined boundary conditions, and the detailed formulation can also be found in the
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Appendix A. To balance the computational efficiency and accuracy, the number of acoustic
wave functions can be determined by using the structural bending wave number:

na

Lx
≈ nb

Ly
≥ 4

λb
=

2·kb
π

(26)

Associating with the structural boundary condition, the dynamic equations of the
structural part of the system can also be written in a simple matrix form:

[ MSA MSB MSL ]·[η′ ] = [bS] (27)

where

[η
′
] =

[
∈(1) ∈(2) · · · ∈(Na) ξ(1) ξ(2) · · · ξ(Ns) ζ(1) ζ(2) · · · ζ(Ns)

]T
(28)

The sub-matrices MSA, MSB and MSL are the vibro-acoustical coupling matrix, struc-
tural bending coefficient matrix, and structural in-plane coefficient matrix, respectively.
Thus, the complete form of the governing equation of the system can be written as

[
MAA MSB 0
MSA MSB MSL

]
·



∈(1)
...

∈(Na)

ξ(1)

...
ξ(Ns)

ζ(1)

...
ζ(Ns)



=

[
b
bS

]
(29)

As the key indicator of evaluating the sound insulation performance of the sandwich panel,
the sound transmission loss (STL) is used to be the objective of the optimization procedure:

STL = 10· log
10

(
Winc
Wrad

)
(30)

where Winc and Wrad are the incident and radiation sound power, respectively.
As shown in Figure 9, the external excitation is incident plane sound wave with an angle

of α. The radiation sound pressure can be calculated by using the Raleigh’s integral [32]:

p(x, θ) =
∫ L

0

ρ0ω

2
·H(2)

0

(
k·
√
(Rre cos θ − x) + (Rre sin θ)

)
·vni(x)dx (31)

where: ρ0 is the density of the acoustic medium, H(2)
0 is the Hankel function of the second

kind, Rre is the radius of the half-circle observation surface, vni is the normal velocity, and
k is the wave number of the acoustic wave.

Thus, the radiation sound power can be obtained as follows:

Wrad =
1

2ρ0c0

∫
hal f circle

p2(x, θ)·Rredθ (32)

Since the sound transmission loss of the sandwich panel varies with the target fre-
quency, in order to evaluate the sound insulation performance in a specific frequency range
(ω1 ∼ ω2), the frequency averaged STL used in the optimization process:

STL =
1

ω2 −ω1
·
∫ ω2

ω1

STLdω (33)
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2.3. Numerical Verification

Consider a unit cell of the sandwich plate with corrugated core, as shown in Figure 10,
the total length of the structure is L = 0.5 m, the distance between the top face sheet and
bottom face sheet is H = 0.15 m, the inclined angle of the core plate α = 60◦. The two face
plates and the core sheet have the same thickness, which is ht = hb = hs = 2 mm.
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Figure 10. A vibro-acoustic model of a unit cell of the sandwich plate with corrugated core.

This vibro-acoustic coupling system contains three trapezoidal acoustic cavities, which
are filled with air. Each acoustic cavity is coupled with the plates occupying its boundaries.
Both structural ends of the unit cell are clamped, and the left and right end boundaries of
the acoustic cavity are considered as acoustically rigid wall. Assuming there is a uniformly
distributed pressure p with an unit magnitude acting on the bottom sheet, to verify the
reliability and computational efficiency of the wave-based method, both the conventional
finite element method (ANSYS®) and the WBM are used to calculate the vibro-acoustic
response of the system.

Figure 11 presents the displacement response of two observation points on the top
face sheet in the frequency range of 1–800 Hz.
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Figure 11. The displacement response of the observation points on the upper face sheet: (a) L/3 of the top face sheet; (b)
L/2 of the top face sheet.

Accordingly, Figure 12 gives the sound pressure distribution of the acoustic cavities at
the resonance frequencies marked in Figure 11.

Materials 2021, 14, x FOR PEER REVIEW 13 of 32 
 

 

boundaries. Both structural ends of the unit cell are clamped, and the left and right end 
boundaries of the acoustic cavity are considered as acoustically rigid wall. Assuming there 
is a uniformly distributed pressure p with an unit magnitude acting on the bottom sheet, 
to verify the reliability and computational efficiency of the wave-based method, both the 
conventional finite element method (ANSYS®) and the WBM are used to calculate the vi-
bro-acoustic response of the system. 

Figure 11 presents the displacement response of two observation points on the top 
face sheet in the frequency range of 1–800 Hz. 

  
(a) (b) 

Figure 11. The displacement response of the observation points on the upper face sheet: (a) L/3 of 
the top face sheet; (b) L/2 of the top face sheet. 

Accordingly, Figure 12 gives the sound pressure distribution of the acoustic cavities 
at the resonance frequencies marked in Figure 11. 

  

222 Hz (FEM) 222 Hz (Present method) 

  

567 Hz (FEM) 567 Hz (Present method) 

  

608 Hz (FEM) 608 Hz (Present method) 

  

800 Hz (FEM) 800 Hz (Present method) 

Figure 12. The sound pressure distribution response of the acoustic cavities. Figure 12. The sound pressure distribution response of the acoustic cavities.

Both the structural displacement response and the in-cavity sound pressure distribu-
tion indicate that the result obtained by the WBM agrees very well with the conventional
finite element method. Especially for the in-cavity sound pressure response, not only the
pressure distribution but also the magnitude has a great match with the FEM commer-
cial software.
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The comparison between the conventional FEM and the present method proves the
reliability of the WBM. According to the truncation rules of the WBM, the total number
of basic wave functions used to approximate the field variables are related to the plate
bending wavelength, which means the number of wave functions would become larger
when the targeting frequency increasing.

As shown in Figure 13, both the number of wave functions and computational central
processing unit (CPU) time are proportional to the frequency. Moreover, since the WBM is
frequency-dependent, the system equation should be reconstructed in each frequency step,
which costs most of the computational time. Nonetheless, at the highest frequency, 800 Hz,
the total DOFs of the system is 127, which is still much smaller than the conventional FEM.
Figure 14 presents the frequency average CPU time of the present method, and FEM, the
relative error between the two methods, is represented by red square dots.
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For FEM, the comparison result indicates that with the increase of the mesh number
per wavelength, the system DOFs is strikingly enlarged, and the computational accuracy
is significantly improved. From the perspective of relative error, because of the analytical
nature of the WBM, the result of the FEM would converge to the result of the WMB. When
the relative error reduces to less than 5%, the average CPU time of FEM is 5.4 s, which is
almost seven times that of the present method.

According to the validation results presented above, the WBM is reliable in solving
the dynamic response of the vibro-acoustic coupling system and has much higher com-
putational efficiency than the conventional FEM. Those advantages make the WBM a
good choice for the vibro-acoustic optimization procedure, which usually requires enor-
mous computation.

3. Structural–Acoustic Optimization

The geometry configuration of the target model is shown in Figure 15; the sandwich
panel has a total length of L = 0.7 m, and the thickness of the core layer (the distance
between the two face sheets) is H = 0.04 m. The corrugated core has five inclined stiffeners
(lateral side of the trapezoid) and the base angle of the hypotenuse is ϕ. The thickness of
the top panel, core sheet, and bottom panel are ht, hs, and hb, respectively. The external
excitation is incident plane sound wave with an angle of α = 45◦. In the x-direction, both
ends of the sandwich panel are clamped and infinitely baffled.
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Figure 15. The sandwich panel model used in the optimization.

3.1. The Baseline Model

Before performing the optimization, a baseline model should be proposed to appraise
the optimization result. To ensure the rationality of the baseline model, a parametric study
with respect of the inclined angle ϕ is applied. In the parametric study, the top face panel,
the core sheet, and the bottom face panel are assumed to have the same material and
thickness, thus, ht = hb = hs = 2 mm. The whole sandwich panel is made of aluminum, and
the material properties are listed in Table 1.

Table 1. Model parameters of the sandwich panel.

Material Property Value

Material density-ρ 2700 kg/m3

Young’s modulus-E 71 GPa
Poisson ratio-υ 0.33

Damping factor-η 0.01
Acoustic medium Air

Acoustic medium density-ρ0 1.21 kg/m3

Sound speed-c 343 m/s

In the frequency range 25–1200 Hz, the frequency averaged sound transmission loss
variation with respect to the core inclined angle is illustrated in Figure 16.
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Figure 16. Frequency averaged sound transmission loss with respect to the inclined angle of the
stiffener panel.

As shown in the figure, when the core stiffener has an inclined angle of 48 degrees,
the sandwich panel has the largest STLavg of 30.5 dB, which can be treated as the single-
parameter optimal geometrical configuration. Table 2 gives the details of the baseline
model. m is the mass of baseline model.

Table 2. Parameters of the baseline model.

Para. L/m H/m ht/mm hs/mm hb/mm ϕ f 1/Hz STLavg/dB m

0.7 0.04 2 2 2 48◦ 70.4 30.56 0.438

In Table 2, f 1 and m are the first resonance frequency and total mass of the sandwich
structure. The spectrum of the STL in the targeting frequency range is shown in Figure 17.
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Figure 17. STL spectrum of the baseline model (GB, Global bending mode).

According to the distribution of the resonance frequencies of the baseline model, the
targeting frequency range 25–1200 Hz is separated into three frequency ranges: (1) in the
low-frequency range, 25–300 Hz, only the global bending is included; (2) in the middle-
frequency range, 300–800 Hz, both the global and local modes are included; and (3) in the
800–1200 Hz, almost all the local resonance modes are included.
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3.2. Vibro-Acoustic Optimization

In order to achieve the best possible sound insulation performance, a multi-parameter
optimization is implemented, and the thickness of top face plate, the core sheet, the bottom
face plate, and the inclined angle of stiffener are selected as the optimization variables:

b = [ht, hs, hb, ϕ] (34)

The objective function is to maximize the STLavg in the targeting frequency range:

T = max
{

STLavg(〈ω1, ω2〉, b)
}

(35)

As shown in Figure 18, to ensure that the two adjacent inclined stiffeners do not
interfere, the base angle of the hypotenuse ϕ is limited by the constraint as follows:

arctan(
5H
L

) < ϕ ≤ 90◦ (36)

where H is the distance between the two face sheets, and L is the length of the sandwich panel.

Materials 2021, 14, x FOR PEER REVIEW 17 of 32 
 

 

 
Figure 17. STL spectrum of the baseline model (GB, Global bending mode). 

According to the distribution of the resonance frequencies of the baseline model, the 
targeting frequency range 25–1200 Hz is separated into three frequency ranges: (1) in the 
low-frequency range, 25–300 Hz, only the global bending is included; (2) in the middle-
frequency range, 300–800 Hz, both the global and local modes are included; and (3) in the 
800–1200 Hz, almost all the local resonance modes are included. 

3.2. Vibro-Acoustic Optimization 
In order to achieve the best possible sound insulation performance, a multi-parame-

ter optimization is implemented, and the thickness of top face plate, the core sheet, the 
bottom face plate, and the inclined angle of stiffener are selected as the optimization var-
iables: 

[ ]s bh , h , h ,φt=b  (34) 

The objective function is to maximize the STLavg in the targeting frequency range: 

( ){ }avg 1 2=max STL , ,ω ω� b  (35) 

As shown in Figure 18, to ensure that the two adjacent inclined stiffeners do not in-
terfere, the base angle of the hypotenuse φ is limited by the constraint as follows: 

5Harctan φ 90
L

  < ≤ 
 

  (36) 

where H is the distance between the two face sheets, and L is the length of the sandwich 
panel. 

 
Figure 18. The variation ranges of the stiffener panels. 

Considering the basic topology and manufacturability of the optimization result, the 
ranges of value for the optimization variables are limited by the constraints as follows: 

00 200200 400400 600600 800800 10001000 12001200-20-20
00

2020
4040
6060

 Frequency (Hz)  Frequency (Hz)
GB5GB5GB4GB4GB3GB3GB2GB2

  

Sound 
transm

ission l
oss (dB

)
 

  
Sound

transm
issionl

oss(dB
)

GB1GB1

Figure 18. The variation ranges of the stiffener panels.

Considering the basic topology and manufacturability of the optimization result, the
ranges of value for the optimization variables are limited by the constraints as follows:

1 mm ≤ hs ≤ 3 mm
1 mm ≤ ht ≤ 3 mm
ht + hb = 4 mm

(37)

where ht, hs, and hb are the thickness of the top panel, core sheet, and bottom panel, respectively.
Meanwhile, to ensure not losing any lightweight property and structural stiffness,

the total mass and first resonance frequency of the optimization result are subject to
the constraints: {

f (b)− f0,1 ≥ 0
m(b)−m0 ≤ 0

(38)

where f0,1 and m0 are the first resonance frequency and total mass of the baseline
model, respectively.

The problem in this paper is a multi-parameter optimization model. For such opti-
mization problems, due to the limitation of global searching ability, the traditional gradient-
based algorithms often fall into local optimum in the optimization process and cannot
converge toward the global optimum solution [17]. In order to overcome this shortcoming,
the genetic algorithm with its strong global search ability is used in this paper. The genetic
algorithm is a stochastic global optimization method developed by imitating the biological
evolution mechanism in nature. The essence of the algorithm is to find the optimal solution
to the problem through a large number of random probes. The excellent global searching
ability of genetic algorithms can reduce the possibility of falling into local optimal solution,
which is universal and has a wide range of applications. The genetic algorithm does not rely
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on the gradient information of the objective function on the parameters in the optimization
process and does not require the continuous derivability of the objective function, which is
suitable for large-scale and discontinuous optimization models. Although the results of the
old genetic algorithm are acceptable, their main drawback is that the overall run time can
easily become unacceptable. The multi-threaded genetic algorithm used in this paper can
accelerate this problem because of its parallelizing [33].

The optimization is performed on Intel® coreTM i7 CPU 11700 with 2.5 GHz 8 processor
cores. MATLAB program Version R2017b is used throughout the optimization.

By using the parallel computing technique, each optimization case has 10 threads,
and each thread contains 100 sample individuals. To get the best solution, the values of
parameters are set where the selection rate is 0.5, and the mutation rate is 0.4. To ensure the
reasonability of the optimization result, at least 80 generations of evolution are performed,
and considering the randomness of the genetic algorism, the final result is accepted only
when the relative error of five successive generations is less than 0.1%. The program flow
chart of the genetic algorithm is illustrated in Figure 19.
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3.3. Low-Frequency Optimization

Table 3 gives the details of the optimization result in the low-frequency range.

Table 3. Results after optimization in low-frequency range.

ht/mm hs/mm hb/mm ϕ f 1/Hz STLavg/dB m

Optimized model 1 2.55 3 30.7◦ 99.2 30.7 0.437
Baseline model 2 2 2 48.0◦ 70.4 23.1 0.438

According to the results listed in Table 3, the optimized model has a 7.6 dB higher
STLavg than the baseline model. In addition, after the optimization, the optimized model
shows a 28.8 Hz increase in the first resonance frequency compared to the baseline model.
Figure 20 gives the STL spectrum of the optimized model in the low-frequency range.
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There are two main regions in which the STL after optimization is better than the
baseline, which are marked as shadow areas. For both zone 1 and zone 2, the redistribution
of the structural resonance frequencies causes the increase of the sound transmission
loss. However, the total number of the resonance frequencies remains unchanged, which
indicates that under current constraints (topology and total mass), the global resonance of
the sandwich structure can hardly be eliminated by the optimization.

Figure 21 shows the optimization history distribution of the STLavg with respect to
the three design parameters (thickness of top face plate, inclined angle of the stiffeners,
and thickness of stiffener plates). The normal samples are the not retained samples in the
optimization history; the elite samples are the best-retained samples; the trend curve is the
trend of elite samples, and the optimal sample is the final solution of the optimization. Ac-
cording to the optimization sample distribution, the elite descendants of both the top panel
thickness and the angle of the stiffener accumulate on the lower limit. This phenomenon
indicates that in the low-frequency range, increasing the thickness of the face panel on the
incident side and reducing the angle of the core stiffener can be a benefit to improving the
sound insulation performance of the sandwich panel.

To determine the proportion of the variance in the sound transmission loss that is
predictable from the design parameters, the coefficient of determination (COD, R2) is
calculated based on the optimization history, which is defined as [34]:

R2 ≡ 1−∑
i
(yi(xi)− fi(xi))

2/∑
i
(yi(xi)− y(x))2 (39)

where yi(xi) is the elite sample point in the optimization history, fi(xi) is the corresponding
second order trend function value, y is the expectation of the sample points. The value range
of the determination coefficient (R2) is 0–1. The higher the determination coefficient, the
higher the influence of the change of the design parameter on the sound transmission loss.

Figure 22 gives the coefficient of determination of each design parameter with respect
to STLavg. The sound insulation performance of the sandwich structure mainly depends on
the overall stiffness of the structure, which can be significantly influenced by geometrical
configuration. All four design parameters have high COD with respect to the STLavg L,
and among those, the inclined angle of the stiffener has the greatest impact on the sound
transmission loss of the sandwich panel.
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Figure 21. Optimization samples distribution of design parameters (low-frequency optimization). (a) Optimization samples
distribution of ht; (b) Optimization samples distribution of ϕ; (c) Optimization samples distribution of hs.

3.4. Middle-Frequency Optimization

Table 4 presents the results of middle-frequency optimization. Comparing to the
baseline model, the optimized model has a STLavg increase of 7.9 dB, and the first resonance
frequency increases by 5.1 Hz.
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Table 4. Results after optimization in the middle-frequency range.

ht/mm hs/mm hb/mm ϕ f 1/Hz STLavg/dB m

Optimized model 2.8 1.7 1.2 34.5◦ 75.5 37.2 0.422
Baseline model 2 2 2 48.0◦ 70.4 29.3 0.438

As shown in Figure 23, for the optimized model, despite there being an obvious in-
crease of the STLavg in the targeting frequency range, it has a much worse sound insulation
performance in the low-frequency range. This result indicates that, under the constraints
of pre-defined topology and total mass, it is hard to achieve a broadband sound insulation
performance improvement by only optimizing the geometrical parameters.
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Figure 23. Sound transmission loss of the optimized model in mid-frequency range.

Figure 24 shows the optimization history distribution of the STLavg with respect to
the three design parameters in middle-frequency range. In contrast to the low-frequency
optimization, only the elite sample of the inclined angle shows a lower limit accumulation,
which indicates that the less vertical stiffener is still preferred to improve the sound
transmission loss of the sandwich panel.
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Figure 24. Optimization samples distribution of three design parameters (middle-frequency range). (a) Optimization
samples distribution of ht; (b) Optimization samples distribution of ϕ; (c) Optimization samples distribution of hs.

Figure 25 shows the coefficient of determination of each design parameter with respect
to STLavg in the middle-frequency optimization.

According to the COD result, the most important design parameters that influence
the STL of the sandwich panel are still the thickness of the face sheet and the inclined angle
of the stiffener. However, compared to the low-frequency optimization, with the increase
of the targeting frequency range, a small rise of the COD of the face sheet thickness can



Materials 2021, 14, 7785 22 of 31

be observed, and at the same time, the importance of the inclined angle of the stiffener
is diminished.

Materials 2021, 14, x FOR PEER REVIEW 23 of 32 
 

 

 
(c) 

Figure 24. Optimization samples distribution of three design parameters (middle-frequency range). (a) Optimization sam-
ples distribution of ht; (b) Optimization samples distribution of φ; (c) Optimization samples distribution of hs. 

Figure 25 shows the coefficient of determination of each design parameter with re-
spect to STLavg in the middle-frequency optimization. 

 
Figure 25. The COD of each design parameter in the middle-frequency range. 

According to the COD result, the most important design parameters that influence 
the STL of the sandwich panel are still the thickness of the face sheet and the inclined 
angle of the stiffener. However, compared to the low-frequency optimization, with the 
increase of the targeting frequency range, a small rise of the COD of the face sheet thick-
ness can be observed, and at the same time, the importance of the inclined angle of the 
stiffener is diminished. 

3.5. High-Frequency Optimization 
Table 5 gives the optimization results in the high-frequency range. 

Table 5. Results after optimization in the high-frequency range. 

 ht/mm hs/mm hb/mm φ f1/Hz STLavg/dB m 
Optimized model 1.0 2.6 3.0 34.3˚ 74.1 43.1 0.437 

Baseline model 2 2 2 48.0˚ 70.4 31.4 0.438 

1.0 1.5 2.0 2.5 3.028303234363840

Restricted areaAverag
ed soun

d trans
mission

 loss (d
B)

Thickness of stiffener plate (mm)

 Normal sample Elite sample Trend curve Optimal

h
t

h
b

h
s

Angle0.0
0.2
0.4
0.6
0.8
1.0

Coeffic
ient of 

determ
ination

 (R2 )

Design parameters

 With respect to A-STL

Figure 25. The COD of each design parameter in the middle-frequency range.

3.5. High-Frequency Optimization

Table 5 gives the optimization results in the high-frequency range.

Table 5. Results after optimization in the high-frequency range.

ht/mm hs/mm hb/mm ϕ f 1/Hz STLavg/dB m

Optimized model 1.0 2.6 3.0 34.3◦ 74.1 43.1 0.437
Baseline model 2 2 2 48.0◦ 70.4 31.4 0.438

As shown in Table 5, the high-frequency optimization reduces the STLavg of the
corresponding frequency range by 11.7 dB, which is much more significant than the
low and middle-frequency range. From the perspective of the STL spectrum illustrated in
Figure 26, except for the modes redistribution, the resonance dips in the targeting frequency
range are strongly diminished by the optimization.
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The optimization sample distribution is illustrated in Figure 27. Compared to the
sample distribution of the previous two frequency ranges, the high-frequency optimization
has a more evenly distribution of the elite descendants, especially for the thickness of the
face panel. Nevertheless, the lower limit accumulation can also be observed in the elite
sample distribution of the angle of the core sheet.
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Figure 27. Optimization samples distribution of three design parameters (high-frequency range). (a) Optimization samples
distribution of ht; (b) Optimization samples distribution of ϕ; (c) Optimization samples distribution of hs.
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The COD of the design parameters in the high-frequency optimization is shown in
Figure 28. Despite the thickness of the face panel and the angle of the core stiffener still
holding the dominating position, with the increase of the targeting frequency, the COD of
the former one continues to rise and the latter goes the opposite way.
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Figure 28. The COD of each design parameter in the high-frequency range.

In the above three optimizations, the acoustic cavities in the core layer of the sandwich
panel are filled with light acoustic medium (air). According to the optimization result, in
addition to the thickness of the core panel (stiffener), all other three design parameters are
important to the sound transmission of the sandwich panel. Meanwhile, the correlation
between the design parameters and STL varies with the targeting frequency range.

Considering heavy acoustic medium, Figure 29 presents the optimization result of the
sandwich panel with water-filled acoustic cavities in the same high-frequency range, and
the results of the optimized model are listed in Table 6.
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Table 6. Optimization results in high-frequency range with water cavities.

ht/mm hs/mm hb/mm ϕ f 1/Hz STLavg/dB m

Optimized model 1.6 2.23 2.4 52.1◦ 37.9 46.5 0.437
Baseline model 2 2 2 48.0◦ 35.5 42.7 0.438

As listed in Table 6, under the same constraints, the STLavg of the water cavity model
only increases 3.8 dB after the structural optimization, which is far less than that in the air
cavity case. This result indicates that when the equivalent stiffness of the acoustic cavity
is comparable to the structural stiffness, only optimizing the structural parameters has
little impact on the sound transmission characteristics of the sandwich panel. As shown in
Figure 29, the filled heavy acoustic medium exhibits a strong equivalent mass effect, and
the first resonance frequency of the coupled system drops from 69 Hz to 35 Hz, a drop
of nearly 50%. It is precise because of this strong equivalent mass effect that the sound
insulation of the water cavity model is much higher than that of the air cavity model.

Summing up the four optimization cases, the coefficient of determination of the design
parameters is given in Figure 30. As shown, firstly, with the increase of the targeting
frequency, the thickness of the face panel shows an increased influence on the sound
transmission loss, and instead, the parameters of the core sheet (including the thickness
and the inclined angle) seem to have reduced importance on the sound insulation property
of the sandwich panel. Secondly, as mentioned above, the rapid drop of the COD of
the design parameters in the water cavity case also indicates that when the acoustic
cavities are filled with heavy acoustic medium, the medium would dominate the sound
transmission characteristics of the whole system, and changing the model configuration is
not so important for the sound insulation performance.
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3.6. Experimental Validation

To validate the result in the high-frequency optimization, a sound insulation test
is conducted by using the method of reverberation room and anechoic room [35]. The
specimen configuration is shown in Figure 31.
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Figure 31. The test specimen configuration.

Since the optimization is based on the two-dimensional cross section of the real
sandwich panel, the test specimen can be treated as the stretching of the 2D cross section,
and the stretching length is W. For comparison purposes, there are three test specimens in
total, whose parameters are listed in Table 7.

Table 7. Geometrical and physical parameters of the test specimens.

Specimen L ×W (m) H (m) ht/hb (mm) hs (mm) ϕ (Deg.) Ns Material

1
0.70 × 0.70 0.04

2/2
2

48 5
Aluminum2 2/2 80 5

3 1/3 2.5 35 5

Among the three test specimens, specimen 1 refers to the baseline model, and specimen
2 has different inclined angle from specimen 2. Specimen 3 is the one with the optimized
cross section (due to manufacturing restrictions, the cross section of specimen 3 is not
exactly the same as the calculation results), and the other two can be considered as the
control group.

The layout of the test facility is illustrated in Figure 32; the anechoic chamber and the
reverberation chamber are connected by a no end reflexing passage, and the test specimen
is bolted on the test window of the reverberation chamber side. The size of the anechoic
chamber is about 16 m × 11.4 m × 6.6 m, and the lower cut-off frequency is about 60 Hz.
The volume of the reverberation chamber is about 268 m3. When the frequency is below
400 Hz, the deviation of sound pressure uniformity is less than 3 dB. When the frequency
is above 400 Hz, the deviation of sound pressure uniformity is less than 1.5 dB.

In the reverberation chamber, multiple measuring positions are selected randomly to
place the microphone. Subject to the experimental conditions, for the same specimen, only
one microphone is used in a single test run, and after the test, the microphone is moved to
another measuring position and the test is repeated under the same operating conditions.
For each specimen, the test procedure is repeated 5 times, and the final sound pressure
is calculated by averaging the 5 test results. On the anechoic chamber side, the same test
strategy is used, and the only difference is that the 5-test position is located on the same
cross section (measuring surface) of the no end reflexing passage. The photo of the test-site
in given in Figure 33.
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The experimental control room is located on the other side of the wall of the anechoic
room and the reverberation room. All data processing and control equipment are placed in
it, including sound source controller (B&K2260), power amplifier (B&K2706), data acquisi-
tion device (LMS), microphone (B&K4189), and data acquisition computer (Lenovo). In the
experiment, white noise signal is used as the incident sound source, and the transmitted
power is controlled by the sound source controller. Figure 34 shows the testing equipment
of STL experiment.
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The experimental results are shown in Figure 35. Comparing the STL of specimens 1 and 2,
since the specimen 1 has a more inclined (core) stiffener, the sound transmission loss is cor-
respondingly higher than that of specimen 2, especially in the low-frequency range, which
agrees with the numerical prediction. According to the given curves, the optimized model
(test specimen 3) has an obviously higher sound transmission loss than the other two speci-
mens in the targeting frequency range (800–1200 Hz). This result proves the reliability of the
optimization and indicates that the optimization of the 2-dimensional cross section is effective
and can be applied in the practical engineering design of the sandwich panel.
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4. Conclusions

In this paper, considering the vibro-acoustic coupling effect, a numerical model of
a finite size sandwich plate with corrugated core is established by using the wave-based
method. Through the numerical validation, the comparison between the WBM and conven-
tional finite element method indicates that under the same accuracy condition, the present
method can significantly reduce the system DOFs and save nearly 80% of the computational
time. These advantages make the present method very suitable for calculating the objective
function in an optimization problem.

(1) Together with Raleigh’s Integral, a vibro-acoustic optimization is performed by
using the genetic algorithm to maximize the frequency averaged sound transmission loss
(STLavg) of the sandwich panel in three different frequency bands.

(2) A sound insulation test is conducted by using the methods of reverberation room
and anechoic room to validate the optimization results in the high-frequency range. The
test data show that the optimized model has an obviously higher sound transmission loss
than the control group.

Finally, the optimal results cannot be considered conclusive for all sandwich panels
since they have not considered the effects of arbitrary incidence angles with respect to
different frequency bandwidths, among other factors. This aspect, on which our future
work will focus, cannot be neglected since, for example, the STL can be strongly dependent
on the incidence angle due to coincidence effects. In addition, the method presented in this
paper can be applied in the modeling of other corrugated core shapes of sandwich panels
such as rectangular corrugated core or triangular corrugated core.
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Appendix A

In Equation (22):{
A(α,α)

}
mα×mα

= A(α,α)
v + A(α,α)

p + A(α,α)
Z + A(α,α)

s + A(α,α)
I (A1)

A(α,α)
v =

∫
Γv

[
Φ(α)

]T j
ρ0ω

n(α)∇Φ(α)ds (A2)

A(α,α)
p =

∫
Γp
− j

ρ0ω
n(α)(∇

[
Φ(α)

]T
)Φ(α)ds (A3)

A(α,α)
Z =

∫
Γz

[
Φ(α)

]T j
ρ0ω

n(α)∇Φ(α) − 1
Z∗n

[
Φ(α)

]T
Φ(α)ds (A4)

A(α,α)
s =

Ns

∑
s=1

∫
Γz

[
Φ(α)

]T
(

j
ρ0ω

n(α)∇Φ(α) − jω·nsn(α)w̃(s)
a )ds (A5)

A(α,α)
I =

∫
ΓI

[
Φ(α)

]T j
ρ0ω

n(α)∇Φ(α) − 1
Zint

[
Φ(α)

]T
Φ(α)ds (A6)

where Φ(α) is the acoustic wave function set in subdomain α, for each kind of boundary
condition, and n(α) is the corresponding boundary normal vector.

C(α,β)
p =

∫
ΓI

[
Φ(α)

]T j
ρ0ω

n(β)∇Φ(β) +
1

Z∗n

[
Φ(α)

]T
Φ(β)ds (A7)

In Equation (23):

C(α,s)
sp = −jω

∫
Γz

[
Φ(α)

]T
nsn(α)Ψ

(s)
b ds (A8)

where ns is the normal vector of plate, and Ψ
(s)
b is the structural bending wave function set.

In Equation (25):

fp
(α,α) = f(α,α)

v + f(α,α)
p + f(α,α)

Z + f(α,α)
s + f(α,α)

I (A9)

f(α,α)
v =

∫
Γv
− j

ρ0ω

[
Φ(α)

]T
n(α)∇ p̃q

(α) +
[
Φ(α)

]T
v∗nds (A10)

f(α,α)
p =

∫
Γp

j
ρ0ω

n(α)(∇
[
Φ(α)

]T
)( p̃q

(α) − p∗)ds (A11)

f(α,α)
Z =

∫
ΓZ

− j
ρ0ω

[
Φ(α)

]T
n(α)∇ p̃q

(α) +
[
Φ(α)

]T
p̃q

(α)ds (A12)

f(α,α)
s =

Ns

∑
s=1

∫
Γs

[
Φ(α)

]T
(jω·nsn(α)(w̃(s)

q + w̃(s)
F )− j

ρ0ω
n(α)∇ p̃q

(α))ds (A13)
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f(α,α)
I =

∫
ΓI

[
Φ(α)

]T
(− j

ρ0ω
n(α)∇ p̃q

(α) +
1

Zint
p̃q

(α))ds (A14)

For any two adjacent sub-domains:

f(α,β) = f(α,β)
I =

∫
ΓI

[
Φ(α)

]T
(− j

ρ0ω
n(β)∇ p̃q

(β) − 1
Zint

p̃q
(β))ds (A15)
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