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With the increased number of single-cell RNA sequencing 
(scRNA-seq) datasets in public repositories, integrative 
analysis of multiple scRNA-seq datasets has become 
commonplace. Batch effects among different datasets are 
inevitable because of differences in cell isolation and handling 
protocols, library preparation technology, and sequencing 
platforms. To remove these batch effects for effective 
integration of multiple scRNA-seq datasets, a number of 
methodologies have been developed based on diverse 
concepts and approaches. These methods have proven 
useful for examining whether cellular features, such as cell 
subpopulations and marker genes, identified from a certain 
dataset, are consistently present, or whether their condition-
dependent variations, such as increases in cell subpopulations 
in particular disease-related conditions, are consistently 
observed in different datasets generated under similar or 
distinct conditions. In this review, we summarize the concepts 
and approaches of the integration methods and their pros 
and cons as has been reported in previous literature.

Keywords: batch correction, data integration, single-cell RNA-

seq

INTRODUCTION

Single-cell RNA sequencing (scRNA-seq) datasets have been 

increasingly accumulated in public data repositories, such as 

the Single Cell Portal (https://singlecell.broadinstitute.org/

single_cell), Gene Expression Omnibus (Barrett et al., 2013), 

and Human Cell Atlas (HCA) data portal (Regev et al., 2017). 

With an increase in the number of datasets, many efforts 

have been made for the integrative analysis of different 

scRNA-seq datasets. Multiple scRNA-seq datasets are often 

integrated and compared to check whether cellular features 

(e.g., cell subpopulations and their marker genes) identified 

from a certain dataset are shared or distinctive compared 

with those in other datasets produced under similar or 

different biological conditions. The integration of multiple 

scRNA-seq datasets has proven useful for reliably identifying 

shared or distinctive cellular features across datasets. Shared 

cellular features may not be clear when individual datasets 

are analyzed independently, owing to small numbers of cells 

or sparse expression data in each dataset and unwanted 

technical or biological variations within and across datasets. 

However, these cellular features can be corroborated by com-

bining features from multiple datasets after correcting the 

unwanted variations.

 In many cases, individual scRNA-seq datasets are gener-

ated from samples with distinctive characteristics (e.g., cell 

counts, tissue types, and conditions from which cells are 

isolated, such as healthy or diseased conditions) and using 

different experimental protocols (e.g., cell isolation and han-

dling protocols and library preparation methods) or sequenc-

ing platforms. These differences inevitably lead to unwanted 

technical and biological variations across different datasets. 

Even within a single dataset, multiple batches with variations 

in sample characteristics, experimental protocols, or sequenc-

https://singlecell.broadinstitute.org/single_cell
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ing platforms can exist. These unwanted variations among 

batches, called batch effects, within and across datasets can 

decrease the chances of identifying underlying cellular fea-

tures by introducing inconsistent cellular expression profile 

structures. Therefore, batch effects arising from both system-

atic technical and unwanted biological variations should be 

corrected before integrative analysis of multiple datasets to 

prevent misleading conclusions. To effectively correct batch 

effects, several computational methods have been developed 

based on different concepts and approaches. In this review, 

we conceptually categorize existing integration methods, 

describe the key algorithms employed in these methods, and 

summarize their advantages and disadvantages as reported 

in literature.

RESULTS

Definition of sample batches in multiple datasets
Batch effects occur mainly due to differences in the following 

three factors: (1) sample characteristics (donors, tissues, spe-

cies, or disease conditions), (2) experimental protocols, and 

(3) sequencing platforms (Fig. 1A, top). The integration of 

multiple datasets begins by defining batches as sets of sam-

ples that are thought to be similar in terms of these factors 

(Fig. 1A, boxes in different colors). The factors leading to the 

most significant batch effects can vary across the integrated 

datasets. It is common for the major factor causing the larg-

est batch effect to be chosen subjectively, and the batches 

are defined based on the major factor. For example, batches 

were defined as sets of samples from individual donors (Re-

ichart et al., 2022; Smillie et al., 2019; Uchimura et al., 2020; 

Villa et al., 2022) (Fig. 1A, Dataset 1) or as individual datasets 

that were generated using different protocols (Cheng et al., 

2021; Morabito et al., 2021) and/or sequencing platforms 

(Cheng et al., 2021) (Fig. 1A, Datasets 2-3). Several studies 

even defined batches as individual samples (Bryois et al., 

2022; Yoon et al., 2022) (Fig. 1A, Dataset k), assuming that 

different samples are subjected to distinct technical variations. 

Moreover, when two factors (e.g., protocol and sequencing 

platform) cause significant batch effects, two sets of batches 

can be defined based on these factors, and the batch effects 

in the two sets can be sequentially corrected (Cheng et al., 

2021; Morabito et al., 2021). After defining the batches, 

multiple datasets are then merged by concatenating the ex-

pression counts of cells for the same genes in the expression 

count matrix for each dataset. For each cell in the merged 

expression count matrix, the expression counts are divided by 

the total expression count, multiplied by a scale factor (e.g., 

10,000), and log-transformed (Fig. 1B, Normalization). For 

each batch, a set of highly variable genes (e.g., 2,000 genes) 

with large variances across the cells in the batch are then 

selected using various tools (e.g., ‘FindVariableFeatures’ func-

tion in Seurat [v3 and higher hereafter] [Stuart et al., 2019], 

BASiCS [Vallejos et al., 2015], Brennecke [Brennecke et al., 

2013], scLVM [Buettner et al., 2015], scran [Lun et al., 2016], 

and scVEGs [Chen et al., 2016]). The final set of highly vari-

able genes most frequently selected across the batches are 

then selected (‘SelectIntegrationFeatures’ function of Seurat; 

Fig. 1B, Selection of highly variable genes). Although data in-

tegration can be performed using only highly variable genes 

or all genes, the use of highly variable genes only in subse-

quent analyses (Fig. 1B, Batch correction, Cell clustering, and 

Cell annotation) has been shown to be generally more effec-

tive for identifying underlying biological differences among 

cell types and/or for removing unwanted variations in the 

data (Luecken et al., 2022).

Fig. 1. Definition of batches. (A) Schematic illustration of defining batches by donors (Dataset 1), sample preparation protocols (Dataset 

2), sequencing platforms (Dataset 3), and individual samples (donors; Dataset k). (B) Analytical flow of data integration. See text for 

details.
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Categorization of integration methods
Batch correction is next performed for the normalized 

merged dataset using the selected highly variable genes 

(Fig. 1B, Batch correction). Batch correction methods can be 

conceptually classified into the following three categories de-

pending on how they model batch effects: (1) linear decom-

position methods, (2) similarity-based batch correction meth-

ods in reduced dimension space, and (3) generative models 

using a variational autoencoder. A similar categorization 

scheme for the first two categories was previously proposed 

by Xu et al. (2021).

Linear decomposition methods
Modeling batch effects using a generalized linear decom-

position model was first introduced to remove batch effects 

within or across bulk RNA expression datasets when integrat-

ing multiple bulk RNA expression datasets. For example, the 

‘removeBatchEffect’ function in limma (Ritchie et al., 2015) 

and ComBat (Johnson et al., 2007) have employed this linear 

decomposition model to delineate batch effects in bulk RNA 

expression datasets.

 In the ‘removeBatchEffect’ function in limma, the merged 

data matrix (X) including expression levels of N genes in K 

batches of M samples at H conditions is represented as a 

linear sum of (i) the overall gene expression matrix (GMGE, N 

× M), (ii) condition-dependent gene expression matrix rep-

resented by multiplication of the condition regression coeffi-

cient matrix (RC, N × H) and a condition design matrix (DC, H 

× M), (iii) a batch term matrix represented by multiplication 

of the batch regression coefficient matrix (RB, N × K) and a 

batch structure matrix (DB, K × M), and (iv) an error matrix (E, 

N × M) (Fig. 2A). In the overall gene expression matrix, each 

column (sample) contains the same vector (N × 1) including 

mean expression values of N genes across M samples. In the 

DC matrix, the column (H × 1) for sample m under condition 

h includes one in the h-th element and zeros in the other ele-

ments. Similarly, in the DB matrix, the column (K × 1) for sam-

ple m belonging to batch k includes one in the k-th element 

Fig. 2. Schematic view of the methods using linear decomposition models. (A) Linear decomposition scheme used in limma and 

ComBat. Batches and conditions for cells are indicated by colors. Matrix sizes are denoted in left bottom (number of rows) and right top 

(number of columns) corners: N genes, M cells, H conditions, and K batches. The error matrix used in ComBat is depicted in parentheses. (B) 

Decomposition scheme used in ZINB-WaVE involving L gene-level covariates and Q unknown sample-level covariates.
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and zeros in the other elements. The condition (RC) and batch 

regression coefficients (RB) are estimated by minimizing the 

sum of the squared errors in E. The effects of the individual 

batches are linearly combined using regression coefficients 

(Fig. 2A, Batch term). Finally, the batch corrected matrix is 

generated by subtracting RBDB from X.

 In addition to the above batch effects, called additive batch 

effects, ComBat estimates multiplicative batch effects. To this 

end, E is modified into multiplication of a regression coef-

ficient matrix (RMB, N × K), a batch structure matrix (DB, K × 

M) and an error matrix (E’, M × M) (Fig. 2A, Error matrix of 

ComBat). Unlike the linear regression in limma, the regression 

coefficients in this modified linear decomposition model are 

estimated using an empirical Bayesian method. With the mul-

tiplicative batch effect terms, batch correction was performed 

by [X – (GMGE + RCDC + RBDB)]/RMBDB + (GMGE + RCDC).

 These approaches have been also used to remove batch 

effects when integrating multiple scRNA-seq datasets in early 

studies (Giustacchini et al., 2017; Kadoki et al., 2017; Smillie 

et al., 2019; Young et al., 2018). However, another linear 

decomposition model ZINB-WaVE (Risso et al., 2018) with an 

alternative model structure was developed specifically for in-

tegrating scRNA-seq datasets that have unique features such 

as zero inflation (dropouts), overdispersion, and different 

count distributions from bulk RNA-seq datasets. In this meth-

od, the expression count in the merged data matrix (X, N × 

M) is defined as a random variable (y) following a zero-in-

flated negative binomial (ZINB) distribution: π δ(y) + (1 – π)

fNB(y; μ, θ) where π is the probability of dropout (π), and δ and 

fNB are Dirac delta function and negative binomial probability 

mass function with the mean μ and an inverse dispersion 

parameter θ, respectively (Greene, 1994). The model decom-

poses the log μ matrix (N × M) into sample- (S) and gene-lev-

el covariate matrices (G) and unknown sample-level covariate 

matrix (U) (Fig. 2B). Although S is defined for K batches, as in 

the aforementioned RBDB (Fig. 2B, Sample-level covariate), G 

is represented by multiplication of the design matrix (DG, N × 

L) and gene regression coefficients (RG, L × M). G was intro-

duced to capture variations in L gene sets, each of which had 

different GC content and gene length distributions, possibly 

causing differences in the counts and quality of reads (Fig. 

2B, Gene-level covariate). U was represented by multiplying 

the loading matrix (RF, N × Q) and the factor matrix (DF, Q × 

M) to capture the systematic cellular gene expression pro-

files in a low dimension of Q latent factors (Fig. 2B, Factor 

matrix). Notably, U may also include the effects of unknown 

factor-driven batches that may be missed when defined in S. 

The logit π (i.e., ln[π/(1 – π)]) matrix is also decomposed into 

Sπ, Gπ, and Uπ (Fig. 2B). However, the same factor matrix (DF) 

is shared for both U and Uπ. The regression coefficients in RB, 

RG, and RF for the log μ and logit π matrices are then collec-

tively estimated using the maximum likelihood method. DF 

was finally used as a cellular gene expression profile summa-

rized in the Q-dimensional space during subsequent analyses 

(e.g., clustering and visualization).

Similarity-based batch correction methods in reduced di-
mension space
The above methods assume that there are no cell-level co-

variates and that all cells vary equivalently between different 

samples (or batches) in response to the same sources of 

variation. However, owing to distinct sensitivity in the re-

sponse, cells can vary differentially between samples and 

thus between batches. For example, the three groups of cells 

shown in Fig. 3A exhibited different distribution changes be-

tween batches 1 and 2 in terms of their mean and standard 

deviation when visualized in a uniform manifold approxima-

tion and projection (UMAP) space. To address this cell-level 

covariate issue in batch correction, a number of methods 

have been developed, including canonical correlation analysis 

(CCA) (Butler et al., 2018), mutual nearest neighbor (MNN) 

(Haghverdi et al., 2018), fastMNN (Haghverdi et al., 2018), 

‘IntegrateData’ function in Seurat (Stuart et al., 2019), Scan-

orama (Hie et al., 2019), BBKNN (Polański et al., 2020), Co-

nos (Barkas et al., 2019), Harmony (Korsunsky et al., 2019), 

DESC (Li et al., 2020), LIGER (Welch et al., 2019), scMerge 

(Lin et al., 2019), and SAUCIE (Amodio et al., 2019). These 

methods start with the projection of cells in the merged data-

set (X) onto a reduced space defined by several dimension 

reduction methods, such as principal component analysis 

(PCA), CCA, non-negative matrix factorization (NMF), and 

an autoencoder (e.g., a 2-dimentional space defined by two 

latent variables [LV1-2] in Fig. 3B). They then identify similar 

cells sharing expression profiles, which can be identified as 

pairs of cells between batches at the individual cell level (Fig. 

3B, connected cells between batches 1 and 2 in a 2-dimen-

tional LV space) or as cells from different batches in the same 

cluster at the cluster level. Batch effects are then corrected 

such that similar cells followed a common distribution in the 

reduced space (see batch-corrected cluster-level similar cells 

in Fig. 3C). Each step is described in detail below.

Dimension reduction

scRNA-seq data are vulnerable to technical and biologi-

cal noise owing to high dropout rates and low expression 

counts, leading to reduced power to decipher the underly-

ing intrinsic biological differences between cells. Dimension 

reduction has been commonly employed to focus on the 

intrinsic information in the data and remove non-systematic 

noise during subsequent analyses of scRNA-seq data, such 

as searching for similar cells between batches, cell clustering 

and visualization (Bzdok et al., 2018). Furthermore, dimen-

sion reduction makes computation more convenient and 

efficient (Argelaguet et al., 2021). Hence, most methods use 

dimension reduction strategies for subsequent analyses.

 Linear dimension reduction approaches have been the 

most frequently employed, including PCA/singular value de-

composition (SVD) (Haghverdi et al., 2018), CCA (Butler et 

al., 2018), and NMF (Welch et al., 2019). PCA defines LVs, 

called principal components (PCs), that are orthogonal to 

each other to capture the largest variances in the data (Fig. 

3D, PC1 and PC2). The number of PCs is determined such 

that the projection of the scRNA profiles (X) of individual cells 

onto the PCs can sufficiently capture the variation (covari-

ance) in the data by minimizing the reconstruction error E = 

X – PTT where P (N × F) and T (M × F) for N genes and M cells 

are the loading (F PCs) and score matrices (projections onto 

F PCs), respectively. While PCA defines the PCs using the 
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Fig. 3. Dimension reduction methods. (A) Cell-level covariates. Three cell types (clusters) show differential variations between batches 

1 and 2. (B) Anchored cell pairs between batches 1 and 2 on two-dimensional LV space. (C) Distributions of cells after batch correction 

on the UMAP. (D and E) Schematic illustration of PCA (D) and CCA (E). PC1 and PC2 are defined to capture the largest and 2nd largest 

variance in the distribution of cells while u and v are defined to maximize the correlation between projections of X1 (batch 1) and X2 

(batch 2) onto u and v. Decomposition schemes of X1 and X2 are also shown. (F) Architecture of the autoencoder that takes X as an input 

and tries to reconstruct X itself. During this reconstruction, the essential features of X are extracted in the nodes of the embedding layer. 

UMAP, uniform manifold approximation and projection; PCA, principal component analysis; CCA, canonical correlation analysis; PC, 

principal component.



Mol. Cells 2023; 46(2): 106-119  111

scRNA-Seq Data Integration
Yeonjae Ryu et al.

merged dataset, CCA defines the first LVs for each batch (u 

for batch 1 data matrix X1 and v for batch 2 data matrix X2) 

such that the correlation between the projections of X1 onto 

u and X2 onto v is maximized (Fig. 3E). The remaining LVs are 

similarly determined to maximize the remaining correlation 

between X1 and X2. By default, fastMNN, BBKNN, Conos, and 

Harmony use PCA for dimension reduction while ‘FindInte-

grationAnchors’ function in Seurat uses CCA. Because both 

PCA and CCA capture information to maximize the variance 

in the data and the correlation between the batches, respec-

tively, nonsystematic noises with small variance and correla-

tion are disregarded in principle when the data are projected 

onto LVs, thereby enabling us to focus on the underlying 

intrinsic biological signals.

 NMF defines K nonnegative factors (W, N × K) and sample 

projections (H, K × M) for a non-negative merged data matrix 

(X, N × M) such that they minimize the reconstruction error E 

= X – WH. For non-negative factorization, X can be unfolded 

to [Xpos |Xneg|] such that Xpos and |Xneg| include positive and ab-

solute negative elements in X, as previously described (Kim et 

al., 2011). Among the NMF variants, integrative NMF (iNMF) 

(Yang and Michailidis, 2016) and UINMF (Kriebel and Welch, 

2022) have been used for dimensionality reduction in scRNA-

seq datasets. For the data matrices (Xl) for L batches, iNMF 

has an additional term to reflect batch-specific factor load-

ings (Vl), and these W, Vl, and Hl are determined to minimize 

the reconstruction errors for L batches: Σ||El||
2 = Σ||Xl – (W + 

Vl)Hl||
2. The data integration tool LIGER uses iNMF. Its variant 

UINMF has another additional factor loadings (Ul) in the er-

ror Σ||Xl – ([W; 0] + [Vl; Ul])Hl||
2 to estimate Ul for the genes 

uniquely detected in l batches by minimizing the reconstruc-

tion error. Compared with PCA and CCA, which focus on 

shared signals between batches, iNMF and UINMF can effec-

tively handle batch-specific sources of variation by identifying 

both batch-specific (Vl or [Vl; Ul]) and shared factors (W).

 Neural-network-based dimensionality reduction methods 

have been employed to effectively handle nonlinear correla-

tions among variables in datasets. Among these methods, 

the autoencoder (Amodio et al., 2019) is one of the most fre-

quently used methods. For the merged data matrix (X), the 

autoencoder is designed to reconstruct X itself and thus has 

(1) input and output layers comprising N nodes for N genes, 

(2) an embedding layer in the center, and (3) hidden layers 

with a symmetric structure between the input and output 

layers (Fig. 3F). In the embedding layer, the number of nodes 

(i.e., nonlinear LVs) is smaller than N nodes in the input layer, 

thereby enabling dimension reduction. The embedded values 

in this layer represent nonlinear projection of scRNA profiles 

onto the reduced dimension defined by the nonlinear LVs, 

also called ‘nonlinear PCA’ in that the autoencoder defines 

the nonlinear LVs to minimize the reconstruction error. DESC 

and SAUCIE use autoencoders for dimension reduction.

 Projection values in the reduced dimension from the above 

linear or nonlinear methods are used to identify similar cells 

at the individual or cluster level (Fig. 3G), followed by batch 

correction for similar cells to follow a common distribution in 

the reduced space. However, SAUCIE does not identify sim-

ilar cells, but directly performs batch correction to minimize 

discrepancies between batches (Amodio et al., 2019). To 

this end, SAUCIE randomly sets one batch as the reference 

batch, and corrects the mean and standard deviation of the 

embedded values for each non-reference batch with those 

of the reference batch while minimizing the reconstruction 

error. The weights in the autoencoder are thus determined to 

balance the reconstruction error and batch correction.

Identification of similar cells between batches

Several methods have been developed to identify similar cells 

among different batches, which can be categorized into two 

groups according to whether similar cells between batches 

are identified as cell pairs at the individual cell level (Fig. 4A, 

left) or as sets of cells in the same cell cluster (Fig. 4A, right).

 Cell-level similarity search: The methods to identify similar 

cells at the individual cell level mostly employ nearest neigh-

bor-based methods, including MNN, ‘FindIntegrationAnchors’ 

function in Seurat, and the algorithms in Scanorama, BBKNN, 

and Conos. Suppose that there are two batches (batches 1 

and 2) to be aligned. The MNN computes the cosine distance 

(i.e., Euclidean distance after normalizing the gene expression 

profile vector of each cell to have the unit length) for a pair 

of cells i (Fig. 4B, dark blue dot) in batch 1 and cell j (Fig. 4B, 

red dot) in batch 2, and then finds k MNNs of cell i in batch 2 

(Fig. 4B, orange dots within dark blue dotted circle) and cell j 

in batch 1 (Fig. 4B, blue dots within red dotted circle). When 

the MNNs include cells i and j, this pair is anchored between 

batches 1 and 2 (Fig. 4B, pink line). While MNN performs the 

search in the original dimension, fastMNN and ‘FindIntegra-

tionAnchors’ function in Seurat do it on the reduced PCA and 

CCA spaces, respectively. MNN then selects a reference batch 

(e.g., batch 1 with the largest cell count) and computes ex-

pression differences between the reference and query (e.g., 

batch 2) batches for all anchored cell pairs (e.g., N × 1 dij = 

xi – xj for anchored pairs of cell i in batch 1 and cell j in batch 

2). For cell l in batch 2, the gene expression vector (N × 1 xl) 

is corrected by subtracting a batch vector (N × 1 ul), which 

is a weighted sum of the differences (dij) for all anchored 

cell pairs between batches 1 and 2 (Fig. 4B, right). Gaussian 

kernel weights for all anchored cells in batch 2 from cell l are 

used such that the anchored cells closer to cell l have higher 

weights and are collectively used to ensure robustness in the 

batch correction (Fig. 4B, Batch vector). The same procedure 

can be performed in a reduced space using a PC vector (F × 

1 xl for F PCs in fastMNN) instead of xl. Scanorama uses the 

same MNN strategy while ‘FindIntegrationAnchors’ uses a 

reliable set of anchored cell pairs and a different weighting 

scheme (Stuart et al., 2019).

 BBKNN and Conos explicitly perform no batch correction, 

but provide weighted graphs. BBKNN connects cell i in batch 

1 to its k nearest neighbors within batch 1 and in batch 2 

as well and then determines the weight for each connected 

pair such that a smaller distance between the connected cells 

(e.g., cell i and a neighbor) in the reduced space has a higher 

weight (Polański et al., 2020). Conos connects cell i in batch 

1 to its k nearest neighbors within batch 1 and the anchored 

pair (cell j in Fig. 4B) in batch 2 identified by the above MNN 

strategy, and then determines the weight as Pearson’s cor-

relation of projection values onto PCs between two connect-

ed cells, followed by multiplication of 0.1 to the weights of 
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k nearest neighbors within batch 1 to reduce the effect of 

the within batch neighbors (Barkas et al., 2019). A weighted 

cell graph from BBKNN or Conos is then used as an input for 

downstream analyses such as clustering (e.g., Louvain clus-

tering; Blondel et al., 2008) and pseudotime inference.

 ‘AlignSubspace’ function in Seurat v2 employed alterna-

tively dynamic time warping for cell-cell similarity search. It 

first selects the batch with the largest number of cells as the 

reference batch (e.g., batch 1). For a given query batch (e.g., 

batch 2), it applies CCA to identify the first LVs for batches 

1 (u) and 2 (v) as illustrated in Fig. 3E; selects top 30 genes 

with the highest contribution [i.e., highest min(bicor(X1n,u), 

bicor(X2n,v)) for gene n] to u and v (Fig. 4C, top); and then 

computes the metagene expression profiles for M1 cells (p) 

in batch 1 and M2 cells (q) in batch 2 by multiplying the data 

matrix and the loading values [p = (X1u)TX1 and q = (X2v)
TX2] of the 30 genes on the 1st CCA space (Fig. 4C, bottom). 

After sorting p and q, a cell-cell distance matrix (M1 × M2) is 

generated between M1 and M2 cells (Fig. 4D, top). For the 

dynamic time warping of cells in batch 2 to those in batch 

1, the pairs of cells with the first and last p and q values are 

first linked (Fig. 4D, light blue lines). A warping path indicates 

a set of connections between the remaining cells in batch-

es 1 and 2 based on the sorted orders. Among all possible 

warping paths, the path that minimizes the cumulative sum 

of the distances of the linked cells (e.g., a path comprising 

the linked cells highlighted by magenta boxes in Fig. 4D) is 

selected (see ‘dtw’ package [Giorgino, 2009] in R for details). 

Finally, v is modified to have the same value as u for the linked 

cells for batch correction. This procedure is repeated for each 

pair of LVs (e.g., 2nd u and v) in F-dimensional CCA space.

 Cluster-level similarity search: Unlike the above methods, 

cells with similar RNA expression profiles in the same cluster 

can be considered a set of similar cells, and batch effects can 

be corrected at the cluster level, assuming that cells in the 

same cluster are subjected to similar variations. This concept 

has been employed in Harmony, DESC, LIGER, and scMerge. 

Harmony first applies PCA to the merged data matrix (X) and 

performs a modified soft k-means clustering (k = min(100, 

M/30), where M is the total cell count in X) using normalized 

Fig. 4. Cell-level similarity search. (A) Similar cell pairs identified by cell-level similarity search (left) and similar clusters identified by 

clustering (right). (B) Schematic illustration of MNN strategy for identifying anchored cell pairs (left) and batch correction strategy (right). 

(C and D) Dynamic time warping involving selection of metagenes (C, top), determination of metagene expression profiles (C, bottom), 

generation of cumulative distance matrix (D, top), and dynamic time warping strategy (D, bottom). See text for details (B-D).
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projections onto PCs with the unit length. The centroid vector 

(ck) for cluster k is first determined by regular hard k-means 

clustering (Fig. 5A, left). Given the clustering results, the 

probability (Rki) of cell i to belong to cluster k (ΣkRki = 1) and ck 

are iteratively determined to minimize the objective function 

(Fig. 5A, middle): Σi,k[Rki||zi-ck||
2 + λ1Rkilog(Rki) + λ2Rkilog(Oki/

Eki)φi] where zi is the PC projection vector for cell i (Fig. 5A, 

maximum diversity clustering), and φi is a batch index vector 

where cell i belonging to batch j includes one in the j-th el-

ement and zeros in the other elements. The second entropy 

term [Rkilog(Rki)] is added for soft clustering, which probabi-

listically assigns cell i to k clusters in a parsimonious manner. 

The third term is added to minimize the Kullback Leibler (KL) 

divergence between the observed (Oki) and expected (Eki) dis-

tributions of cell counts from batches over clusters, thereby 

maximizing the variance of cell counts from batches in each 

cluster (i.e., maximum diversity). Assuming independence 

between the cluster assignment and batch, each cluster is 

expected to include cells from different batches with uniform 

probability. In each iteration, projection of cell i (zi) is correct-

ed by subtracting ΣkRkiak where ak is a portion of the projec-

tion that can be explained by batch-dependent Rki in cluster 

k, called linear mixture model correction (Fig. 5A, middle). 

These steps of Rki estimation and zi update are repeated until 

zi converges (Fig. 5A, right).

 DESC also performs cluster-level batch correction; how-

ever, its algorithm is different from that of Harmony. The 

stacked autoencoder, a variation of the autoencoder with 

pre-training and model fine tuning steps, is first applied to 

the merged data matrix (X) to obtain nonlinear LV projections 

(zi for cell i; Fig. 5B, Encoder and Latent space). A graph was 

then constructed based on the similarity between cell pairs 

using their nonlinear LV projections, and Louvain clustering 

(Blondel et al., 2008) is performed to determine the num-

ber (k) of clusters and initialize the cluster centroids (ck for 

cluster k; Fig. 5B, Louvain clustering). Using zi and ck, DESC 

estimates qki as (1 + ||zi – ck||
2/α)-1/Σk(1 + ||zi – ck||

2/α)-1 where 

α is the degree of freedom of the Student’s t distribution (α 

= 1 by default). Of note, qki becomes high when cell i is close 

to the centroid of cluster k. Using zi and ck, DESC computes 

KL divergence as ΣiΣk[pkilog(pki/qki)] where pki = [qki
2/Σiqki]/[Σ

k(qki
2/Σiqki)], called an auxiliary distribution, which represents 

the probability that cell i belongs to cluster k, similar to Rki in 

Harmony. The weights in the encoder, as well as zi and ck, are 

updated to minimize the KL divergence, which improves clus-

ter purity (Fig. 5B, Model fine tuning). This iteration continues 

until the KL divergence converges, and the final updated zi is 

considered a batch-corrected projection.

 LIGER also performs cluster-level batch correction. For clus-

tering of M cells in the merged dataset (X), it assigns cell i to 

an iNMF factor (cluster) with the maximum factor loading for 

the cell (Fig. 5C, node boundary colors). To handle the un-

certainty in the maximum factor loadings, LIGER identifies k 

nearest neighbors of cell i (Fig. 5C, cells within the red dotted 

circle) and then computes a factor neighborhood vector (1 × 

K) for cell i in which the k-th element represents the count of 

the k nearest neighbors belonging to cluster k (Fig. 5C, Factor 

neighborhood vector). A shared factor neighborhood graph 

is then built based on the Manhattan distance between pairs 

of cells (Fig. 5C, SFN graph construction), which is subjected 

to Louvain clustering. In Fig. 5C, after Louvain clustering, cells 

i and j, originally assigned to factor 2, were clustered together 

with the cells assigned to factor 1, due to their factor neigh-

borhood vectors similar to those of the cells assigned to fac-

tor 1. When there are L batches, for each factor, the loadings 

(M × 1) of the cells assigned to cluster k are split into L sets of 

the loadings for cells, according to their batch information. 

The L sets of the loadings are then subjected to quantile nor-

malization (Bolstad et al., 2003) to match the distribution of 

factor loadings in each batch with that in the reference batch 

(Fig. 5C, right). The corrected factor loadings (low dimen-

sional representations) are used for the subsequent analyses.

 Finally, scMerge performs first k-means clustering for 

cells in each batch and then identifies the pairs of anchored 

clusters between batches based on mutual nearest clusters 

(MNCs; Fig. 5D, Identification of MNC). A cluster graph 

having edges as the anchored cluster pairs is built, and sub-

graphs are then identified using ‘igraph’ package (Csardi and 

Nepusz, 2006) in R (e.g., Sub1-3 in Fig. 5D, Identification of 

subgraphs). For every cluster in a subgraph, the core cells are 

defined as half of the cells with the smallest Euclidean dis-

tances to the cluster centroid, and the set of all core cells are 

then defined as a pseudoreplicate for the subgraph (Fig. 5D, 

Identification of pseudoreplicates). Variations in the expres-

sion profiles of the core cells within the same pseudoreplicate 

are considered unwanted variations (e.g., batch effects). To 

sort these variations in the merged data (X), scMerge de-

fines a replicate matrix (B) with pseudoreplicate and non-

core cell columns (e.g., three pseudoreplicate columns for 

Sub1-3 and the remaining non-core cell columns in Fig. 5D, 

Replicate matrix). One is then added to B(i,l) for core cell i 

in pseudoreplicate l while one is to B(j,m) for non-core cell j 

(e.g., m = 3 + j in Fig. 5D, Replicate matrix). Multiplication of 

the residual operator [R = I – B(BTB)-1BT] to the auto-scaled Xs 

over genes sorts out the unwanted variations from Xs, and 

RXs is then decomposed into RWαα + E (Molania et al., 2019). 

The regression coefficients (αα) are first estimated to minimize 

E by SVD using all the genes, and W is re-estimated only us-

ing stably expressed genes (SEGs) showing minimal changes 

across cells by XSEGααSEG
T(ααSEG

TααSEG)-1 where XSEG and ααSEG include 

only the rows of Xs and the coefficients (loadings) for SEGs, 

respectively. Finally, batch effects are corrected by Xs – Wαα, 

which corrects unwanted variations explained by the correla-

tions (ααSEG) of SEGs.

 In practice, after batch correction using the aforemen-

tioned methods, the outputs, such as batch corrected 

merged data matrix (X from linear decomposition methods) 

or projections (z) on the reduced space (e.g., Harmony and 

DESC), or updated factor loadings (e.g., LIGER) from these 

methods are subjected to another clustering (e.g., Louvain 

clustering using the kNN graph in Seurat), and identification 

of differentially expressed genes (e.g., ‘FindMarkers’ function 

in Seurat) and annotation of cell types (e.g., SingleR; Aran et 

al., 2019) are then performed for the resulting clusters.

Generative models with variational autoencoder
Linear decomposition and similarity-based methods using 

linear dimension reduction cannot effectively capture the 
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nonlinear characteristics of batch effects and systematic bio-

logical signals. To address these issues, several methods using 

a generative model with variational autoencoder (e.g., scVI 

[Lopez et al., 2018], scGen [Lotfollahi et al., 2019], and trVAE

[Lotfollahi et al., 2020]) have been developed.

 Similarity-based methods often suffer from heavy compu-

tational loads during similarity searches and batch corrections, 

when hundreds of thousands of cells are integrated. scVI (Lo-

Fig. 5. Cluster-level similarity search. Schematic illustration of the analytical steps in Harmony (A), DESC (B), LIGER (C), and scMerge (D). 

See text for details.
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pez et al., 2018) was developed to effectively model the non-

linear characteristics of data and resolve the computational 

load issue. The scVI assumes that the expression count (xm) 

for each gene in cell m follows the ZINB distribution p(xm|zm, 

sm, lm) where zm is the nonlinear LVs, sm is the batch informa-

tion for cell m; and lm is a cell-specific size factor that accounts 

for variations during library construction and sequencing, 

which is not explicitly considered in the aforementioned 

methods. To estimate the ZINB probability, scVI employs 

a variational autoencoder model composed of ‘variational 

posterior’ and ‘generative model’ parts (Fig. 6A): the first part 

performs the inference of a variational posterior distribution 

q(zm, lm|xm, sm) for two unknown variables zm and lm given xm 

and sm using neural networks (NNs; Fig. 6A, NN1-4), and the 

second part estimates p(xm|zm, sm, lm) using other NNs (Fig. 

6A, NN5-6). NN1-4 are trained to estimate the parameters 

(mean and standard deviation) of the Gaussian distributions 

that zm and lm are assumed to follow based on variational in-

ference. After zm and lm (mean values) are sampled from their 

estimated distributions, zm, considered as batch corrected 

projections, are used to train NN5-6 to estimate the expected 

dropout (π) and frequency in the NB distribution, respectively. 

These expected values are finally used together with the sam-

pled lm to estimate the expected expression counts (xm) that 

follow p(xm|zm, sm, lm). The weights of the NNs are updated 

such that the sampled zm and lm explain the observed xm giv-

en sm based on the ZINB distribution. The sampled zm can be 

used for clustering analysis, and the expected counts can be 

used to identify differentially expressed genes for cell clusters. 

scANVI (Xu et al., 2021), an extension of scVI, uses addition-

al cell-type information such that the distribution of cells in 

the latent space (zm) reflects the cell types, thereby enabling 

batch corrections with the cell-type information considered.

 Similar to scANVI, scGen (Lotfollahi et al., 2019) uses the 

cell-type information obtained from the cell-type annotation 

of the clusters after cell clustering (e.g., three cell types in 

Fig. 6B, left). A variational autoencoder is used to estimate 

the distribution parameters (means and standard deviations) 

of the nonlinear LVs (zm) based on variational inference (Fig. 

6B, middle top). The sampled zm are used to determine per-

Fig. 6. Generative models with variational autoencoder. (A) Architecture of scVI and schematic illustration of analytical steps in scVI. The 

outputs from NN5-6 are used to estimate the ZINB distribution p(xm|zm,sm,lm). (B). Schematic illustration of analytical steps in scGen. See 

text for details (A and B).
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turbation parameters (K × 1 δ) for K LVs as the difference 

between the mean vectors of zm for cells in batches (e.g., δ 

on 2-dimensional LV space between batches 1-2 in Fig. 6B, 

right). Batch effects are then corrected by applying δ to zm for 

cells in batch 2, and the batch corrected zm are then rescaled 

back to produce the batch corrected xm using the decoder 

NN (Fig. 6B, right). Finally, trVAE (Lotfollahi et al., 2020) 

employs a variational encoder similar to that in scGen to es-

timate the distribution parameters of zm; however, the input 

layer has additional L nodes that take the batch information 

for L batches. Optionally, nonlinear LVs can first be decoded 

in two sequential stages: from the LVs to an intermediate ym 

(g1 decoder to handle the discrepancy between batches) and 

then from ym to xm (g2 decoder).

Pros and cons
All the aforementioned methods have differences in model 

structures and parameters, dimension reduction, similarity 

search, and batch correction. These aspects of the individual 

methods are summarized in Supplementary Table S1. The 

unique characteristics of these methods provide advantages 

and disadvantages in terms of their performance (output 

type, speed, peak memory use, GPU support, etc.), which are 

summarized in Supplementary Table S1. ‘High’ performance 

in the table indicates that the corresponding methods were 

found to show good performance in terms of speed, mem-

ory, and batch correction performance evaluated based on 

diversity of batches in each cluster (i.e., cell type).

 The characteristics of the individual methods are associated 

with the algorithms or approaches employed. Linear de-

composition methods are the simplest, thereby providing an 

advantage in terms of analysis speed (Tran et al., 2020) (Sup-

plementary Table S1, Speed). ComBat could model diverse 

batch effects using both additive and multiplicative batch 

terms compared to other linear decomposition methods, and 

also incorporated the empirical Bayes shrinkage of param-

eters to pool the information across genes, which provides 

robustness in correction of batches with small sample sizes. 

ZINB-WaVE includes unique gene-level covariates in the mod-

el. However, how its addition to the model improves perfor-

mance has not been systematically tested, and the benefit of 

the gene-level covariate term is unclear, considering that the 

discrepancy among gene-level covariates may be handled by 

normalization strategies in other methods. Linear decomposi-

tion methods assume that the cell types between batches are 

similar (Haghverdi et al., 2018; Lin et al., 2019) and cannot 

effectively handle heterogeneity among cell-level covariates 

across samples or batches.

 Although similarity-based batch correction methods ef-

fectively handle cell-level covariate issues, they commonly 

involve additional steps to search for similar cells and correct 

batch effects to match the distributions of similar cells. Be-

cause of these additional steps, some of them (e.g., MNN-

based methods) often suffer from heavy computational loads 

(Supplementary Table S1, Speed and Peak memory use), 

which render limited applicability or scalability for scRNA-seq 

datasets, including hundreds of thousands of cells or more (Li 

et al., 2020). Both linear decomposition and similarity-based 

methods effectively handle unwanted non-systematic varia-

tions. For systematic unwanted variations, however, MNN-

based methods can handle more effectively the systematic 

unwanted variations than the linear decomposition methods, 

as long as they identify pairs of similar cells with reasonable 

accuracy.

 Similarity-based methods perform similarity searches and 

batch corrections mostly on reduced dimensions. Among the 

dimension reduction tools, CCA captures the shared sources 

of variations between batches and thus performs well when 

cell populations are largely shared between batches, whereas 

it is less likely to capture variations for cell subpopulations 

uniquely present in small numbers of batches. By contrast, 

PCA captures distinctive sources of variation with a sufficient 

number of LVs, which may make similarity search among 

these distinctive cell subpopulations possible. iNMF specifi-

cally models cells that are uniquely present in a small number 

of batches to effectively address this issue. Moreover, batch 

corrections based on batch vectors require large amounts of 

memory (Hie et al., 2019), thereby causing memory issues, 

particularly for datasets that include a large number of cells. 

Scanorama endeavored to resolve this memory issue by re-

ducing peak memory usage, thereby improving the scalability 

of analyses with limited computing resources (Li et al., 2020; 

Luecken et al., 2022; Tran et al., 2020) (Supplementary Table 

S1, Speed, Peak memory use, and Performance). BBKNN and 

Conos provide no batch-corrected X or z, but several down-

stream analyses, such as functional gene program identifica-

tion (Kotliar et al., 2019) or trajectory inference (Trapnell et 

al., 2014), require corrected X or z, thereby limiting the appli-

cability of BBKNN and Conos (Luecken et al., 2022).

 Among the cluster-level similarity search methods, Har-

mony shows high scalability in terms of both runtime and 

memory usage (Korsunsky et al., 2019; McKellar et al., 2021; 

Tran et al., 2020) (Supplementary Table S1, Speed). However, 

the KL divergence term in its objective function can make 

Harmony biased toward major cell types (clusters), including 

large numbers of cells. There may be a chance for Harmony 

to overcorrect batch effects for small cell types when they are 

integrated with major cell types. DESC does not require batch 

information, but corrects batch effects and simultaneously 

performs soft clustering. The exact number of batch-effect 

sources (or unwanted variations) is typically unknown. Al-

though DESC may effectively handle these unknown sources 

of batch effects, systematic analyses are needed to under-

stand the benefits from no use of batch information. LIGER 

was shown to have a tendency of focusing on batch effect 

correction rather than biological conservation, favoring its 

application to integration of cross-species datasets (Luecken 

et al., 2022) (Supplementary Table S1, Bio-conservation vs 

Batch correction).

 scVI and scANVI are ‘all-inclusive’ tools that perform a range 

of analyses including normalization, dimension reduction, 

batch effect correction, imputation, clustering, and differ-

ential expression. They can effectively capture the nonlinear 

characteristics in data based on probabilistic models that sta-

tistically bound variations in random variables (xm or zm) using 

neural networks. Probabilistic models enable the propagation 

of the statistically bounded xm or zm to clustering, differential 

analysis, or cell-type annotation, providing effective handling 
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of uncertainties in downstream analyses. These methods 

have been shown to scale up to very large datasets (Stuart 

et al., 2019). scVI and scANVI use the ZINB distribution for 

probabilistic modeling by default, but it is possible to use the 

NB distribution instead of the ZINB distribution. It is debatable 

which distribution better fits the read counts derived from 

either the droplet-based method or the full-length plate-

based method. However, in the benchmarking analysis using 

both distributions, similar results in four datasets tested were 

shown (Xu et al., 2021).

 As no single method performs well in all integration set-

tings, several representative methods in the aforementioned 

categories (e.g., ComBat, Seurat’s anchoring method, har-

mony, and scVI) should be compared to select an appropriate 

method for data integration. Clusters of cells identified by 

each method on UMAP can be compared across the meth-

ods. Among the clusters, several are consistently identified 

with similar shapes and memberships in all methods. Focus-

ing on these clusters provides the most reliable conclusions. 

However, these methods often produce inconsistent clusters, 

particularly for small clusters. For example, a small cluster can 

be identified as a distinct cluster in the ComBat and anchor-

ing methods but merged into another large cluster in Har-

mony and scVI. Moreover, the relative position of the small 

cluster with respect to the other clusters on the UMAP cells 

can differ across methods. Furthermore, cells within a cluster 

can be evenly distributed or exhibit a skewed distribution. 

The patterns of these cluster characteristics across the meth-

ods can suggest whether batch effects are corrected too 

weakly, too much, or appropriately for particular clusters of 

interest, from linear and similarity-based (cell- or cluster-level) 

methods to variational autoencoders. Nevertheless, whether 

a small cluster is a biologically meaningful cell subpopulation 

or an artifact from cell isolation, and batch correction should 

be determined by detailed functional experiments for small 

clusters.

CONCLUSION

Data integration methods provide unique opportunities to 

systematically compare and federate cell types present in mul-

tiple sets of samples under similar or distinct disease condi-

tions, thereby enabling a more comprehensive interpretation 

of the functional roles of different cell types under diverse 

disease conditions. Moreover, the integrative analysis of mul-

tiple datasets generated from diverse disease conditions can 

provide insights into the interplay of particular cell-type pairs 

by providing shared count variations of the cell-type pairs 

under disease conditions. Although data integration meth-

ods have improved from linear decomposition to nonlinear 

probabilistic methods, many problems remain to be resolved. 

A definition of batches is required for most tools. Although 

batches are defined subjectively based on the major sources 

of unwanted variation, there may still be unrecognized sourc-

es that cause batch effects. Moreover, most methods assume 

that batch effects are smaller than biological differences. 

However, there could be systematic unwanted variations 

that are similar in magnitude to biological differences. These 

systematic unwanted variations cannot be effectively distin-

guished from biological differences using the current meth-

ods. In addition, there is a significant need for tools that can 

effectively evaluate how robust or stable correction data inte-

gration methods can achieve in the presence of diverse types 

of non-systematic and systematic noises. Furthermore, data 

integration tends to be biased toward the major cell types 

that are commonly abundant across the integrated datasets, 

thereby not providing stable integration for the small cell 

types present only in particular small sets of datasets. Finally, 

owing to recent technical advances, the number of detected 

cells has substantially increased. Thus, the scalability of these 

methods needs to be improved to effectively handle large 

numbers of cells. Therefore, there are still plenty of room for 

improvements. Nonetheless, data integration methods have 

been applied to answer diverse single-cell-level biological and 

medical questions. Along with the improvement of these 

methods, their continuous application will shed new insights 

into cellular players and their interactions underlying disease 

pathogenesis, and provide new cellular targets for the treat-

ment of various diseases.

Note: Supplementary information is available on the Mole-

cules and Cells website (www.molcells.org).
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