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The STE20-like serine/threonine kinases MST1 and MST2 (MST1/2) are mammalian
homologs of Hippo in flies. MST1/2 regulate organ size by suppressing the transcription
factor YAP, which promotes proliferation. MST1 is predominantly expressed in immune
cells, where it plays distinct roles. Here, we review the functions of MST1/2 in immune
cells, uncovered by a series of recent studies, and discuss the connection between
MST1/2 function and immune responses. MST1/2 regulate lymphocyte development,
trafficking, survival, and antigen recognition by naive T cells. MST1/2 also regulate
the function of regulatory T cells and effector T cell differentiation, thus acting to
balance immune activation and tolerance. Interestingly, MST1/2 elicit these functions
not by the “canonical” Hippo pathway, but by the non-canonical Hippo pathway
or alternative pathways. In these pathways, MST1/2 regulates cellular processes
relating to immune response, such as chemotaxis, cell adhesion, immunological
synapse, gene transcriptions. Recent advances in our understanding of the molecular
mechanisms of these processes have revealed important roles of MST1/2 in regulating
cytoskeleton remodeling, integrin activation, and vesicular transport in lymphocytes. We
discuss the significance of the MST1/2 signaling in lymphocytes in the regulation of
organelle dynamics.

Keywords: Mst1/2, lymphocyte trafficking, effector differentiation, cell polarity and adhesion, integrin, vesicle
transport

INTRODUCTION

The serine/threonine kinases MST1 (STK4) and MST2 (STK3) belong to the mammalian STE20-
like kinase family. The Drosophila homolog of MST1 and MST2 (MST1/2), Hippo (HPO), is the
core enzyme of a pathway that controls organ size by regulating cell proliferation and differentiation
(1–4). In the canonical Hippo signaling pathway of Drosophila, HPO, complexed with Salvador
(SAV), phosphorylates and activates Nuclear Dbf-2-related (NDR) family kinase Warts (WTS) and
its adaptor Mob as Tumor Suppressor (MATS), which are orthologous to mammalian LATS1/2
and MOB1A/B, respectively. A Drosophila ortholog of YAP, YKI, is a transcriptional activator to
promote proliferation by collaborating with co-activators. WTS phosphorylates YKI to inhibit its
function. In the non-canonical Hippo pathway of Drosophila, TRC, an ortholog of mammalian
NDR, also acts as a downstream kinase of HPO and plays roles in the morphogenesis of epithelial
cells and in dendritic tiling and maintenance of neural cells (5–7).
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In the canonical Hippo pathways in mammals, MST1/2
activate MOB1A/B and LATS1/2. LATS1/2 phosphorylate and
inhibit transcriptional activity of YAP/TAZ which promotes
gene transcription related to survival and proliferation. Thus,
the canonical pathway is important for tissue development
and regeneration (8, 9). In addition to the canonical pathway,
NDR1/2 are also phosphorylated by MST1 (10) and activate
the non-canonical Hippo pathways that regulate various cellular
processes (11–13). MST1/2 also phosphorylate other proteins to
control their functions as alternative pathways.

It has been increasingly recognized that MST1/2 are involved
in innate and adaptive immune regulation in mammals.
Homozygous nonsense mutations of MST1 in humans induce
a combined immunodeficiency with severe lymphopenia,
neutropenia, and hypergammaglobinemia characterized by
recurrent infection (14–17). Some MST1-null patients develop
autoimmune cytopenias and disseminated EBV viremia. The
combined phenotypes of immunodeficiency and autoimmunity
are recapitulated by mouse models deficient for MST1 alone,
or MST1/2 in a T cell–specific manner (18–23). These mice
exhibit hypoplastic lymphoid tissues and develop autoimmune
phenotypes with age. In both humans and mice, MST1/2-
deficient lymphocytes have defects in chemokine-induced
migration and integrin-dependent adhesion, as well as elevated
rates of apoptosis. Furthermore, MST1/2 also control effector T
cell differentiation by modulating transcription factors important
for this process. In the first section, we describe the detailed roles
of MST1/2 in lymphocyte development, trafficking, tolerance,
survival, and effector differentiation, and discuss the balance of
activation and tolerance of lymphocyte controlled by MST1/2.

How do MST1/2 regulate the balance mechanistically? Recent
studies have shed light on the downstream signals of MST1/2
that regulate lymphocyte trafficking and antigen-recognition.
MST1/2 promote integrin activation through the non-canonical
Hippo pathway via NDR1/2. MST1 also regulates F-actin
dynamics in response to chemokines by regulating Rho family
GTPase and L-plastin. Furthermore, MST1/2 play a vital role
in antigen recognition of T cells by regulating formation of
the immunological synapse (IS), the T cell interface for antigen
recognition. Analysis of IS in MST1/2-deficient T cells has
revealed the important role of MST1/2 signaling in the regulation
of vesicular trafficking. In the second section, we summarize the
MST1/2-mediated signals that direct integrin activation, F-actin
dynamics, and vesicular trafficking.

PART I: THE FUNCTION OF MST1/2 IN
LYMPHOCYTE REGULATION

A major role of MST1/2 is the regulation of integrin-mediated cell
adhesion and cell polarity in response to chemokine or antigen-
stimulation, resulting in controlling lymphocyte development
and trafficking. Other roles of MST1/2 are the regulations of
lymphocyte survival and the effector T cell differentiation via
modulating activity and stability of transcription factors. We
describe the regulatory processes in detail below.

MST1/2 REGULATE LYMPHOCYTE
DEVELOPMENT AND TRAFFICKING BY
INTEGRIN-DEPENDENT ADHESION

Several studies of MST1-deficient and MST1/2-double deficient
mice reveal that MST1/2 are important for the development and
trafficking of lymphocytes by facilitating processes mediated by
chemokine and integrin.

Homing of hematopoietic stem cells (HSCs) to bone marrow
(BM) requires expression of chemokine receptor CXCR4 (24)
and integrins α4β1(VLA-4), α4β7, and α6β1 (25). MST1/2 are
required for homing of HSCs and T-cell progenitors. MST1-
deficient or MST1/2-double deficient HSCs fail to migrate into
BM and are unable to reconstitute all types of hematopoietic-
lineage cells (26).

The chemokine receptors CCR7/CCR9, as well as integrins
LFA-1/VLA-4 and their counter-receptors ICAM-1/VCAM-1,
are required for efficient entry of T cell progenitors into the
thymus (27, 28). In support, the integrin coactivator Kindlin-
3 is required for T cell progenitor homing (29). Similar to
MST1/MST2-deficient HSC, MST1/2 double deficient T cell
progenitors have defects in migration into the thymus (26),
suggesting that MST1/2 play a role in regulating integrins
during this process. MST1/2 are also involved in negative
selection of autoreactive thymocytes, as well as egress from the
thymus (Figure 1). After entry into the thymus, successful TCR
rearrangement facilitates differentiation of T cell progenitors into
CD4 + CD8 + double-positive (DP) thymocytes, which move
from the cortex to the medulla and differentiate into either
CD4 or CD8 single-positive (SP) cells (30). In the medulla,
medullary epithelial cells (mTECs) express organ-specific self-
antigens via transcription factor AIRE (31). Dendritic cells
(DCs) also present self-antigens expressing by themselves or
received from mTEC. During this process, SP cells randomly
migrate within the medulla and interact with Aire+mTECs
and DCs (18, 32). Strong interactions of autoreactive SP
cells with self-antigen on Aire+mTECs or DCs trigger an
activation of SP cells and induce cell death by negative
selection (30). Otherwise, autoreactive SP cells express both IL-
2 receptor and FOXP3 in response to self-antigen, followed by
differentiation of SP cells to regulatory T cells (Tregs). FOXP3
is a master transcription factor required for Treg differentiation
and maintenance.

MST1-deficient SP cells have an intrinsic defect in integrin-
dependent migration within the medulla, as well as contact
with Aire+mTECs expressing self-antigen, resulting in inefficient
antigen scanning (18). Inefficient recognition of self-antigen
decreases frequency of activated cells or attenuates activation
of TCR signals in autoreactive MST1-deficient SP cells, thereby
causing defective negative selection of autoreactive T cells
and reduction of Tregs, facilitating autoimmune phenotypes of
MST1-deficient mice (18).

After selection, SP thymocytes egress from the thymus via
blood or lymphatic vessels and emigrate to secondary lymphoid
organs. This process requires chemotactic migration in response
to sphingosine-1-phosphate (S1P) or CCL21. Deficiency of MST1
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FIGURE 1 | Mst1/2 are required for thymocyte trafficking and antigen recognition. MST1 is required for several processes of thymocyte trafficking: (1) Homing of T
cell progenitors to the thymus via integrin-dependent adhesion on the vessels; Self-antigen scanning driven by promoting (2) rapid interstitial migration and (3) arrest
on mTEC-expressing self-antigens within the medulla via LFA-1/ICAM-1 interaction. (4) Egress of mature thymocytes via vessels or lymphatics in response to
chemokine CCL21 or S1P.

or MST1/2 impairs egress of mature thymocytes due to a defect
in chemotactic migration toward S1P and CCL19/21 (19, 33).

Naïve T cells are less abundant in spleen and lymph
nodes of MST1-deficient or MST1/2-double deficient mice due
to impaired integrin-mediated trafficking (21, 22). MST1/2-
deficient T cells fail to stably attach high endothelial venules
(HEVs) and efficiently transmigrate into lymph nodes (21, 34).
Consistent with this, MST1/2-deficient T cells have a defect in
flow-resistant adhesion to endothelial integrin ligands such as
ICAM-1 and VCAM-1 upon chemokine stimulation. MST1 is
also involved in cell polarization in response to chemokines.
MST1 deficiency in T cells causes impaired interstitial migration
within lymph nodes due to the defects in integrin-mediated
adhesion and cell polarization (21).

MST1/2 are also important for late B cell production. Mature
B cells have three subsets: follicular (FO) B-2, marginal zone
(MZ) B, and B-1a B cells. FO B-2 cells are responsible for
T cell–dependent antibody responses, whereas MZ B cells are
localized at the splenic marginal zone and are important for T
cell–independent early antibody production against blood-borne
antigens. B-1a B cells are involved in the production of natural
antibodies (35). In mice deficient for MST1 or MST1/2, MZ B
cells and B-1a B cells are less abundant in the spleen, with modest
effects on early B cell development in the BM (36). Retention

and survival of MZ B cells in the spleen are dependent on
chemokines such as S1P and CXCL12 (37, 38) and the integrin
ligands ICAM-1 and VCAM-1 (39). Similarly, the number of
BM recirculating B cells, of which homing is also dependent on
integrin signals (40), is reduced in the BM (36). Severe loss of FO
B-2 cells in lymph nodes of MST1-deficient or MST1/2-deficient
mice is also observed, due to defective migration into lymph
nodes via high endothelial venules (HEVs) (21, 22, 36). These
processes are highly dependent on CCL21/CXCL12 and integrin
(41), indicating critical roles for MST1/2 in integrin-mediated
adhesion during late B cell development.

THE PIVOTAL ROLES OF MST1/2 IN
ANTIGEN RECOGNITION BY
REGULATING INTEGRIN-DEPENDENT
CELL-CELL CONTACTS

Naïve T cells recognize cognate antigen on major
histocompatibility complex (MHC) presented by antigen-
presenting cells such as DCs, and then become activated,
proliferate, and differentiate into memory or effector cells. Initial
studies examined the proliferative response to direct activation
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of TCR crosslinking by antibodies in MST1-deficient mice (21,
22, 42). More recent work examined the roles of MST1/2 in
antigen-specific proliferation. Upon antigen-specific stimulation,
MST1- or MST1/2-deficient T cells fail to form stable contacts
with DCs in both in vitro and within lymph nodes (34). As
a result, MST1- or MST1/2-deficient T cells exhibit defective
proliferation in response to antigen stimulation (34). These
defects are likely due to defective adhesion mediated by LFA-1
and ICAM-1. Moreover, MST1-deficient T cells are not able to
form pSMAC (LFA-1/ICAM-1 cluster) or cSMAC (TCR/pMHC
cluster) in the IS on lipid bilayers presenting peptide/MHC and
ICAM-1 (34) (see section II). Thus, MST1/2 play an essential
role in forming the adhesion structure required for antigen
recognition of T cells.

Furthermore, important roles of MST1 for antigen recognition
are emphasized by requirement of MST1 in contact-dependent
suppressor functions of Tregs (43, 44). Inhibition of T cell
proliferation by MST1-deficient Tregs is comparable to that
of wild-type T cells when anti-CD3 antibodies are used
for stimulation (43). However, MST1-deficient Tregs do not
efficiently inhibit the proliferation of naïve T cells in response
to antigen presented on DCs and also do not prevent
experimental colitis by adoptive transfer of naïve T cells into
severely immunodeficient mice. The absence of MST1 in Tregs
decreases cognate interactions with DCs, resulting in inefficient
downregulation of the costimulatory molecule CD86 in DCs,
indicating that antigen-specific Treg suppression requires LFA-
1–mediated contact with DCs. These defective functions of Treg
are considered to be associated with autoimmune phenotype of
MST1-deficeint mice.

MST1/2 REGULATE THE
DIFFERENTIATION OF EFFECTOR T
CELL SUBSETS BY REGULATING
TRANSCRIPTIONAL FACTORS

Series of resent works uncovered the integrin-independent
regulation of MST1/2, especially in the effector differentiation
and functions via regulation of transcriptional factors, and are
described below from the point of view of the regulation of gene
transcription (Figure 2A).

Several studies have shown that MST1 is important for
generation, maintenance, and function of Treg by regulating
FOXP3 expression in Tregs. The transcription factor FOXO
binds to the Foxp3 promoter and promotes its transcription.
Consistent with this, FOXO1/3-deficient mice have reduced
numbers of Tregs (45, 46). MST1 activates FOXO1/3, resulting in
enhancement of Foxp3 transcription in Tregs (23). A deacetylase
SIRT1 is known to deacetylate FOXP3 and promotes proteasomal
degradation of FOXP3 (47). MST1 prevents FOXP3 degradation
in Tregs by inhibiting SIRT1-mediated deacetylation of FOXP3
by phosphorylating SIRT1 (48, 49).

MST1/2 are also involved in the regulation of IL-2R signaling
in Tregs. In mice, in which Mst1/2 were is Treg-specifically
mutated, Treg number is not altered at 1 month of age,

FIGURE 2 | Mst1 regulate T cell survival and differentiation via regulating
transcriptional activity. (A) MST1/2 positively regulate Treg differentiation or
functions through STAT5, FOXO, and FOXP3. Treg also suppress Th1
responses. On the other hand, MST1/2 inhibit the differentiation or functions
of CTL, Th2, and Th17 cells via negative regulation of transcription factors
T-BET, EPAS, and RORγt. (B) MST1/2 promote FOXO-mediated regulation
against oxidative stress in naïve T cells.

but decreases significantly with age in peripheral lymphoid
tissues, resulting in Th1-associated lethal autoimmune diseases
(50). Thus, MST1/2 are required for the maintenance of
Treg pools. Mechanistically, MST1/2 positively regulate STAT5
phosphorylation upon IL-2 stimulation and control survival in
Tregs. MST1/2 are also required for migration of Treg to T cell
zones via the Rho-GTPase RAC1, and enable Treg to access the
source of IL-2–producing cells. Downregulation of IL-2 receptor
α chain (CD25) in MST1- or MST1/2-deficient Tregs (43, 50) may
also contribute to attenuation of IL-2 receptor signaling (43, 50).

MST1/2 deficiency also affects the differentiation of cytotoxic
T cells (CTL). During the generation of CTL in vitro, lack
of MST1 decreases the levels of FOXO in CD8 T cells (51).
MST1-deficient CD8 T cells exhibit higher expression of T-bet
transcription factors, which is associated with higher expression
levels of IFNγ and granzyme B. Consistent with this, MST1-
deficient CTLs have greater tumoricidal activity in vitro, and
suppress tumor progression in mouse models more efficiently,
than wild-type CTLs. Thus, MST1 exerts an inhibitory effect on
differentiation and function of CTL. On the other hand, YAP, the
transcription factor of the canonical Hippo pathway, promotes
CTL differentiation (52), but no direct connection between MST1
and YAP in CTLs has yet been demonstrated (53).

MST1/2 may regulate the balance of differentiation of CD4
T cells into Th17 or Treg cells via TAZ, a coactivator of TEAD
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transcription factors involved in the canonical Hippo pathway
(54). Th17 cells express the highest levels of TAZ among the
helper T cell subsets. Deletion of TAZ in activated T cells results
in reduced abundance of Th17 cells with a reciprocal increase
in Tregs. Conversely, overexpression of TAZ increases Th17
abundance at the expense of Tregs. TAZ acts as a co-activator of
RORγt, a master regulator of Th17 differentiation, to promote
Th17 generation, whereas it inhibits FOXP3 functions by
decreasing acetylation mediated by the histone acetyltransferase
Tip60. TEAD1 and sequestration of TAZ from RORγt and
FOXP3 result in Treg differentiation. Thus, TAZ controls the
balance of Th17 and Treg differentiation.

MST1 negatively regulates follicular T helper (Tfh) cell
expansion. Tfh cell is a T cell subset to provide survival signals
for B cells via cognate interaction, and promote their antibody
production in germinal center (GC). In Mst1-deficient mice, Tfh
cells are more abundant, and serum levels of antibodies and
autoantibodies are elevated (55). Moreover, MST1-deficient Tfh
cells express higher levels of IL-21, IL-4, and surface CD40L. The
abnormally activated Tfh cells cause aberrant B cell activation in
GC and accelerate the differentiation of short-lived plasmacytes.

MST1 also regulates IL-31 production in Th2 cells (56).
DOCK8-deficient mice overproduce IL-31 in their Th2 cells
and develop atopic skin diseases. In Th2 cells, DOCK8 forms
a complex with MST1 and inhibits nuclear translocation of the
transcription factor EPAS, independent of the guanine exchange
factor activity of DOCK8. Given that EPAS is critical for IL-31
gene expression, this implies that the MST1–DOCK8 axis inhibits
IL-31 production. Taken together, these findings demonstrate
that MST1/2 restrict effector T cell differentiation by modulating
transcription factors.

MST1 REGULATES T CELL SURVIVALS
BY ATTENUATING OXIDATIVE STRESS

MST1 also promotes T cell survival by protecting from oxidative
stress in integrin-independent manner (Figure 2B). Choi et al.
reported elevated rates of lymphocyte apoptosis in MST1-
deficient mice (20). This is presumably due to increases in
the levels of reactive oxygen species (ROS) resulting from
downregulation of Sod2 and catalase, exacerbating lymphopenia
(20). Under oxidative stress, MST1 phosphorylates FOXO1/3a
at Ser212 or Ser207 and disrupts the interaction of FOXO1/3
with 14-3-3 proteins, which promote nuclear translocation and
transcriptional activity of FOXO1/3 (20, 57). On the other
hand, AKT phosphorylates FOXO1/3a at sites distinct from
those targeted by MST1/2, triggering the nuclear export of the
transcription factor. Therefore, AKT and MST1 can be thought
as the “brake” and “acceleration” pedals for FOXO 1/3 activity,
respectively (Figure 3). FOXO1/3 promote transcriptional
activation of Sod2, catalase, andBcl-2 (58). Thus, MST1/2 regulate
integrin-dependent trafficking of naïve T cells and protect them
from cell death mediated by oxidative stress. The role of MST1/2
in the protection from oxidative stress is also reported in
macrophage by stabilizing nuclear factor (erythroid-derived 2)-
like 2 (Nrf2).

MST1/2 AS BALANCERS OF IMMUNE
ACTIVATION AND TOLERANCE IN
LYMPHOCYTES

In summary, MST1/2 play important roles in adaptive immune
regulation. MST1/2 maintains naïve T cell and B cell pools in
lymphoid systems by regulating integrin-dependent adhesion
and protecting against cell death from oxidative stress (Figure 2).
Moreover, MST1/2 promote Treg differentiation and functions,
but inhibit effector T cell differentiation. MST1/2 regulate the
differentiation of Tregs and immune suppression by these cells
through integrin signaling. The importance of integrins in Tregs
is consistent with studies showing that a defect in integrin
and its activator Talin1 impairs Treg generation and functions
(44, 59–61), whereas the constitutively active mutant of the
Rap1 small GTPase (RAP1), a master regulator of integrin
activation, reciprocally increases Treg abundance (62). MST1/2
also positively regulates FOXP3 expression and IL-2 signaling,
contributing to Treg differentiation and functions. MST1/2
also act as a rheostat for effector T cell differentiation by
negatively regulating transcription factors important for effector
differentiation, such as T-BET, EPAS, and RORγt. Thus, MST1/2
increase the threshold of immune activation and prevent from
excessive responses such as autoimmune disease or allergy.
Collectively, MST1/2 serve to balance immune activation and
tolerance in lymphocytes.

PART II. DOWNSTREAM SIGNALING OF
MST1/2 IN LYMPHOCYTE REGULATION

As described in Part I, MST1/2 regulate lymphocyte functions,
such as cell trafficking, antigen-recognition, proliferation, and
differentiation. Although the canonical Hippo pathway regulates
Th17 and Treg differentiation and functions (54), a direct
connection from MST1/2 to LATS, TAZ, and YAP during
differentiation has not been elucidated. Rather, some studies have
reported that factors in the canonical pathway are dispensable
in immune cells (33, 63). Since the regulations of integrin
activation and cell polarity formation are major pathway to
exert these functions in both humans and mice, we focus to
introduce the MST1/2 signaling in the non-canonical pathways
and alternative pathways for the regulation of integrin activation
and cell polarity formation, and discuss the relevance of Mst1/2
signals to F-actin dynamics and vesicular transport machinery in
this part (Figure 3).

REGULATION OF CELL ADHESION AND
POLARITY BY THE NON-CANONICAL
HIPPO PATHWAY IN IMMUNE CELLS

The importance of the non-canonical pathways in MST1
function in lymphocytes has been highlighted by the finding
that MST1 is involved in integrin activation in lymphocytes (21,
22). Indeed, MST1-deficient T cells fail to adhere to ICAM-
1 and VCAM-1, resulting in impaired arrest on HEVs and
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FIGURE 3 | Hippo pathways in lymphocytes. Signaling pathways regulated by MST1/2 in lymphocytes. Compartmentalized areas colored light yellow and light
green indicate the intracellular/cytoplasmic area and nucleus, respectively. The canonical Hippo pathway is depicted at the very left, whereas
non-canonical/alternative pathways are depicted in the rest of the figure. MVB: multi-vesicular body.

defective adhesion to APC (21, 22). In mechanistic terms as
shown in Figure 3, upon stimulation by TCR-crosslinking
or chemokine, RAP1 is activated and forms a complex with
RAPL (64, 65). RAP1/RAPL subsequently binds to MST1.
Hetero-dimerization of MST1/RAPL via the SARAH domain
regulates MST1 localization and activation at the membrane
(65). RIAM also interacts with RAP1 via the RA-PH domain
(66), and is thought to form multi-component complex with
MST1 and Talin1 (67). Together with ADAP/SKAP1 (68),
RAP1/RAPL/MST1 complexes bind to the cytoplasmic tail of
αL integrin (67). Deficiency of RAPL or RIAM also causes
impaired LFA-1–dependent adhesion (34, 64, 69, 70). Although
the binding of Kindlin-3 and Talin1 at the β-integrin cytoplasmic
tail regulates integrin activation and clustering, the molecular link
between RAP1 and Talin1/Kindlin-3 remains elusive. Recently,
RAP1 was shown to bind Talin1 via the F0 and F1 domains
and promote localization of Talin1 at the plasma membrane
(71–73). In complex with RAPL, MST1 phosphorylates NDR1/2
kinases, family members of LATS1/LATS2 and co-activators of
MOB1 (34), upon TCR crosslinking. Phosphorylated active NDR
directly binds to Kindlin-3, leading to its recruitment to the
contact surface, which is required for the high-affinity binding

of LFA-1. NDR2 also phosphorylates Filamin A to facilitate
binding of Talin1 and Kindlin-3 to the β2 cytoplasmic tail
(74). Thus, NDR1/2 kinases mediate integrin activation through
Kindlin-3 and Talin1. In support of these notions, the deficiency
phenotypes of MOB1 or NDR1/2 reveal their critical roles in T
cell homeostasis as downstream effectors of MST1/2 (63, 75):
T cell–specific deletion of Ndr1/2 or Mob1a/Mob1b results in
phenotypes similar to those of Mst1-null mutation in T cells (63).

Formation of cell polarity is associated with lymphocyte
migration, which is typically characterized as F-actin rich
lamellipodia at the front and constricted cell bodies, termed
uropods, at the rear. Regulation of cell polarity is important for
efficient migration of lymphocytes. It is well established that the
spatio-temporal activation of RAC and RHOA regulates F-actin
development at the front and actomyosin-mediated contraction
at the rear. However, the molecular networks that coordinate
this process have not been fully elucidated. As depicted in
Figure 3, RAP1 signaling to RAPL and MST1/2 is required for
lymphocyte cell shape changes upon chemokine stimulation (65,
76). MST1/2- and NDR1/2-deficient T cells exhibit defective
polarity in response to CCL19/21, CXCL12, or S1P, concomitant
with reduced activation of RAC and RHOA (33, 63). Thus,
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FIGURE 4 | Model of regulation of immunological synapse (IS) maturation by non-canonical Hippo signaling. Regulators of immunological synapse maturation
related to the non-canonical Hippo signaling. The IS is formed at the T cell interface with APC. The mature IS contains central supramolecular activation cluster
(SMAC) enriched for TCR/CD3 complex (cSMAC, light green), with a outer ring of LFA-1/ICAM-1 (pink). The zone between cSMAC and pSMAC is depicted (deep
pink), where high-affinity LFA-1–ICAM-1 interaction occurs with intense localization of RAP1 and Kindlin-3. MST1 activation stimulated by RAP1 and RAPL relocates
vesicular transport factors important for SMAC formation including TCR and LFA-1. Possible connections between MST1/NDR1 and downstream regulators for the
maturation of IS are proposed. Components of ESCRT such as TSG101 and VPS4 are required for the release of TCR-containing microvesicles (TCR vesicles) and
cSMAC maturation. After internalization of TCR-containing vesicles, IFT20 recognizes them and relays them to the Rab11+ recycling endosome, which contains
RAB35 and RAB29. Subsequently, RAB8, an important factor of vesicular transport in polarized cells, is replaced by RAB11 in TCR-containing vesicle to promote
membrane targeting and repositioning.

both MST1/2 and NDR1/2 are involved in lymphocyte polarity
through activation of RAC and RHOA.

As for F-actin regulation, MST1 forms a complex with
DOCK8 and promotes RAC1 activation in response to CCL19
and S1P in thymocytes or Tregs (33, 50). Introduction of a
constitutively active Rac1G12V mutant can rescue the MST1/2-
deficient phenotype in Treg (33, 50), suggesting an important
role for MST1 in RAC regulation. Recently, MST1 was shown
to phosphorylate the actin-bundling protein L-plastin (LPL) at
T98 and regulate turnover of F-actin and lamellipodia formation
(77). Mice deficient for LPL have phenotypes similar to those
of the mice deficient for MST1, including the defects in cell
polarization, lamellipodial formation, and cell migration. These
results indicate that MST1/2 is important for F-actin dynamism
via regulation of RAC.

RHOA is also important for this process. RHOA activates
ROCK to promote uropod formation via activation of Myosin
light chain 2 and redistribution of Ezrin/Radixin/Moesin (ERM)
proteins (78). MST1/2 also regulate uropod formation via RHOA
activation (33) and assembly of Myosin IIa (79). In addition,
NDR1/2 are involved in RHOA activation, as NDR1/2-deficient
T cells exhibit a decrease in RHOA activation upon chemokine
stimulation (63). Further detailed analyses will be required to
uncover the relevance of RHOA to the Hippo pathway.

MST1/2 AS ORGANIZER OF MEMBRANE
TRAFFICKING IN THE IMMUNOLOGICAL
SYNAPSE

At the antigen recognition on the APC, lymphocytes undergo
reorganization of organelles and transport antigen receptor

and integrin to contact site in order to form IS, which is an
important platform for signal transduction during the initiation
of lymphocyte activation and polarized release of cytotoxic
granules (80–84). MST1/2 play critical roles in mature IS
formation, highlighting their important roles in redistribution of
membrane receptors and organelles. The IS is composed mainly
of four layers of supramolecular activation cluster (SMAC) as
shown in Figure 4. Upon IS maturation, TCR is accumulated
at central SMAC (cSMAC) area, whereas LFA-1/ICAM-1 clusters
surround cSMAC to form peripheral SMAC (pSMAC) with ring
structure (Figure 4). MST1 localizes mainly at pSMAC area of
IS (34). MST1-deficiency or MST1/2-deficiency cause defective
adhesion and pSMAC formation due to the loss of accumulation
and long-term binding between LFA-1 and ICAM-1. This defect
results from a failure of Kindlin-3 recruitment to the cSMAC-
pSMAC border area, where high-affinity binding between LFA-1
and ICAM-1 occurs (34) (Figure 4). Furthermore, the absence
of MST1/2 or introduction of a kinase-dead MST1 mutant in
T cells impairs not only pSMAC but also cSMAC formation,
indicating that MST1/2 kinase activities are also required for
relocation of TCR as well as LFA-1. Recent studies show that
cSMAC formation is facilitated by vesicular transport of TCR-
enriched microvesicles, which are derived from endosomal
sorting complexes required for transport (ESCRT) and endosome
recycling pathways (Figure 4). MST1/2 deficiency cause low
levels of accumulation of ESCRT and endosome recycling
regulators, such as VPS4, RAB8, RAB11, in the vicinity of the
contact plane during the IS formation (34) (Figure 4). These
results point out the important roles of MST1/2 in vesicular
transport in lymphocytes.

In line with this notion, several groups have reported the role
of MST1 in polarized trafficking of LFA-1 through Rab family
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small GTPases by activating guanine exchange factor (GEF). One
study reported that MST1 phosphorylates DENDD1C, a GEF of
RAB13, to activate and recruit RAB13 to the leading edge, thereby
facilitating LFA-1 transport to the front (85). In neutrophils,
MST1 regulates translocation of RAB27 to control transport of
integrins and neutrophil elastase probably through the regulation
of GEF JFC-1 (86). Thus, MST1/2 play a key role in polarized
transport of both LFA-1 and TCR (Figure 4).

Moreover, NDR1/2 are involved in the IS formation
and regulation of vesicle trafficking downstream of MST1/2.
Ndr1 knockdown causes defects in IS formation and impairs
recruitment of Rab family proteins at the contact surface, similar
to MST1/2 deficiency (34). The mechanism by which NDR1
regulates vesicle trafficking is still unclear. NDR1 would control
vesicle trafficking through Rho family small GTPases as described
above. NDR1-dependent regulation of Kindlin-3 suggests that
integrin-mediated signaling also contributes to spatiotemporal
activation of Rac- and Rho-GTPases, thereby providing a
positional cue for reorganization of vesicle transport machinery.
Alternatively, NDR1/2 could directly regulate Rab family small
GTPases in lymphocytes. In neurons, the phosphorylation targets
of NDR1/2 have been identified using a chemical genetics
approach (13). Most of the identified proteins are related
to vesicular transport machinery, e.g., AP2-associated kinase
(AAK1), RAB3AIP–RAB3A interacting protein (RABIN8), and
Rab11 family interacting protein 5 (RAB11FIP5). Indeed, they
contribute to the regulation of neurons and other cells via
NDR1/2 dependent vesicular transport (13). Therefore, it is
possible that NDR1/2 directly activate these factors to trigger
vesicular trafficking in lymphocytes as well (Figure 4).

Collectively, MST1/2 and NDR1/2 play key roles for polarized
transport using the vesicular trafficking machinery for both
integrin and antigen receptor trafficking and control IS formation
(Figure 4); however, further studies are warranted to elucidate
the complexity of uncharacterized mechanisms of MST1/2-
dependent vesicular transport of integrin and TCR.

In summary, the studies described above strongly suggest
that MST1/2 are directly involved in the regulation of integrin
activation, cytoskeleton dynamics, and the vesicular transport
machineries. These processes are tightly associated with cell
adhesion behaviors and must be coordinately regulated in

lymphocyte trafficking and antigen responses. We speculate that
MST1/2 associate with several types of intracellular trafficking
vesicles, such as early/late/recycling endosomes and exocytic
vesicles, and phosphorylate distinct effector molecules in situ
to drive step-wise activation and recruitment of final effector
molecules, such as integrin and F-actin. The details of the
interplay of these processes downstream of MST1/2 will reveal
exciting new mechanisms and functions of Hippo signaling.

CONCLUSION

Accumulating evidence indicates that MST1/2 have
multiple functions, including lymphocyte trafficking, effector
differentiation and functions, and tolerance. These immune
functions, mostly mediated by pathways distinct from the
canonical Hippo pathway, involve regulation of integrin-
mediated adhesion, cell polarity and transcription factors.
These downstream intercellular signaling events are elicited
by spatiotemporal regulation of the kinase activity of MST1/2,
leading to transcriptional control of gene expressions and vesicle
trafficking pathways. Studies of these processes have established
a new framework for Hippo signaling in immune homeostasis
and diseases, and should lead to the development of therapeutic
strategies to control these processes.
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