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Abstract: Chicken is known to be the most common meat type involved in food mislabeling and
adulteration. Establishing a method to authenticate chicken content precisely and identifying chicken
breeds as declared in processed food is crucial for protecting consumers’ rights. Categorizing the
authentication method into their respective omics disciplines, such as genomics, transcriptomics,
proteomics, lipidomics, metabolomics, and glycomics, and the implementation of bioinformatics
or chemometrics in data analysis can assist the researcher in improving the currently available
techniques. Designing a vast range of instruments and analytical methods at the molecular level is
vital for overcoming the technical drawback in discriminating chicken from other species and even
within its breed. This review aims to provide insight and highlight previous and current approaches
suitable for countering different circumstances in chicken authentication.

Keywords: chicken authentication; mislabeling; breed identification; omics; chemometrics

1. Introduction

Gallus gallus, commonly known as a chicken, is a widely consumed species, and the
demand for it keeps hiking up to 92.7 million metric tons in 2018 [1]. Due to the large-scale
commercialization and easy accessibility of chicken meat and its related products, chicken
has often been a common choice as a meat adulterant by food manufacturers to deliberately
lower production costs [2]. Likewise, intentionally fraud consumers by substituting or
mixing a cheaper breed of chicken into a highly valuable chicken breed is also practised as
a marketing tactic by the food manufacturer to gain extra profit [3]. Moreover, raw and
cooked chicken meat also exhibit allergenic effects in certain individuals [4]. Therefore,
establishing a chicken authentication approach at a molecular level is urged in order to
accurately verify label description and necessary information conforming to the chicken
content in meat products.

Variation in chicken breeds genetic composition is one of the major factors determining
growth rate, feed intake and feed efficiency in chicken farming [5–7]. Moreover, the chicken
body parts such as abdominal fat pad and breast meat yields are also affected by genetic
differences [8–10]. This raises the consumer interest in choosing chicken breeds according
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to their culinary and dietary preferences. Among various commercialized chicken strains,
Cobb and Ross are known to be the strains most produced worldwide [11]. Meanwhile,
several indigenous chicken breeds pose higher value than the commercialized broiler
due to their unique texture, flavour, and taste and can be marketed as a geographical
indication [12,13]. Food manufacturers often target these unique chicken strains as the
subject of fraud [3]. This situation brings up the need for engagement in research and
development for developing a rapid and reliable analytical approach for authenticating the
integrity of chicken breeds, as claimed.

Subsequently, authenticating chicken in food can be achieved by identifying the
presence of several stable and relevant biomarkers at the molecular level. In this sense,
multi-omics discipline analytical approaches can facilitate the detection and identification
of the target biomarkers. Omics studies include the entire flow of the central dogma of
molecular biology, which starts from the information stored in DNA (genome) and is
expressed (transcriptome) in the form of proteins (proteome), where the proteins play a
role in anabolism and catabolism (metabolome) [14]. Beyond the product of each level of
transition, there is a sort of biomolecule (DNA, proteins, metabolites, lipids, and carbo-
hydrates) that can be used to discriminate chicken from other species and even variation
among chicken subspecies.

Omics can be predominantly interpreted as a combination of diverse technologies
applied for the qualification or quantification of a distinct molecular level. Unfortunately,
it is impossible to detect a group of compounds by merely using a single approach. Hence,
different omics and technologies should be developed and applied wisely in different
circumstances to overcome each weakness found in a particular approach. Similarly
to other analytical food authentication, chicken authentication based on omics involves
indirect authentication of targeted and non-targeted analytical strategies. Targeted analysis
refers to the detection and precise quantification of a particular set of secondary biological
markers (e.g., DNA, RNA, proteins, glycans, metabolites, and lipids). The non-targeted
analysis involves the simultaneous detection of up to hundreds of unspecified targets
(mainly in metabolites and lipids), yielding a fingerprint reflecting the chicken and breeds
identity. Chicken fingerprinting analysis mostly involves high-end analytical instruments
such as mass spectrometry (MS) and its derivatives. On the other hand, fingerprints could
also comprise data compiled from other analytical approaches or a combination of other
complementary analytical methods [15].

Since chicken authentication covers a large scope of the discipline, this review aims
to provide an overview of recent developments in omics-based analytical technologies to
assess chicken in meat and meat products. This includes a brief discussion of the pros and
cons of each approach, as well as remarkable innovation and application in overcoming
issues faced in different food authentication circumstances.

2. Omics

The continuous development and improvement of novel and existing omics ap-
proaches have enabled the identification and quantification of biomolecules at high reso-
lutions [16]. When these approaches combine together, it brings the origin of the authen-
tication and quality assessment of food to the next level, invigorates food security, and
protects consumer interest. Chicken meats are regarded as a food widely consumed by
human beings as one of the main sources of dietary proteins. Hence, it is relevant to use
the term “foodomics” introduced by Cifuentes [17] to describe the omics-related approach
in chicken authentication. Foodomics can be defined as a scientific discipline combining
food and nutrition studies via the incorporation of omics technologies to ameliorate con-
sumers’ health, well-being, and knowledge [17]. Foodomics combines food and biological
sciences such as genomics, transcriptomics, proteomics, glycomics, metabolomics, and its
subdiscipline (lipidomics). Algorithms such as chemometrics or bioinformatics approaches
were implemented to analyze large amounts of data yielded from omics. With the aid of
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statistical tools, the complex omics data can eventually be transformed into meaningful
information and are able to interpret easily.

2.1. Genomics-Based Approaches

Genomics studies on the chicken are essential for exploring potential discriminative
genetic markers to trace the chicken species and breeds in meat products. Genomics studies
require the aids of bioinformatics tools to handle robust DNA sequence data extracted
from the chicken genome. The emergence of next-generation sequencing (NGS) in this era
facilitated DNA sequencing, replacing the previous gold standard—Sanger sequencing.
Although NGS has significantly reduced the time required for DNA sequencing, NGS is
still relatively costly at this time, and the penetration of this technology into the market
will suppress the cost in its advent [18].

In the search for genetic markers for distinguishing three chicken breeds (White
Leghorn, Korean domestic, and Araucana), Dongyep et al. [19] performed whole-genome
re-sequencing on these domesticated chicken breeds using Illumina HiSeq2000. This study
focuses on single nucleotide polymorphisms (SNPs) related to down/feather colour by
aligning paired-end sequence reads to the chicken (galGal4) reference genomes. Another
work by Bertolini et al. [20] used Ion Torrent NGS technology to identify chicken and
other species in DNA mixture. Sequencing was performed on PCR products obtained
from different couples of universal primers that amplify 12S and 16S rRNA mitochondrial
DNA genes. Three different algorithms were used to assign the species based on sequence
data. However, it was found that several primer pairs experienced limited efficiency
of amplification and sequencing for avian species (chicken, pheasant, duck, goose, and
pigeon) due to PCR competition. Overall, this benchtop technology has potential in species
determination in meat products, producing massive reads in 3 to 4 h.

In addition, Cottenet et al. [21] recently reported the use of NGS on mitochondrial
DNA fragments to identify meat species down to 1% (w/w). The sequences’ data were
uploaded in SGS™ (Geneva, Switzerland). The All-Species ID software was aligned against
a curated built-in database to identify the origin of the meat species. However, this NGS
tool only allowed a rough quantification of the adulteration level. A similar Ion Torrent
NGS was also performed by Ribani et al. [22] on 12S, and 16S mitochondrial rRNA genes
were used to identify chicken and other meat species in highly processed, complex, and
meat derived broths.

When it comes to chicken breed discrimination, different strategies can be applied.
These included random amplified polymorphic DNA-PCR (RAPD-PCR), amplified frag-
ment length polymorphism (AFLP), and PCR-RFLP in combination with bioinformatics
analysis for breed discrimination. In brief, these approaches are associated with genomic
fingerprints, and fingerprint differences between breeds are interpreted as genetic distances.
RAPD is a technique that works by amplifying genomic DNA by using at least one short
oligonucleotide primer in low stringency conditions resulting in multiple amplification
products from loci distributed through the genome [23]. The RAPD method is simple
but subject to low reproducibility. Conversely, microsatellite analysis is more reliable to
this extent. Microsatellites are highly polymorphic and occur in all chromosomal regions,
with up to several dozen alleles at each locus; hence, they can be easily scored using
PCR [24]. The comparative analysis of RAPD and microsatellite polymorphism on chicken
populations genetic diversity performed by Zhang et al. [25] concluded that microsatellite
analysis could generate more accurate population relationship clustering on closely related
populations than compared to RAPD.
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AFLP is another PCR-based DNA fingerprinting method adapted from the RFLP and
RAPD approaches [26]. AFLP offers advantages such as being highly abundant, highly
polymorphic, locus-specific, easy to analyze, and does not require species-specific primers;
therefore, it is suitable for population genetic studies [27]. This technique involves the
ligation of adaptor molecules relative to restriction enzyme fragments, which subsequently
serve as primer binding sites for PCR amplification [28]. Therefore, different sets of restric-
tion enzymes or different primer pair combinations can yield large amounts of different
AFLP fingerprints without prior sequence knowledge. For instance, Yu Shi et al. [29]
and Gao et al. [30] performed a phylogenetic and genetic variation study using AFLP on
12 indigenous Chinese chicken breeds and one foreign breed. This study provides pre-
cious information regarding the genetic diversity, genetic relationships, and identification
of chicken breeds in China. Another study from Fumiere et al. [13] successfully identi-
fied two strains specific markers based on two possible restriction enzyme combinations,
EcoRI/MseI or EcoRI/TaqI, to differentiate slow-growing from fast-growing chicken strains.

DNA-barcoding is another approach for chicken species and breeds identification.
DNA barcoding can be carried out in the form of conventional full-length mitochondrial
cytochrome c subunit I gene (≈650 bp) [31], but it may be challenged in highly processed
food [32]. Instead, mini-barcode (DNA fragments within the full-length COI barcode region
(≥100 bp)) can be alternatively used for species identification of processed food containing
degraded DNA [33]. In this regard, Xing et al. [34] compared the efficiency of full- and
mini-length DNA barcoding in animal-derived food in China. The COI barcodes of the
samples are first amplified using PCR followed by bidirectional DNA sequencing. The
barcode sequences were then compared to the reference libraries for species identification.
The result showed the mini-barcode offered a useful alternative to the full-length barcode
for species identification in terms of DNA degraded meat samples. However, it was found
that detecting mixtures of DNA from multiple animal species is hard to achieve using
this technique. For chicken breed discrimination, Peng et al. [35] had performed DNA
barcoding on chicken mitochondrial COI to assess one new native chicken breed when
identification based on morphological examination was difficult. Another five chicken
breeds were compared to evaluate the efficacy of DNA barcoding. The study revealed that
this approach offers advantages such as convenience, low cost, and rapid and pleasing
accuracy in identifying different chicken breeds.

2.2. Classical DNA-Based Techniques

Genetic traceability describes the use of DNA as a component to authenticate the
species origin of an organism and its products. According to the European Parliament
Resolution of 14 January 2014, DNA testing is suggested as a standard procedure for
animal species determination for the purpose of fraud detection and control [36]. Hence,
DNA-based techniques are placed in a pivotal position in authenticating the genuineness
of animal products. Since DNA is ubiquitous and identically found inside almost every
cell of the organism, DNA extraction can be performed on biological samples such as
muscle, blood, and many other tissues in suspicious meat product specimens, followed by
species identification based on molecular markers such as a nuclear or mitochondrial gene.
DNA also offers higher stability than proteins in terms of heat processing. Although it can
be fragmented by extensive heating, advanced DNA-based approaches still managed to
identify DNA from different species available in a given specimen [37]. In addition to the
genomics approaches, DNA-based techniques offer more directed identification of chicken
meats origin by targeting genetic markers. The overview of the classical DNA-based
techniques in the authentication of chicken species and breeds is summarized in Figure 1.
Moreover, studies and their respective performance are systematically listed in Table 1.



Molecules 2021, 26, 6502 5 of 27
Molecules 2021, 26, x FOR PEER REVIEW 5 of 25 
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Real-time PCR plays the same concept as conventional PCR but incorporating dyes to monitor the PCR product in real-
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primers under isothermal conditions. Droplet Digital PCR allows the detection of a very low number of targets in DNA 
mixture by fractionating samples into 20,000 droplets, followed by target amplification of target in each droplet and de-
tection using a laser. PCR-RFLP amplifies a conserved DNA region followed by digestion of the PCR products using one 
or more restriction endonucleases. Restriction profile can be obtained from the variation in band formation from agarose 
gel electrophoresis. PCR-Random Amplified Polymorphic DNA amplifies random segments of DNA by PCR using a sin-
gle arbitrary primer binds to different loci in different species; variation in band patterns can be used to discriminate 
species. Amplified fragment length polymorphism technique discriminates individual species or breeds based on the se-
lective PCR amplification of restriction fragments caused by single nucleotide polymorphism from a total digest of ge-
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Figure 1. An infographic overview for classical DNA-based molecular techniques in chicken meat adulteration detection,
species, and breeds identification. Conventional PCR can be performed to identify a species at a time (singleplex) or
multiple species simultaneously (multiplex) using species-specific primer targeting either nuclear or mitochondrial DNA.
Real-time PCR plays the same concept as conventional PCR but incorporating dyes to monitor the PCR product in real-time.
Loop-mediated isothermal amplification amplifies the target species using a set of four to six specially designed primers
under isothermal conditions. Droplet Digital PCR allows the detection of a very low number of targets in DNA mixture by
fractionating samples into 20,000 droplets, followed by target amplification of target in each droplet and detection using a
laser. PCR-RFLP amplifies a conserved DNA region followed by digestion of the PCR products using one or more restriction
endonucleases. Restriction profile can be obtained from the variation in band formation from agarose gel electrophoresis.
PCR-Random Amplified Polymorphic DNA amplifies random segments of DNA by PCR using a single arbitrary primer
binds to different loci in different species; variation in band patterns can be used to discriminate species. Amplified fragment
length polymorphism technique discriminates individual species or breeds based on the selective PCR amplification of
restriction fragments caused by single nucleotide polymorphism from a total digest of genomic DNA.
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Table 1. Summary of classical DNA-based techniques in the application of detection and authentication of chicken in meat and meat products. Type of samples and performance (limit of
detection and discriminating accuracy) are included when available.

Species/Breeds Involved Main Technique Main Markers References Detection Performance

Bovine, porcine, and chicken qPCR Species-specific SINEs [38] Limit of detection: 5 pg

Beef, pork, lamb, goat, chicken, turkey, and
duck qPCR Nuclear IL-2 precursor gene [39] Detection level: 0.1%

Bovine, sheep, pig, and chicken PCR Mitochondrial 16S rRNA gene [40] Detection level: 0.1%

Beef, pork, horse, mutton, chicken, and
turkey qPCR Mitochondrial cytb gene [41] Detection level: 0.01%

Chicken, duck, pigeon, and pig PCR Mitochondrial D-loop gene [42] NA

Turkey, chicken, beef, pork, and sheep qPCR Mitochondrial 16S rRNA and cytb genes [43] Detection level: 1%

Turkey, chicken, bovine, ovine, donkey, pork,
and horse qPCR Mitochondrial ND2 gene. [44] Detection level: 0.001%

Chicken, duck, and turkey qPCR Nuclear TF-GB3 gene [45] Limit of detection: 5–50 pg

Pork, beef, chicken, and mutton Multiplex-PCR Mitochondrial COI gene [46] Detection level: 0.001 ng

Duck, partridge, pheasant, quail, chicken,
and turkey PCR Mitochondrial cytb gene [47] Detection level: 0.01% (w/w)

Processed chicken, bovine, and pork meats PCR Mitochondrial cytb gene [48] Limit of detection: 1%

Processed beef meat products PCR Mitochondrial cytb gene [49] Limit of detection: 0.5%

Beef, pork, chicken, rabbit, horse, and mutton qPCR Mitochondrial COI gene [50] Limit of detection: 0.1%

Bovine, porcine, chicken, and turkey ddPCR Mitochondrial cytb gene [51] Limit of detection: 0.01–1.0%
(wt/wt)

Pork, beef, horse, duck, ostrich, and chicken Multiplex-qPCR Mitochondrial cytb, COI, and 16S rRNA
genes [52] Detection level: 0.32 ng

Pork, beef, horse, rabbit, donkey, sheep, goat,
dog, chicken, duck, pigeon, goose, and turkey ddPCR Nuclear RPA1 gene [53] Limit of detection: 0.1% (w/w)

Beef, sheep, pig, horse, rabbit, chicken, turkey,
and quail qPCR, HRM Mitochondrial cytb gene [54] Limit of detection: 0.1 ng
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Table 1. Cont.

Species/Breeds Involved Main Technique Main Markers References Detection Performance

Chicken, pheasant, quail, Silky Fowl, pigs,
cows, sheep, duck, goose, dog, rabbit, yak,

horse, donkey, and fish

qPCR, Southern blot, and digital
PCR Nuclear Actb gene [55] Limit of detection: 10 pg

Processed meat products from 24 species,
including chicken LAMP Mitochondrial 12S rRNA gene [56] Limit of detection: 10 fg

Beef, buffalo, chicken, cat, dog, pork, and fish Heptaplex-PCR Mitochondrial cytb, ND5, and 16s rRNA
genes. [57] Limit of detection: 0.01−0.001 ng

Processed meat products from pork, beef, and
chicken qPCR NA [58] Limit of detection: 0.1% for beef and

pork; 0.2% for chicken

Beef, donkey, chicken, and human PCR Mitochondrial 12S rRNA gene [59] NA

Pork, chicken, and beef Multiplex-qPCR Mitochondrial cytb gene [60] Limit of detection: 0.1 pg

Beef, sheep, pork, goat, horse, chicken, rabbit,
and turkey PCR Beta-tubulin intron III gene [61] Detection level: 0.5% and 1%

Sheep/goat, bovine, chicken, duck, and pig Multiplex-PCR Nuclear DNA [62] Limit of detection: 0.5 ng

Chicken, beef, mutton, pork, duck, goose,
venison, horse meat, donkey meat, fish,

shrimp, and crab
PCR-sensor Mitochondrial cytb gene [63] Detection level: 0.01%

Cattle, buffalo, goat, sheep, pig, and chicken PCR-FINS Mitochondrial cytb gene and the ATP
synthase F0 Subunit 8 genes [64] NA

Duck, chicken, goose, wild goose, quail, goat,
sheep, pork, beef, horse, and donkey Hexaplex-qPCR Mitochondrial ND4, COI, COII, 12S rRNA,

and 16S rRNA genes [65] Limit of detection: 0.01–0.1 ng

Chicken, mutton, beef, and pork Multiplex-qPCR Nuclear TGFB3, PRLR, ND5,
and ACTB genes [66] Detection level: 0.002 ng

PCR, polymerase chain reaction; qPCR, real-time/quantitative polymerase chain reaction; SINEs, short interspersed elements; IL-2, interleukin-2; cytb, cytochrome b; ND2, NADH dehydrogenase subunit 2; COI,
cytochrome c oxidase subunit I; ddPCR, droplet digital polymerase chain reaction; RPA1, replication protein A1; HRM, high resolution melting analysis; LAMP, direct loop-mediated isothermal amplification
assay; ND5, NADH dehydrogenase 5; PCR-FINS, polymerase chain reaction-forensically informative sequencing; TGFB3, transforming growth factor beta-3; PRLR, prolactin receptor; ACTB, beta-actin.
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In most cases, mitochondrial-based DNA analysis is preferred due to the high number
of mitochondria that can be found in a cell, and many mitochondrial DNA copies stay
inside each mitochondrion. Mitochondrial DNA is a potential candidate for species DNA
identification given its maternal inheritance, low recombination probability, and the avail-
ability of conserved sequences. These reasons explain why mitochondrial DNA can serve
as a naturally amplified source of genetic variation. In fact, most poultry DNA identifi-
cation involves avian mitochondrial genes rather than nuclear DNA as a quantification
component [45]. Despite the robustness of mitochondrial DNA in species identification
assay, nuclear loci are more suitable for DNA quantification because of their diploidy,
unlike multiple copy numbers of mitochondrial DNA [67]. Thus, it is relevant for targeting
nuclear DNA for genotyping and quantification of samples that only require small amounts
of template DNA. Moreover, multiplex amplification assays can be established based on
multiple target sites within the nuclear genome for simultaneous species identification [68].
Table 2 summarizes the advantages and disadvantages of nuclear and mitochondrial DNA
in muscle food origin identification.

Table 2. A summary of advantages and disadvantages of nuclear and mitochondrial DNA in muscle food origin identification.

DNA Advantages Disadvantages

Nuclear

Sequence information is conserved and stable [62].

More susceptible to fragmentation in
extensive food processing than

mitochondrial DNA [69].

Diploidy (suitable for genotyping) [68].

Multiplex species identification at multiple target sites [68].

Enable accurate quantification of meat weight based on the
DNA copy number [70].

Contains repetitive sequences (e.g., short interspersed
nuclear elements (SINE) and long interspersed nuclear

elements (LINE)) which can serve as amplification products,
lowering the limit of detection [67].

Mitochondrial

High copy number per cell (≈2500 copies) and varies in
different tissues [71,72]. Subject to mutation at primer

binding region [72].Higher probability of obtaining positive results in
fragmented DNA caused by intense food processing [73].

Relatively higher in mutation rate than nuclear genes
(suitable to discriminating closely related species, e.g.,

chicken vs turkey) [69].
Quantification of meat by transforming
copy numbers to the weight proportion

of meat is challenging [72].More resistant to fragmentation by heat compared to
nuclear DNA [69].

Furthermore, the nucleotide sequence variations in mitochondrial genes such as
12S rRNA, 16S rRNA, cytochrome b, cytochrome c oxidase subunit (CO), D-loop, and
NADH dehydrogenase (ND) (refer Table 2) are among the most prevalent genes used
for discriminating chicken from other species in PCR assays. These molecular markers
have shown good application in food adulteration inspection. PCR assays based on
mitochondrial DNA are challenging for effectively discriminating closely related species
(chicken from turkey) due to the high degree of sequence homology [44]. However, this
challenge was overcome by using suitable markers such as the mitochondrial ND2 gene,
as demonstrated by Kesmen et al. [44]. Moreover, mitochondrial DNA can be subjected
to mutation at the primer binding region, resulting in erroneous detection of individual
target species and different breeds [72]. Conversely, nuclear DNA is more conserved and
stable for overcoming the issues mentioned earlier in species discrimination [62].

In DNA-based approaches for meat species identification, conventional PCR is a
common technique used to amplify a small amount of contaminant DNA presence in
meat samples but lacks quantitative capabilities, sensitivity, and is time-consuming, while
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many derivatives of it such as real time-PCR, multiplex-PCR, PCR-restriction fragment
length polymorphism, and digital droplet-PCR offer much more advantages compared
to conventional PCR. Notwithstanding, species identification by PCR in meat samples
is challenged by the presence of inhibitory substances in meat sample matrices, and the
risk of amplification inhibition is higher when more than 50 ng DNA is assayed [74].
Real-time PCR enables quantifying the amount of studied species DNA in a matrix by
monitoring the increase in fluorescence signal [75]. This technique also offers advantages
such as high sensitivity and specificity, wide detection range, and lower risk in carry-
over contamination [76]. The high specificity of this assay is the result of the ability
for intercalating fluorescent dyes such as SYBR Green to bind to all double-stranded
DNA present, including any non-specific PCR products and the primer-dimer complex.
Hence, it does not require additional electrophoresis steps such as conventional PCR in
order to visualize the assay result. In addition, high resolution melting analysis (HRM)
can be performed in real-time PCR to monitor the differences in melting temperature
for differently originated species DNA. HRM can be applied in many analyses such as
genotyping, mutation analysis, and methylation analysis but require the use of saturated
dyes, HRM-capable real-time PCR device, and specialized bioinformatics software [77].

Additionally, PCR can be performed in a multiplex format using species-specific
primers to detect different species simultaneously in one reaction, which saves cost and
time. On the other hand, PCR-RFLP only offers species DNA fingerprinting based on band-
ing patterns yielded from restriction endonuclease digestion of PCR amplicons, which is
qualitative but not quantitative. Since the accurate quantification of a minute amount of tar-
get DNA in a matrix of non-interested DNA is highly challenged, a recently developed PCR
technology known as digital droplet PCR (ddPCR) is able to encounter this difficulty [78].
ddPCR works by partitioning the PCR reaction mixture into tens of thousands of droplets,
with each droplet harbouring an independent PCR reaction. In this sense, the target DNA
copy number is determined based on the number of droplets positive for amplification
of the target DNA. Hence, this approach allows absolute DNA quantification, does not
involve standard curves as in real-time PCR, and enables high accuracy quantification of
low concentration target DNA in a high background of non-interested DNA [79]. Further-
more, PCR-FINS is another DNA amplification method involving nucleotide sequencing
and analysis using the NCBI basic local Alignment search tool (BLAST). This approach
depends on the accurate selection of DNA regions and reference species [80].

Interestingly, nucleic acid sensor assay can also design based on PCR amplification
to rapidly detect chicken adulteration. Xiao et al. [63] developed a chicken-specific PCR
combined with a nucleic acid sensor test (Chicken-PCR-Sensor). This assay priorly am-
plifies the DNA extracted from meat specimen using chicken-specific primer, followed
by visual detection of the amplicons using lateral flow antibody sensor assay. This novel
approach shows a remarkable outcome with the ability to detect 0.01% adulterated chicken
in the meat mixture within 2 to 3 min. Besides PCR-based DNA analysis, loop-mediated
isothermal amplification (LAMP) is another alternative capable of amplifying target DNA
at a constant temperature [81]. Unlike PCR, LAMP employs a different DNA polymerase
and four to six different primers (two for PCR) to recognize six to eight distinct target gene
sequences with high specificity and sensitivity [82]. Sul et al. [83] successfully developed a
direct LAMP assay targeting the mitochondrial 16S rRNA gene in order to detect chicken
in processed meat products, with a very low detection limit (10 fg). An on-site inspection
was possible by using a LAMP assay with direct amplification and a portable fluorescence
device.

2.3. Transcriptomics-Based Approaches

In addition to substituting chicken into more valuable minced meat, the incidence of
adulterating relatively cheaper chicken offal/internal organs into skeletal muscle meat is
defined as another form of food fraud [84]. To protect consumer interest, the European
legislation had established the Quantitative Ingredient Declaration (QUID), which removes
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offal (liver, heart, and kidney) from the meat category and emphasizes that the label must
declare the constituent of non-muscle tissue in meat products [85].

Therefore, transcriptomics is suitable for identifying the presence of offal in minced
meat by targeting the product of transcription. Micro RNAs (miRNAs) are a class of
endogenous non-coding RNAs comprising about 21 nucleotides long. This biomolecule is
abundant in number, small in size (stable), and tissue-specific [86]. Owing to the attributes
of specific expression of miRNAs in a specific tissue [87], miRNAs, therefore, are chosen as
a potential biomarker to differentiate chicken organs from each other.

In the recent past, Vishnuraj et al. [88] developed an innovative miRNA-based ap-
proach to detect the presence of liver, heart, and gizzard in chicken skeletal meat. This study
performed deep sequencing on miRNAs obtained from the different chicken body parts.
Screening is performed on the differently expressed miRNAs in each tissue studied to select
potential markers specific to each tissue. Three miRNAs were selected as tissue-specific
markers for the gizzard and two for the heart and liver.

The selected markers are further applied on field samples by qRT-PCR assay to validate
feasibility. Fortunately, the result is satisfying, with high sensitivity of detection (limit of
detection = 0.01 ng/µL). The study also proved that the stability of miRNAs was enough to
withstand heat treatment and could be used as markers in heat-treated products as well. To
summarise, the application of transcriptomics in identifying the adulteration of non-muscle
tissue shows a promising end. This approach only involves the same equipment used in
DNA techniques and offers highly reproducible and direct results without incorporating
complicated statistical analysis. Further studies on the stability of the miRNAs are needed
to reassure that this technique is still relevant for harsh processed chicken meat products.

2.4. Proteomics-Based Approaches

When it comes to proteins, it serves as the necessary nutrients for the human diet and
explains why humans consume chicken. Incorporating proteomics in chicken authentica-
tion makes it possible to confront the drawbacks of the DNA-based approach, wherein
extreme food processing conditions such as heat and chemical treatment can potentially
result in DNA degradation yielding non-specific DNA fragments [89]. Chicken authen-
tication involves two main areas of proteomics, which include protein identification and
characterization and differential proteomics. Protein identification and characterization are
often practised in the discovery phase to search for suitable markers for species or breed
discrimination. This can be performed by selecting a class of protein present commonly in
different species (e.g., Troponin I, Myosin light chain, myofibrillar, and sarcoplasmic pro-
teins). On the other hand, differential proteomics is applied after separating target protein
from other junk and differentiating the species based on the quantitative information of
specific proteins (variation in the relative abundance of marker protein among species).

The discovery of versatile species-specific markers for species identification is the
benchmark for food authentication. Proteomics analysis typically involves a series of
separation steps followed by identifying the proteins through mass spectrometry. Prelim-
inary separation of proteins based on their isoelectric point (pI) and molecular weight
(Mw) can be conducted using techniques such as two-dimensional electrophoresis and
OFFGEL fractionation, wherein a more detailed separation of peptides and amino acids
based on mass-to-charge (m/z) ratio requires mass spectrometry instruments. In most cases,
a bottom-up or peptide-based approach is applied for potential marker screening, where a
class of proteins from different species is digested using a proteolytic enzyme known as
trypsin. The enzymatic digestion reaction will yield a number of peptide fragments. The
peptides will further be subjected to mass spectrometry analysis for protein identification
purposes. The protein can be eventually identified by comparing the MS experimental data
to the calculated mass values from the peptide sequence database such as MASCOT.

On the contrary, top-down approaches did not involve the enzymatic digestion of
protein. Still, the protein is fragmented directly into peptides inside a mass spectrometer,
and this approach is not commonly observed in food authentication due to the limitations
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in instrumentation advances [90]. Figure 2 presents the workflow of discovery of potential
proteome markers for chicken authentication.

To confront the chicken meat substitution issue, Sentandreau et al. [91] developed a
proteomics-based method by targeting a myofibrillar protein, myosin light chain 3. This
method complies with the bottom-up approach but simultaneously consolidates the use
of stable isotope-labelled peptides for quantification purposes. The sample peptides can
be calculated by comparing the LC-ESI-MS/MS peak area values of the known initial
amount of heavy peptide to the native peptide. This study also simplified the protein
extraction/enrichment procedure by replacing the SDS-PAGE using OFFGEL fraction-
ation followed by in-solution trypsin digestion. Another study from Montowska and
Pospiech [92] also used electrophoretic mobility of myosin light chain isoform to differenti-
ate among six species in minced meat products. This method is only applicable for mild
processed meat and is not suitable for high salt content meat and meat heated over 100 ◦C.
Furthermore, we need to note that the fermentation of raw meat such as salami sausages
will result in the degradation of proteins by microbiological activities, thus increasing the
challenges in species authentication on a protein basis. Most importantly, the informa-
tion obtained from electrophoresis is only semi-quantitative. Therefore, not suitable for
quantifying the level of adulteration.

In addition to electrophoretic techniques, ambient mass spectrometry is another
method of choice for meat species authentication study due to detecting compounds di-
rectly from a biological surface at atmospheric pressure. Liquid extraction surface analysis
mass spectrometry (LESA-MS) is an example of ambient MS, and the application of this
instrument in the discovery of stable peptides for species authentication is demonstrated
by Montowska et al. [93,94]. This technique works by dispensing an extraction solution on
the sample’s surface to form a liquid/surface microjunction [95]. This approach exhibits
high specificity in meat peptidomics studies and effectively analyzes digested or processed
meat products.

Chou et al. [96] and Ramin Jorfi [97] had demonstrated the use of HPLC for species
identification. These studies did not look up a specific proteome marker representing each
species. Still, they used the proteome profile such as amino acid composition and chro-
matographic profile of electroactive peptides and amino acids. The Ramin Jorfi [97] study
found that, with the aid of principal component analysis, amino acids profile generated
using reversed-phase HPLC with pre-column derivatization can effectively differentiate
chicken from other meats studied. Contrarily, although the chemical nature of major
chromatographic peaks was not identified in Chou et al. [96] study, the developed HPLC
with electrochemical detection method manages to detect meat adulteration as well as
degradative changes in meat proteins.

Apart from advanced instrumentation, the immunological approach is also an alterna-
tive to meat speciation. Developing a biorecognition element detecting the species-specific
meat antigen is crucial in this sense. For this purpose, Chen et al. [98] developed IgG
class monoclonal antibodies to target a thermostable protein marker, troponin I. The devel-
oped antibody is then evaluated and implemented in an indirect ELISA. The developed
immunoassay using the selected antibody shows good detectability down to 1% for all
samples analyzed. Nevertheless, this assay was designed to detect animal origin in feed-
stuffs and, hence, not practically applicable to highly processed meat products due to the
lack of data on the antigen thermostability.

Interestingly, it is possible to differentiate chicken breeds using the proteomics ap-
proach. The need to characterize the chicken breeds is demanded in food authentication
and is also helpful for establishing a strategy for chicken population conservation. Zanetti
et al. [99] had performed a proteomics study to characterize chicken breeds based on the
differential expression of sarcoplasmic proteins. Similarly, De Liu et al. [100] also conducted
a proteomic study on Korean native chicken and commercial broiler to understand the
breed-specific differences in meat flavour on a molecular basis. These studies employ two-
dimensional electrophoresis to separate the chicken skeletal muscle proteins and identify
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interested proteins spot using MALDI-TOF-MS. Subsequently, Likittrakulwong et al. [101]
performed proteomic analysis on three chicken breeds for characterization purposes. This
study analyzed chicken serum, which is odd compared to other studies that commonly use
sarcoplasmic proteins. Therefore, the breed-specific markers identified in this study can be
used for breeds conservation purposes but are not applicable in food forensics. To summa-
rize, the application of proteomics approaches in chicken authentication is presented in
Table 3.
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2.5. Metabolomics-Based Approaches

Unlike other omics disciplines, metabolomics is a wide field comprising the identifica-
tion and quantification of multiple metabolites produced from a biological system [107].
Metabolomics can be divided into two categories that include targeted and untargeted
metabolomics [108]. Targeted metabolomics analysis works by extracting a chosen target
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molecule from a mixture of metabolites for identification and quantification purposes.
This method is more relevant for species authentication and subsequently gives rise to a
subdiscipline of metabolomics known as lipidomics. Untargeted metabolomics analyzes
multiple metabolites with the aid of multivariate statistical analysis to reflect the changes in
the metabolism status of a subject. Attributes of the types of metabolites in each organism
are generally similar; thus, authenticating meat species based on untargeted metabolomics
is rather challenging.

A novel metabolomics approach for meat species identification is reported by
Zhou et al. [109]. This approach utilizes laser-ablation electrospray mass spectrometry
(LAESI-MS) to directly analyze the biochemical information of meat samples without
requiring any chemical pretreatment. A laser priorly ablates the meat specimen to generate
particulates, followed by ionization by electrospray ionization and mass spectrometer iden-
tification to characterize the metabolites present in each meat species. When in use with the
established PCA and PLS-DA model, the prediction accuracy of 100% for each meat species
was achieved. Further variable importance in the projection values (VIP values) analysis,
18 markers for chicken meat identification, and 19, 18, 17, and 15 markers for duck, pork,
beef, and mutton, respectively, have been successfully selected for meat authentication.
This study demonstrated the potentiality of LAESI-MS, which takes only 30 s to generate
mass data, and meat speciation can be readily performed using the established PCA and
PLS-DA models. Future studies on meat mixture from different species using this approach
are anticipated and expected to be promising.

On the other hand, the emergence of nuclear magnetic resonance (NMR) spectroscopy
as a pivotal instrument in metabolomics study is also a method of choice in addition to
mass spectrometry [110]. Recently, Kim et al. [111] employed two-dimensional quantitative
NMR (2D qNMR) spectroscopy to discriminate chicken breeds based on the metabolic
variation. By complementing 1D 1H NMR to 2D qNMR, previous issues encountered in 1D
1H NMR, such as the lack of quantification ability and overlapping issues, can be addressed.
Principal component analysis (PCA) and orthogonal partial least squares-discriminant
analysis (OPLS-DA) are employed to study the metabolites’ differences. The study found
that Korean native chicken strains contain higher amounts of flavour enhancing metabolites
and lower amounts of free amino acids than the broiler. This study proves the potential of
1D 1H NMR complement with 2D qNMR in acquiring interactive and accurate information
on chicken breeds metabolite differences, which outperformed traditional chromatographic
analysis.

2.6. Lipidomics-Based Approaches

In the past 20 years, lipidomics emerged as a subdiscipline of metabolomics together
with the enhancement in analytical instruments and chemometrics [112]. Data generated
from lipidomics analysis are often multivariate. Hence, principal component analysis
(PCA) minimizes the data dimension by drawing out redundant information in all samples.
The remaining data known as principal components can provide information about the
maximum variation among different classes. On the other hand, partial least squares (PLS),
partial least squares discriminant analysis (PLS-DA), and orthogonal partial least square
discriminant analysis (OPLS-DA) are suitable for classifying or discriminating different
groups of lipidomic data [113]. The general workflow of lipidomics in combination with
chemometrics is illustrated in Figure 3, while Table 4 summarizes the studies of chicken
authentication based on lipidomic approaches.
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Table 3. Summary of proteomics application in chicken authentication. Type of samples and performance (limit of detection and discriminating accuracy) are included where available.

Purpose of Analysis Main Technique Statistical Analysis Main Markers References Highlight

Detection of porcine, bovine, ovine,
equine, deer, chicken, and turkey

based on immunological approach.
ELISA - Troponin I (TnI) [98]

A class of monoclonal antibodies
against the thermostable troponin I

marker was found to be able to
recognize all of the meats. The

detectability of the assay was less
than 1% for all the species analyzed.

Differentiation of meat products
from chicken and other 14 species
based on electrochemical profiles.

HPLC-EC -
Chromatogram peaks of

electroactive peptides and
amino acids.

[96]

The method involves simple
extraction steps and may be

applicable to fresh or cooked meats.
Treatment of the meats at different

harsh temperatures changed the
intensity but not the pattern of

species-specific peaks.

Preliminary proteomic study in
3 chicken breeds. 2D-GE, MALDI-TOF-MS SAM Breed-specific sarcoplasmic

proteins. [99]

Two categories of breeds-specific
proteins were

identified—breed-specific proteins
and up or down expressed proteins

in specific breeds.

Detection of chicken meat within
mixed meat preparations.

OFFGEL-IEF,
MALDI-TOF-MS,

LC-MS/MS
-

Peptides from trypsin
digestion of myosin light

chain 3.
[91]

Two peptides were selected as
chicken specific biomarkers;
LC-ESI-MS/MS allows high

sensitivity detection up to 0.5% w/v
chicken meat presented in pork meat.

Differentiation of cattle, pig, chicken,
turkey, duck, and goose based on
differential expression of myosin

light chain (MLC) isoforms.

2D-GE, MALDI-TOF-MS Myosin light chain (MLC)
isoforms. [92]

MLC3f was selected as the most
versatile marker possible to

differentiate between the
given five species.

Differentiation of pork from beef,
mutton, chevon, and chicken based

on their primary amino acid
contents.

HPLC PCA Amino acids content. [97]

Serine and histidine were identified
as the main amino acids for

differentiating chicken from the
other meats studied, while serine,

alanine, and valine could
differentiate pork and chicken.
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Table 3. Cont.

Purpose of Analysis Main Technique Statistical Analysis Main Markers References Highlight

Identification of chicken
breed-specific differences in terms of
meat flavour between Korean native

chickens and commercial broilers.

2D-GE, MALDI-TOF-MS - Skeletal muscle proteins. [100]

Three proteins spots were found to
increase in expression in Korean

native chickens, while four proteins
showed an increase in commercial

broilers.

Searching of stable proteins
differentiating cattle, pig, chicken,

turkey, duck, and goose.
2D-GE, MALDI-TOF - Skeletal muscle proteins. [102]

Significant differences in serum
albumin, apolipoprotein B, HSP27,

H-FABP, ATP synthase, cytochrome
bc-1 subunit 1, and alpha-ETF can be
considered to be used as markers in
the authentication of meat products.

Selection and identification of
heat-stable and species-specific

peptide markers from beef, pork,
horse, chicken, and turkey.

LESA-MS PCA-X, OPLS-DA Peptides from skeletal muscle
proteins. [94]

Nine chicken-specific peptides were
identified. The limit of detection for
chicken was 5% (w/w), and another

two chicken peptides (not
species-specific) were determined at

1% (w/w).

Authentication of processed beef,
pork, horse, chicken, and turkey

meat based on heat-stable peptide
markers.

LESA-MS - Peptides from myofibrillar
and sarcoplasmic proteins. [93]

This study had identified six
heat-stable chicken-specific peptide
markers derived from myofibrillar

and sarcoplasmic proteins.

Searching of protein markers for
discrimination of beef, pork, chicken,

and duck.
1D-GE, LC-MS/MS - Sarcoplasmic and

myofibrillar proteins. [103]

Four proteins were identified and
able to discriminate mammals from

poultry by differences in
electrophoretic mobility; each species

can be further identified through
LC-MS/MS analysis.

To search for heat-stable peptide
biomarkers in cooked meats of pork,

chicken, duck, beef, and sheep.
UPLC-MS, MRM - Peptides from myofibrillar

and sarcoplasmic proteins [104]

After confirmation by the MRM
method, six heat-stable

chicken-specific peptides were found;
three from six were novel.
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Table 3. Cont.

Purpose of Analysis Main Technique Statistical Analysis Main Markers References Highlight

Proteomic determination of three
breeds of chickens. LC-MS/MS - Peptides from serum

proteins. [101]

Two peptides were specific to
Kai-Tor; one for commercial layer
hen and one for white tail yellow
chicken. A total of 12 proteins are
found expressed differently in the

three breeds.

Differentiation of duck, goose, and
chicken inprocessed meat products

based on the species-specific peptide.
LC-MS/MS - Peptides from skeletal

muscle. [105]

Ten chicken-specific peptides were
monitored with high confidence
using the qualitative LC-QQQ

multiple reaction monitoring (MRM)
method.

Authentication of chicken, duck,
goose, guinea fowl, ostrich, pheasant,
pigeon, quail, and turkey in raw and

heated meat based on
peptides marker.

HPLC-QTOF-MS/MS,
LC-HRMS - Peptides from

skeletal muscle. [106]
Three chicken-specific peptides and
one common turkey/chicken peptide

were identified.

ELISA, enzyme-linked immunosorbent assay; HPLC-EC, high-performance liquid chromatography with electrochemical detection; SAM, significance analysis of microarrays, MALDI-TOF MS, matrix-assisted
laser desorption ionization-time of flight mass spectrometry; PCA, principal component analysis; 2D-GE, two dimensional gel electrophoresis; IEF, isoelectric focusing; LESA-MS, liquid extraction surface
analysis mass spectrometry; PCA-X, unsupervised principal component analysis; OPLS-DA, orthogonal partial least-squares discriminant analysis; PCA, principal component analysis; 1D-GE, one-dimensional
gel electrophoresis; HPLC-MS/MS, high performance liquid chromatography-tandem mass spectrometry; MRM–MS, multiple reaction monitoring mass spectrometry; UPLC-MS, ultra-performance liquid
chromatography-mass spectrometry; MRM, multiple reaction monitoring; HPLC-QTOF-MS/MS, high performance liquid chromatography-quadrupole-time of flight-tandem mass spectrometry; LC-HRMS,
liquid chromatography–high-resolution mass spectrometry.
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Table 4. Summary of lipidomic application in chicken authentication. Type of samples and performance (limit of detection and discriminating accuracy) are included when available.

Purpose of Analysis Main Instrument Statistical Analysis Markers/Differentiation
Features References Highlight

Analysis of tallow, lard, and
chicken fat adulterations in

canola oil.
DSC, HPLC, GC-FID SMLR Thermogram profile. [114]

Chicken fat adulteration is impossible to
be determined under DSC

thermoprofiling.

Analysis of lard, body fats of
lamb, cow, and chicken. FTIR PLS-DA

FTIR spectrum at fingerprint
region (1500–900 cm−1) of lipid

components.
[115]

The equation obtained from the
calibration model can predict lard mixed
with cow and chicken fat percentage at

1500–900 cm−1.

Analysis of cod liver oil,
mutton fat, chicken fat, and

beef fat.
FTIR PLS-DA FTIR mid-region

(4000–650 cm−1). [116]
PLS model can be used for the

quantification of chickenfat in CLO with
100% accuracy.

Analysis of lard, chicken fat,
beef fat, and mutton fat. GC-MS, EA-IRMS PCA Stearic, oleic, and linoleic acids;

carbon isotope ratios (δ 13C). [117]

PCA of stearic, oleic, and linoleic acids
data and significant differences in the

values of carbon isotope ratios (δ 13C) of
all animal fats can potentially

discriminate meat species.

Analysis of chicken fat
adulteration in butter FTIR, GC-FID PLS FTIR spectrum at fingerprint

region of (1200–1000 cm−1). [118]

PLS can be successfully used to quantify
the level of chicken fat adulterant with
R2 of 0.981 at the selected fingerprint

region of 1200–1000 cm−1.

Acylglycerols analysis of lard,
chicken fat, beef fat, and

mutton fat.
GC-MS, EA-IRMS PCA MAG and DAG profiles; carbon

isotope ratios (δ 13C). [119]

The presence of small amounts of
arachidic acid and differences in the

proportions of several fatty acids in the
chicken diacylglycerols can differentiate

chicken from lard. Variation in δ 13C
values can also discriminate MAG and

DAG in different species.

To authenticate fats
originated from beef, chicken,

and lard.
NIR SVM Wavelength region from 1300 to

2200 nm. [120]

Using the developed SVM model, lard
can be classified 100% correctly from
chicken and beef fat, but only 86.67%

accuracy was obtained when the three
fats were classified together.



Molecules 2021, 26, 6502 18 of 27

Table 4. Cont.

Purpose of Analysis Main Instrument Statistical Analysis Markers/Differentiation
Features References Highlight

Lipid composition
characterization of Taihe

black-boned silky fowls and
comparison to crossbred
black-boned silky fowls.

UPLC/MS/MS,
Q-TOF/MS OPLS-DA

47 lipid molecules as markers to
distinguish Taihe and crossbred

black-boned silky fowls.
[121]

OPLS-DA analysis reveals 47 lipid
compounds were statistically significant
and can be used as potentialmarkers for
the authentication of Taihe black-boned

silky fowl.

Post-heat treated lard
differentiation from chicken

fats, mutton, tallow, and
palm-based shortening.

FTIR PCA, k-mean CA, LDA
Wavenumbers at region

3488–3980, 2160–2300, and
1200–1900 cm−1.

[122]

The combination of PCA with k-mean
CA was able to differentiate heated fats

according to their origin. LDA only
possesses 80.5% classification accuracy

where mutton and tallow cannot be
classified correctly.

Wavelength profiling in a
different mixture of fat

samples containing chicken,
lamb, beef, and palm oil.

FTIR PCA Wavelength at 1236 and
3007 cm−1. [123]

The biomarker wavelengths identified
from the spectra of the studied samples

at positions 1236 and 3007 cm−1

separated at notable distances can be
used to discriminate the fat from

different species.

Triacylglycerols (TAGs)
fingerprinting on beef, pork,

chicken in meat products
DART–HRMS PCA, PLS-DA 3 TAGs ion m/z. [124]

DART–HRMS could be used primarily
as a screening method, and suspected

samples are required to be
confirmed by PCR.

Profiling of lard with beef
tallow, mutton tallow, and

chicken fat.
GC-FID, HPLC, DSC ANOVA, PCA

Score plot of 7 fatty acid
composition, OOL/SPO ratio,

and thermogram profile.
[125]

Score plot of PCA model, a significant
difference in OOL/SPO ratio and

thermal profile can provide a basis for
differentiating chicken fat from lard.

SMLR, stepwise multiple linear regression analysis; DSC, differential scanning calorimetry; GC-FID, gas chromatography with flame ionization detector; FTIR, Fourier transform infrared spectroscopy; EA-IRMS,
elemental analyzer–isotope ratio mass spectrometry; NIR, near-infrared spectroscopy; SVM, support vector machine; MAG, Monoacylglycerols; DAG, diacylglycerols; PLSR, partial least square regression;
OPLS-DA, orthogonal partial least squares-discriminant analysis; UPLC/MS/MS, ultra-performance liquid chromatography-tandem mass spectrometry; k-mean CA, k-mean cluster analysis; LDA, linear
discriminant analysis; DART–HRMS, direct analysis in real-time coupled with high-resolution mass spectrometry; PLS-DA, partial least squares discriminant analysis; OOL/SPO, oleic oleic linoleic/stearic
palmitic oleic.
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Chicken fat may serve as a potential adulterant in canola oil [114], butter [118], and
also cod liver oil [116], owing to its highly identical fatty acid profiles and low cost. The
presence of chicken fat in vegetable oil (canola oil) will infringe the interests of vegetari-
anism practitioners, whereas the mixing in other animal oil is known to be food fraud to
consumers. Most of the food lipidomics studies aim to detect lard adulteration to defend
the religious faiths of Islam, Judaism, and Hinduism followers [126].

Regarding the instrumentation in studying chicken lipidomes, FTIR is the most pop-
ular instrument due to its ability as a fingerprint analytical technique. FTIR offers an
advantage in detecting closely similar fatty acids profiles from two different species that
surpass the GC [116]. Generally, most studies encountered a common issue in discrim-
inating fatty acid and triacylglyceride profiles of chicken fat from lard. This is mainly
due to both mentioned species sharing a highly identical lipid profile. For instance, the
use of cooling and heating thermograms from differential scanning calorimetry (DSC)
by Marikkar [114] had failed to overcome this issue. Another study by Nizar et al. [117]
tried coping with this issue by subjecting fatty acid distributional data obtained from
GC-MS to PCA and successfully obtained stearic, oleic, and linoleic acids as parameters in
differentiating chicken fats from lard. Accordingly, Saputra et al. [123] demonstrated the
importance of applying a scatterplot screener program to process the undistinguishable pig
and chicken fat spectrum wavelengths to select an appropriate fingerprinting wavelength
region from FTIR spectra to classify all the fats precisely into corresponded species sources.

Other than FTIR-based approaches, the application of elemental analyzer-isotope ratio
mass spectrometry (EA-IRMS) in the study of fatty acids, monoacylglycerol, and diacyl-
glycerol (MAG and DAG) also shows remarkable performance in food authentication. The
significant differences in carbon isotope ratio (δ 13C) values of fatty acids [117] and MAG
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and DAG [119] in animal fats show promising potential to be used for the discrimination
of animal fats from different species. Likewise, incorporation of PCA is needed to classify
the subject into the respective source of origin accurately.

Furthermore, near-infrared (NIR) spectroscopy is also demonstrated by Alfar et al. [120]
to authenticate fats originating from beef, chicken, and lard. The NIR works by exciting
a single covalent molecular bond at a 700–2500 nm region, as the molecular bonds are
distinctive for different substances. The intensity and peak location of the NIR spectrum
can provide information about the analyte’s chemical structure but does not reveal the
concentration of each compound present in the analyte. Since NIR cannot profile the
animal fats according to fatty acids composition, it detects the functional groups of these
compounds. Due to this reason, this method requires extra care in handling the samples at
a constant temperature, wherein the change in extraction temperature will result in changes
in levels of spectrum absorbance or intensity. Unfortunately, although NIR is used with a
support vector machine (SVM), the results indicate that this method can only classify lard
from chicken and beef fat with 100% accuracy but failed to classify beef and chicken fats
samples.

Mi et al. [121] reported comprehensive lipidomics studies on Taihe black-boned silky
fowl (Gallus gallus domesticus Brisson) by profiling the lipid composition of this chicken from
different ages, genders, and different body parts. Furthermore, a lipidomics comparison
was made on the Taihe black-boned silky fowl with crossbred black-boned silky fowl. The
result indicates that it is feasible to distinguish Taihe from crossbred black-boned silky
fowls based on 47 statistically significant lipid molecules using OPLS-DA and ANOVA
analysis. This finding provides insight into the possibility of chicken breeds authentication
based on the lipidomics approach.

Recently, Hrbek et al. [124] developed a rapid screening method of meat TAGs pro-
file using direct analysis in real-time coupled with high-resolution mass spectrometry
(DART–HRMS). This method offers high-throughput, quick, and straightforward sample
preparation and short scanning time compared to conventional PCR analysis. Conversely,
DART–HRMS instrumentation is costly and only suitable for mass sample screening to
select suspicious specimens even when chemometrics is applied for data classification. The
author has yet to declare the necessity of DNA analysis for validating the adulteration
event with respect to further suspicion.

2.7. Glycomics-Based Approaches

The application of glycomics in meat authentication has just emerged during these five
years [127]. Shi et al. [128] first reported the use of protein glycosylation to qualitatively
and quantitatively analyze five meat species, including chicken. This study involves
the enzymatic pretreatment of a meat sample using the PNGase F enzyme to yield N-
glycans. Hydrophilic interaction ultra-performance liquid chromatography (HILIC-UPLC)
is preferred as the separation technique for N-Glycan labelling and analysis to overcome
no retention on the typical reverse phase as glycans are highly polar molecules. Targeted
sample peaks are then analyzed using matrix-assisted laser desorption/ionization time-
of-flight mass spectrometry (MALDI-TOF MS), separating the glycans according to the
molecular masses. A tandem mass spectrometry MS/MS is further carried out to enable the
identification of N-glycans structure. In this case, principal component analysis (PCA) was
employed to discriminate samples, whereas partial least squares (PLS) regression analysis
was used to evaluate the adulteration ratio. Among the meat samples, the N-glycans profile
exhibits the most significant number of peaks. What is noteworthy is that the poultry meat
sample (chicken and duck) contains relatively more minor N-glycans structures than other
mammal species. This study also successfully discriminated against mixed binary and
ternary species samples quantitatively.

The study above described the significant compositional variation in N-glycans be-
tween different species as a profile to authenticate chicken or other species. The genes
encoding the glycoenzymes participating in the synthesis of N-glycans are responsible for
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this structural specificity. Several advantages can be concluded from the use of the gly-
comics approach in chicken or species authentication. The use of N-glycan profiles of meats
can overcome the drawbacks of the genomics approach in which the harsh processing of
meat (e.g., roasting, frying, microwaving, boiling, and steaming) may potentially degrade
DNA. Data processing in the glycomics approach is also much more straightforward than
the spectroscopic approach, which is rapid and requires minimal sample preparation. The
author also claimed that the proposed approach could be accomplished within four hours,
which is generally considered prompt.

Regarding the downside of the Shi et al. [128] approach, the limit-of-detection (LOD)
level for the studied samples showed only 2.2%. Thus, although the value is low enough to
disclose adulteration, a lower value is preferred for detecting meat contamination. What
needs reminding is that glycosylation is also related to an individuals’ health status and
disease progression [129]. Hence, future studies must also verify whether the N-glycan
profile differs significantly among chickens with different ages, health status, and chicken
breeds.

3. Conclusions and Future Perspective

Chicken and its breed authentication are becoming more critical as the global consumer
demand for chicken and its related meat products keeps increasing. Moreover, the growth
in consumer awareness towards the meat product packaging information genuineness
also invokes muscle food traceability and security. The detection of chicken adulteration
based on molecular approaches is highly credentialed, but it requires complicated sample
extraction and pretreatment methods. The genomics-based approach has emerged together
with Next-Generation Sequencing technologies in species origin identification for meat
products. Although NGS is fast and becoming less costly in meat species authentication,
these tools are only useful in identifying hypothesis-free species in a given sample. In terms
of DNA-based approaches, since many potential genetic markers have been identified
in previous research, future works can focus on incorporating DNA markers into the
development of DNA hybridization type biosensor as performed by Skouridou et al. [130].
Furthermore, developing a rapid on-site detection kit based on direct LAMP is also feasible
owing to the feature that the assay can be performed at a constant temperature. However,
the direct LAMP approach requires extra effort in primer design and a lack of multiplex
capability as in PCR.

With the emergence in the transcriptomics discipline, the detection of chicken offal
adulteration based on miRNA also precedes the genomics approach, which cannot achieve
the same results. In proteomics, the advancement in mass spectrometry technologies has
brought convenience to high-resolution peptide marker discovery. Moreover, the selected
peptide markers correspond to the species that can be used in adulterant detection. Still,
enzymatic pre-digestion of the meat protein using trypsin is inevitable for bottom-up
proteomics, while only a more advanced mass spectrometer can bypass this step. From the
author’s point of view, the discovered potential peptide marker can serve as a novel devel-
oped assay target in which biosensors can be designed according to the peptide marker
wherein the protein matrix should be digested by the enzyme first. The discrimination
of chicken breeds based on metabolomics can be achieved well using chromatographic-
mass spectrometry and NMR spectroscopy. Future applications of these approaches in
differentiating chicken from other species are anticipated. The non-targeted lipidomics
studies use spectroscopic instruments, especially FTIR, which discriminate species based
on functional group profiles. Recent attempts on chicken lipidomics study using LC-MS
enable the discrimination of chicken breeds based on identifying lipid molecules profiles
in detail and are potentially preferred as an approach for high-resolution lipidomics study.

Regarding glycomics, more effort should be placed on validating species-specific
glycans by involving a higher number of samples and different health statuses and ages
of given species. Since we are at the edge of Industrial Revolution 4.0, the application
of big data tools for data mining and interpretation will be more easily accessible, thus,
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aiding the leap in chicken authentication. Using the robust data obtained from the previ-
ous experiments, linking the knowledge from different omics approaches is essential for
inventing the novel, portable, miniaturized, and automated sensing technologies. Rapid
and convenient muscle food assessment that simultaneously enhance the accuracy and
resolution of currently available technologies will be the future trends in this research area.

Author Contributions: All authors are involved in conceptualization, resources, original draft
preparation, review, and editing of the manuscript. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was supported by the Ministry of Higher Education of Malaysia (MOHE)
under Malaysia Research University Network (MRUN) (UPM/800-4/11/MRUN/2019/5539130);
Putra Grant-IPS of Universiti Putra Malaysia (GP-IPS/2020/9683500); and Southeast Asian Regional
Center for Graduate Study and Research in Agriculture (SEARCA) (Ref. No. GBG19-3260).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors also would like to thank the Ministry of Higher Education for the
HICoE rendered to the Institute of Tropical Agriculture and Food Security (ITAFoS), Universiti Putra
Malaysia (UPM); Institute of Bioscience, UPM; and the Faculty of Food Science and Technology, UPM,
for the facilities rendered.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Shahbandeh, M. Chicken meat production worldwide, 2012–2021|Statista. Available online: https://www.statista.com/statistics/

237637/production-of-poultry-meat-worldwide-since-1990/ (accessed on 24 May 2021).
2. Wang, F.; Wu, X.; Xu, D.; Chen, L.; Ji, L. Identification of chicken-derived ingredients as adulterants using loop-mediated

isothermal amplification. J. Food Prot. 2020, 83, 1175–1180. [CrossRef]
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