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Patterns of covariation between phenotype and environment are presumed to be reflective
of local adaptation, and therefore translate to a meaningful influence on an individual’s
overall fitness within that specific environment. However, these environmentally driven
patterns may be the result of numerous and interacting processes, such as genetic
variation, epigenetic variation, or plastic non-heritable variation. Understanding the relative
importance of different environmental variables on underlying genetic patterns and
resulting phenotypes is fundamental to understanding adaptation. Invasive systems are
excellent models for such investigations, given their propensity for rapid evolution. This
study uses reduced representation sequencing data paired with phenotypic data to
examine whether important phenotypic traits in invasive starlings (Sturnus vulgaris)
within Australia appear to be highly heritable (presumably genetic) or appear to vary
with environmental gradients despite underlying genetics (presumably non-heritable
plasticity). We also sought to determine which environmental variables, if any, play the
strongest role shaping genetic and phenotypic patterns. We determined that
environmental variables —particularly elevation—play an important role in shaping allelic
trends in Australian starlings and may also reinforce neutral genetic patterns resulting from
historic introduction regime. We examined a range of phenotypic traits that appear to be
heritable (body mass and spleen mass) or negligibly heritable (e.g. beak surface area and
wing length) across the starlings’ Australian range. Using SNP variants associated with
each of these phenotypes, we identify key environmental variables that correlate with
genetic patterns, specifically that temperature and precipitation putatively play important
roles shaping phenotype in this species. Finally, we determine that overall phenotypic
variation is correlated with underlying genetic variation, and that these interact positively
with the level of vegetation variation within a region, suggesting that ground cover plays an
important role in shaping selection and plasticity of phenotypic traits within the starlings of
Australia.
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INTRODUCTION

Phenotypic trends within a species are often driven by the
environment. Patterns of covariation between phenotype and
environment are presumed to be reflective of local adaptation or
plasticity, and translate to a meaningful influence on an
individual’s overall fitness within that specific environment
(Wainwright and Reilly 1994). Across many different
ecological systems, a plethora of ecogeographical rules describe
biologically significant trends between phenotypic traits and
specific environmental measures, or even go as far as to
extend to interspecific relationships and assemblage patterns
(Gaston et al, 2008). Tolerance to temperature and other
climate variance shifts are inherently important for a
population to withstand extinction (Sekercioglu et al., 2008).
Understanding how ecogeographical trends may arise or shift,
and on what biological timescale, are imperative to understanding
long term evolution of species (Robinson and Quinn 1988). Such
questions are of increasing concern as climate change research
seeks to understand how climate change may cause populations
to undergo evolutionary changes (Gardner et al., 2011; Oostra
et al., 2018; Dufty and Jacquemyn 2019).

While the relationship between phenotype and environment
may be hard coded in the genome of an organism, it may also be a
result of plasticity. Plasticity, the ability of an organism to produce
different phenotypes in response to environmental variation but
with the same genetic basis, is fundamental to explain phenotypic
diversity within a species (West-Eberhard 1989). Overall
phenotype is a result of underlying gene-environment
interactions, in which plasticity plays an important role (Li
et al, 2018). Therefore, plasticity encapsulates both heritable
adaptive conditional responses (gene-environment
interactions), as well as non-heritable environmentally
produced variation (West-Eberhard 1989). There is much
discussion on the role of plasticity in evolution (Sommer 2020;
Uller et al., 2020), with considerations such as accommodation
(West-Eberhard 2005) and canalisation (Debat and David 2001)
as proposed mechanisms for selection on plastic traits to be
translated into evolutionary change. An alternative viewpoint on
plasticity is that plasticity itself may shield the genome from
selective forces, because selection for or against a phenotype may
not directly translate to selection for or against specific genetic
variants (DeWitt et al., 1998). This is further complicated by the
fact that plasticity itself is a trait that may be under selection
(Nussey et al., 2005). Doubtless, the role of plasticity in a species
evolution is nuanced and will be taxon or even population
specific.

Invasive species are excellent model systems in which to
investigate questions regarding heritable and non-heritable
environmental effects on phenotype. species’
persistence relies in part on rapid adaptation, and plasticity
acts as an immediate means through which an invasive species
may be able to survive in their novel environment (Richards
et al., 2006; Fox et al.,, 2019). Understanding the relationship
between environmental variables shaping genetic patterns
and the resulting phenotypes may be essential to better
understand why a particular species has become such a
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successful invader (Cafio et al, 2008). Native range
populations may be close to equilibrium, and this may
confound such investigations in these populations. In
contrast, invasive populations are likely far from
equilibrium and so enable the study of how a novel
environment may cause rapid shifts in genetics and
phenotype. Such research provides information not just for
invasion management, but also may be used to investigate
phenotypic shifts during alternate environmental projections
expected under climate change. Patterns of climate induced
ecogeographical patterns have been widely studied in birds
(Buskirk et al., 2010; Goodman et al., 2012; Delhey et al.,
2019), and determining heritable and non-heritable
influences on these patterns will be invaluable for future
scenario modelling and preserving native populations.

The European starling (Sturnus vulgaris, hereafter the starling)
is a near-globally invasive passerine, and was introduced to
Australia in the mid-late 19th century from their native range
in Eurasia (Jenkins 1977). Previous research indicates that the
invasive population of starlings in Australia has distinct
population genetic structure (Rollins et al., 2009, 2011; Stuart
et al, 2021a). The several major and geographically separate
introduction sites along the eastern and southern Australian
coastlines likely resulted in genetic footprints of founding
individuals forming one southern and one eastern major
genetic cluster, despite ongoing geneflow between the regions
(Rollins et al, 2009; Stuart et al, 2021b). Previously,
environmental distance between sampling sites was not found
to significantly correlate with genetic distance (isolation by
environment, IBE), while the geographic distance between
sample sites was found to be a predictor of genetic distance
(isolation by distance, IBD) (Stuart et al., 2021b).

However, these patterns in IBE and IBD do not exclude a
role for environment in shaping the population genetics of
Australian starlings—indeed it would be reasonable to expect
(due to large differences from native range climate) at least
some aspects of the novel invaded environment would have
impacted the genetics of this species. Cardilini et al. (2016)
found that body size (mass) and beak surface area varied with
environmental temperature gradients. This may indicate that
environmentally shaped adaptive patterns may be more
nuanced (e.g., occurring in only a small number of genes,
or being non-linear) or, alternatively, that much of the
environmentally correlated phenotypic patterns are due
primarily to plasticity.

It is important here to note that by studying morphological
variation within the invaded Australian range, we may
observe how original genetic diversity from the native
range (from founding individuals) was acted upon to elicit
adaptive phenotypic change, or alternatively which
phenotypic traits were altered irrespective of the genetics,
shedding light on plastic developmental responses in this
species. With concern over plummeting starling numbers
within the native range (Smith et al., 2012; Heldbjerg et al,,
2016), we may use such findings to better understand how and
to what extent starlings can adapt to shifting native range
climates in the face of climate change. However, analysis of
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genetic and environmental effects of phenotypes within an
invasive range do pose technical challenges, owing to the
demographic nature of such populations. Ideally,
assessment may reveal that phenotype varies only with
genetic gradients (and particular genotypes, thus appearing
to be heritable), or alternatively vary only with environmental
gradients (thus appearing to be plastic). Phenotype might
even depend upon interaction of genetics and environment,
suggesting a combined role for heritability and plasticity.
However, it is possible that genetics and environment
might covary, either due to evolutionary processes such as
selection, or neutral process such as demographic effects
during post-introduction range expansion. In such cases
the relationship between genetics, environment, and
phenotype cannot be discerned using correlation studies
alone, but they do facilitate the first step towards better
understanding the mechanisms behind rapid phenotypic
change within invasive ranges.

The present study uses reduced representation sequencing
data with paired phenotypic, ecological, and spatial data to
examine important phenotypic traits in Australian starlings.
Specifically, we seek to answer four key aims. Firstly, we ask
what environmental variables appear to be shaping the overall
allelic frequency landscape. We expect that temperature and
precipitation play a vital role due to major differences in these
variables between Australia and the native range. Next, we
examine the heritability of different phenotypic traits and how
this is partitioned across the chromosomes. We predict that few
traits will be heritable, and that many of these heritable traits will
be polygenic and so will show a linear relationship between
explained variance per chromosome and chromosome size.
We then ask which SNPs are correlated with phenotype, and
then examine the amount of genetic variance in these SNPs that is
explained by key environmental predictors. Finally, we assess
genetic, phenotype, and environmental relationships more
broadly by examining patterns in variance. We investigate
whether phenotypic variance correlates with genetic variance
and/or environmental variance, and if there are any range-
edge effects. We predict that phenotypic variance would be
lower at the range edge due to genetic drift in these smaller
populations, and that phenotype and genetic variance would be
positively correlated.

MATERIALS AND METHODS

Genetic Sequencing Data, Variant Calling,

and Filtering

We used published genetic data produced using reduced
representation sequencing (Stuart et al., 2021b; BioProject ID
655259). Briefly, a total of 499 individuals underwent Genotype
by Sequencing (GBS; Elshire et al., 2011). Samples were collected
between 2003-2011 (approximately 4 generations: Higgins et al.,
2006; Rollins et al., 2016) from the southern and eastern portions
of the Starlings’ Australian range. We aligned the demultiplexed
files to the starling reference genome S. vulgaris vAU1.0 (Stuart
etal.,, 2021a; accession GCF_JAGFZL000000000) using BwA metn
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v0.7.17 (Li 2013), then converted the SAM files into sorted BAM
format using samroors v1.10 (Li et al.,, 2009). We added read
groups using PICARD v2.18.26 (Picard toolkit 2019), used sTACKs
gstacks to genotype individuals, and called variants using
populations (Rochette et al., 2019).

We used vcFTOOLS to quality filter genetic data for a maximum
locus missingness of 50% (--max-missing 0.5), a minor allele
frequency of 0.05 (--maf 0.05, because this study does not focus
on “rare” alleles), a minimum allele depth of 2 (--min-meanDP
2), a maximum allele depth of 50 (--max-meanDP 50), an allele
number of 2 (--min-alleles 2 --max-alleles 2), and a minimum
genotype quality score of 15 (--minGQ 15). We then pruned the
SNP data set for linkage using BCFtools prune for SNPs with
linkage values of less than 0.6 in 1,000 bp sliding windows (-1 0.6
-w 1,000). We assessed the per-individual missingness levels, and
any individual that was missing sequencing data in more than
50% of SNP sites was excluded from the final data set. This
produced a data set with 111,037 SNPs from a total of 321
individuals across 24 sample sites (Figures 1A,C). This data
set was used to explore genetic and environmental associations
(Variance in Phenotype, Genetics, and Environment (Aim 4)
section; Figure 2: aim 1). We used the program ADMIXTURE
v1.3.0 (Deng et al, 2001) to conduct ancestry admixture
analysis for K = 2, to be compared to previous admixture
analysis from Stuart ef. al. conducted on the same data set but
without a reference genome (Stuart et al., 2021b).

We produced a second genetic data set, which was a subset of
the genetic dataset above containing only those individuals for
which we had phenotypic data (see below), for use in analysis that
involved phenotype (Figure 2: aims 2-4). For this analysis, we
refiltered the initial VCF file produced by stacks populations. All
filtering steps remained the same as those detailed above, however
prior to quality filtering we removed individuals from sample
sites with less than five total individuals with corresponding
phenotypic data (see Phenotypic and Environmental Sample
Data section). This produced a data set with 128,217 SNPs
from a total of 212 individuals across 14 sample sites (Figure 1C).

Phenotypic and Environmental Sample Data
The phenotype data that we used in this study was source from
Cardilini et al. (2016), along with additional, previously
unpublished phenotypic trait measurements that were taken
from the same birds at the same time. This phenotype data
was collected in between May 2011 and October 2012. We only
retained individuals in the data set that had corresponding
genetic data post quality filtering and had data for at least four
out of the seven phenotypic measurements shown in Figure 1B.
Phenotypic measurements included: mass (g, N = 212), tarsus
length (mm, N = 212), head antero-posterior cross section (mm?,
N = 143, calculated using
(head and beak length — beak length) x head width x m), beak
surface area (mm?, N = 199, calculated as per Greenberg et al.
(2012) using the formula (M x beak length)),
wing length (mm, N = 201), spleen mass (g, N = 178), and
heart mass (g, N = 184). We allometrically corrected these
phenotypic data for size-related collinearity, by regressing the
phenotypic trait against the individual’s tarsus length, and the

Frontiers in Genetics | www.frontiersin.org

March 2022 | Volume 13 | Article 824424


https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles

Stuart et al. Ecogeographical Patterns Within an Invasion

Cc
Phenotype Environmental

Dataset: Analysis Analysis
! Munglinup 7
! Condingup 6
i : Coorabie 10
: ueeNs StreakyBay 1
i TumbyBay 10
; Mclaren Vale 14
i Warnambool 15 17
AUSTRALIAL -1 Bendigo 22 22
; Wonthaggi 11
1Smor Orbost 16 16
Kinglsland 10 10
Sheffield 9
SOUTH Maitla: Cygnet 8
AUSTRALIA 5 Hay 20 2
Albury 23 23
Nowra 13 17
Maitland 21 22
Dubbo 19 19
Nyngan 12
Austral 9 15
Tamworth 5 5
Moree 14 15
Lismore 12 15
Lemon 13 15
ALL 212 321

D Longitude

2 eaa 2 S S 5 T T E A o & g IS 9 o /3]
§8855F 3 § FEFFZEF & £ F § 8 FFEF 8
55505 5 5 § 38 ¥ §FS F s 2 § K 55 § %
FESLs 5 § 5 § C &0 < s & <5 g0
S SOFE & £ 2 £ g & < a
5‘0 5?&'37 < S
s =

FIGURE 1 | Sturnus vulgaris sample site and phenotypic sample site information including panel (A) starling genetic data sample sites, with colour denoting which
genetic subcluster the sample site belongs to (orange = eastern, blue = southern), while shape shows which analysis that sample site was included in (triangle =
phenotype and environmental, circle = environmental only). Panel (B) depicts the seven phenotypic traits that were measured (A: mass, B: tarsus length, C: head antero-
posterior cross section, D: beak surface area, E: wing length, F: spleen mass, G: heart mass), and panel (C) shows the number of individuals used in either
phenotype analysis (see Heritability and Chromosomal Partitioning of Phenotypic Variance, Genome-Phenotype Association Test, and Variance in Phenotype, Genetics,
and Environment sections) or environmental analysis (Environmental and Spatial Associations With Genome Wide Genetic Variation section). Panel (D) depicts an
admixture ancestry analysis for all 321 samples used in the environmental analysis study, used to determine group membership in panel a.

residuals were retained (to be used as the new size-corrected
measures) if the correlation was significant (though note some
caution in using residual based allometric corrections: Freckleton
2002). We chose tarsus length because it is an accurate predictor
of body size in birds (Senar and Pascual 1997). We found a total of
four phenotypic measures to be significantly correlated with
tarsus length: mass, head antero-posterior cross section, beak
surface area, and wing length (Supplementary Figure SI;
Supplementary Table S1) and these were size corrected for
the final data set (Supplementary Figure S2).

Environmental and Spatial Associations
With Genome Wide Genetic Variation (Aim 1)

To quantitatively assess the contributions of spatial and
environmental variables to the overall genetic variation within
the Australian range (Figure 2: aim 1), we used a gradient forest
approach. Gradient forest (GF) is a nonlinear, nonparametric

machine-learning regression tree approach that enables the
partitioning of nonlinear associations of allelic variable data to
spatial and environmental variables. We conducted all
environmental and spatial association analysis in R v3.5.3. It
has previously been demonstrated in this study system that
overall population substructure strongly reflects historical
demographic patterns and other spatial processes (common in
invasive populations), alongside the patterns resulting from
natural selection and environmentally induced substructure
(Stuart et al., 2021b). The GF approach can account for the
presence of spatial processes through the use of Moran’s
eigenvector map variables (Dray et al., 2006), thereby enabling
the calculation of the unique contribution of each environmental
variable to the allelic patterns. To do this, we computed a distance
matrix of the sample longitude and latitude values using the dist()
function, and then used the function pcnm() in VEGAN (Oksanen
et al,, 2019) to conduct Principal Coordinate of Neighbourhood
Matrix (PCNM) analysis to transform the spatial distances to
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data suitable for regression. Half of the positive PCNM axis
values were retained to include in the GF model (n = 10)
(Manel et al., 2010). Environmental variables were selected by
retrieving all BioClim variables (Bio01-Biol9) and altitude
(Worldclim (Fick and Hijmans, 2017), obtained through
RASTER package (Hijmans and van Etten, 2012). To create a
dataset of environmental variables with minimised
collinearity, we then applied the pairs.panel() function in
VEGAN to iteratively remove variables that were highly
colinear with many other variables. The final
environmental variable list consisted of: biol (annual mean
temperature), bio3 (isothermality), bio4 (temperature
seasonality), bio8 (mean temperature of wettest quarter),
bio9 (mean temperature of driest quarter), biol2 (annual
precipitation), biol4 (precipitation of driest month), biol5
(precipitation seasonality), biol8 (precipitation of warmest
quarter), biol9 (precipitation of coldest quarter), elevation,
and mnNDVI (mean normalized difference vegetation index).

We conducted GF analysis using the gradientForest()
function in GRADIENTFOREST v 0.1-24 (Ellis et al., 2012). The
spatial PCNM variables and the environmental variables were
used as the predictor variables, with the SNP data functioning
as the response variables. The function was run on default
settings (ntree = 500, maxLevel = maxLevel, trace = T, corr.
threshold = 0.50). We used the inbuilt GRADIENTFOREST plot()
function to assess the varying importance of predictor spatial

PCNMs or environmental variables, and to visualise allelic
composition changes along the important environmental
gradients. We then used the predict() function, which
predicts compositional patterns across geographic space. We
used the GF model produced in the above analysis to predict
genetic patterns across the gridded environmental variables
across Australia, and visualised the first three principal
components produced when this was parsed into the
function prcomp().

Heritability and Chromosomal Partitioning

of Phenotypic Variance (Aim 2)

To calculate phenotypic trait SNP-based heritability
values, and partition genetic variance across chromosomes
(Figure 2: aim 2), we used GCTA (Yang et al., 2011la)
following published pipelines (Yang et al., 2011b). GCTA
generates per-individual genetic relationship matrixes
(GRMs), which estimate the genetic distance between
individuals using provided SNP data, and may be restricted
to compute chromosome-specific GRMs for autosomes. The
overall (or chromosome-specific) GRMs may then be analysed
alongside phenotypic covariates to generate estimations of the
variance explained by all SNPs included in the model. Because
phenotypic measures were incomplete across individuals, and
GCTA required phenotype measures on a per-individual
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basis; a subset was created of the variant file for each of the
traits with only individuals that had a corresponding trait
value as described above (Genetic Sequencing Data, Variant
Calling, and Filtering section, Figure 1C).

We calculated overall heritability of the phenotypic axis using
seven models, one for each phenotypic trait. We fitted the 29
autosomes of the starling genome to the seven models
simultaneously, and all seven traits reached convergence. We
estimated the proportion of variance explained by each
chromosome, we ran each of the 29 autosomes (using the
option—autosome to create the GRM) and Z chromosome
(using the option—make-grm-xchr to create the GRM)
individually, with one separate model of each phenotype trait.
We calculated the 65% confidence interval (CI) for each trait
(hgnp—(1*S.E.)), and considered traits that had a lower 65%
confidence interval above zero to be heritable according to this
analysis.

For traits that were found to have a non-zero heritability, we
estimated the relationship between the amount of explained genetic
variance partitioned to each chromosome, and the chromosome size,
we used a linear regression Im() in R. Chromosome sizes were
calculated using samroors v1.9 (Li et al, 2009). Additionally, we
regressed chromosome size against per-chromosome gene number,
as well as per-chromosome variant counts from the SNP data set used
for the analysis.

Genome-Phenotype Association Test

(Aim 3)

To identify SNPs that were strongly associated with phenotypic
traits (Figure 2: aim 3), BayPass v2.1 (Gautier, 2015) was used to
perform GWAS against each of the seven phenotypic traits
separately. We identified phenotypic associations by
calculating the per-SNP Bayes factor (BF) under the standard
covariate model (BF;,) and the auxiliary covariate model (BF,,.)
to evaluate the association of SNP frequencies with phenotype.
For each SNP, the BF is expressed in deciban units (dB 10
log;10(BF;s/mc)). Following Jeffrey’s rule, SNPs with a BF;ge >
20 were retained as indicating a SNP under “decisive” selection.
From this analysis we obtained seven separate lists of SNPs,
capturing which genomic sites were associated with each of the
seven phenotypic measures.

We sought to determine if genetic variation of each of these
seven groups of phenotype-associated SNPs was associated with
variation of environmental variables. We ran a genome-
phenotype association test using the seven phenotype-
associated SNP lists generated above, and the environmental
variables used in Environmental and Spatial Associations With
Genome Wide Genetic Variation section (for details see
Supplementary Appendix S1: Genome-phenotype association
test).

We also sought to determine if any of the identified
phenotype-associated SNPs appeared to be under selection. A
selection subset of the above phenotype-associated SNPs was
created by retaining only the SNPs that were also flagged as highly
divergent across sample sites by further Baypass analysis. For this,
we ran the core model to generate XtX statistic for all sample

Ecogeographical Patterns Within an Invasion

SNPs. We then calculated a significance threshold for candidate
SNPs under divergent selection across sample sites through the
generation of a pseudo-observed data (POD) of 20,000 SNPs, and
a 1% empirical threshold was calculated for the observed XtX.
Through core model and POD analysis, we identified which SNPs
were divergent between sample sites (XtX>22.628) and were
associated with phenotype (BFjym,. = 20). We generated a list
of candidate genes under selection associated with each of the
phenotypic traits using BEDTOOLS intersect (Quinlan and Hall,
2010), using the S. vulgaris vAUL1.0 annotation (Stuart et al,
2021a). The categorisation of a phenotype-associated SNP as
under selection (pooled across all phenotypic traits) was assessed
against SNP m (nucleotide diversity, obtained using
VCFTOOLS—site-pi) using the aov() function in R, to see if there
was any relationship occurrence of an correlated SNP under
selection and the degree of site polymorphism across the
population.

Variance in Phenotype, Genetics, and

Environment (Aim 4)

To examine if phenotypic variation was dependent on either
genetic variation, environmental variation, distance from
introduction site, or an interaction of some or all these factors
(Figure 2: aim 4), we ran a linear mixed-effects model (details
below). The analysis for this section was conducted in R v3.5.3 (R
Core Team, 2017).

We calculated summaries of phenotypic variation as well as
genetic variation, termed “phenotypic dispersion” and “genetic
dispersion” respectively. These measures, obtained through an
ordination approach (see Supplementary Appendix S2:
Variance in phenotype, genetics, and environment methods;
Supplementary Figure S3), captures the distance between an
individual’s phenotype or genotype and the mean value of that
data set for all individuals within a sample site. For sample sites
with low phenotypic or genetic variability, individuals are close to
the mean phenotype in PCoA space, and so would have a small
phenotypic dispersion value. Sample sites with high phenotypic
or genetic variability have more individuals with larger
phenotypic dispersion values, because they are more dispersed
from the sample site’s centroid in PCoA space.

To capture and summarise sample site environmental
variability, we used environment variables obtained above (see
Environmental and Spatial Associations With Genome Wide
Genetic Variation section) that captured climate variability:
bio3 (isothermality), bio4 (temperature seasonality), and biol5
(precipitation seasonality). Additionally, we included variation in
normalised difference vegetation index (NDVI) values obtained
for the same genetic sample sites in Stuart et al. (2021b). To
account for collinearity across environmental variables, and also
to reduce model terms, these four variables were reduced to two
through PCA using the function InDaPCA() (Podani et al., 2021)
(axis with eigenvalues >1 retained: env axis 1 (PCl) captures
temperature variation and a component of precipitation
variation, env axis 1 (PC2) captures ground cover variation
and a component of precipitation variation, Supplementary
Figure $4).
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FIGURE 3 | Environmental and spatial associations with the genetic variation across the Australian Sturnus vulgaris range, as analysed by GRADIENTFOREST. Panel (A)
depicts R? weighted importance of the environmental and spatial variables for explaining genetic gradients in the GF analysis. Panel (B) depicts the cumulative
importance of allelic change along the six most important environmental gradients. Panel (C) depicts gradient forest prediction with similar colours representing similar
expected genetic compositions based on the 11 assessed environmental variables, with panel (D) representing specific environmental predictors (represented by
colour) and their relative importance. Environmental variables are bio1 (annual mean temperature), bio3 (isothermality), bio4 (temperature seasonality), bio8 (mean
temperature of wettest quarter), bio9 (mean temperature of driest quarter), bio12 (annual precipitation), bio14 (precipitation of driest month), bio15 (precipitation
seasonality), bio18 (precipitation of warmest quarter), bio19 (precipitation of coldest quarter), and altitude, while PCNMs represent axis of spatial patterns based on
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We calculated the sample collection site’s distance from
nearest major introduction (D2INT) within each of the two
genetic subpopulations (primary VIC introduction site as
Victoria harbour, primary NSW introduction site as Sydney
harbour (Higgins et al, 2006)) using GEoODIST package
(Padgham et al., 2021).

We constructed a linear mixed-effects model fitted using
maximum likelihood to assess trends underlying phenotypic
dispersion patterns using the R function Imer() in the package
LME4 v1.1-26 (Bates et al., 2015). In the model we included the

interaction between the main effects of: D2INT, genetic
dispersion, env axis 1, env axis 2, with age and sex included as
random effects. Genetic cluster was also included because a
random effect as the two main genetic subclusters previously
identified in Stuart et al. (2021b) were confirmed for this version
of the genetic data (Figure 1D). We initially ran the model with
main factors at the highest level of interaction (four), and this was
iteratively reduced until an interaction effect reported a
significant p value, leaving the final model with second level
interaction effects.
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TABLE 1 | SNP based heritability (hsnp) Values for Sturnus vulgaris phenotypic traits as calculated by GCTA. VP = phenotypic variance, V(G) = genetic variance, V(E) =
environmental variance, hsnp, = SNP-based heritability (Yang et al., 2017), S.E. = standard error. * Indicates a phenotype trait for which size corrected values were used in

the heritability and chromosomal partitioning analysis. Cl = confidence interval.

VP S.E. V(G) S.E.
Mass* 23.183 5.265 18.718 10.653
Tarsus 0.649 0.124 0.058 0.215
Head* 1.291 0.303 0.038 0.526
Beak* 35.944 7.547 0.000 18.377
Wing* 14.956 2125 0.000 3.002
Spleen 0.002 0.001 0.002 0.001
Heart 0.025 0.005 7.811e-03 0.010
RESULTS

Environmental and Spatial Associations

With Genetic Variation (Aim 1)

The gradient forest (GF) analysis confirmed that the spatial
variables each had a higher weighted importance in explaining
genetic patterns than did any of the environmental variables
considered. Of the environmental variables, the most
important was altitude and bio04 (temperature seasonality),
followed by bio09 (mean temperature of driest quarter), biol8
(precipitation of warmest quarter), biol (annual mean
temperature), and bio08 (mean temperature of wettest
quarter). Of the variables used in the analysis, the 10 spatial
variables explained 81% and environmental variables
explained 19% of the genetic variation (Figure 3A). There
were a few major allelic compositional changes, indicated by a
sharp jump in spline plots, most notably at 122 for biol and
170 for bio8 (Figure 3B), and some slight compositional
change can be seen for biol8 from 280 to 500 units.
Mapped projections of the GF predictions onto the
environmental landscape of Australia identify high genetic
differentiation due to different environmental variables along
the eastern coastline, the northern coastline, inland along
mountain ranges, and on the western half of Tasmania
(Figure 3C). Along the eastern coastline, altitude, biol9,
biol4, and biol2 appear to play the most important role in
differentiating allelic patterns. Along the south coast of
Australia bio8, as well as biol8, bio01, bio04, and biol5 are
responsible for the genetic patterns in this region of the
starlings’ Australian range (Figure 3D). There appears to be
strong environmentally-associated differentiation between the
lower and upper half of the eastern coastline, which resembles
the patterns of genetic substructure identified previously
(Figures 1A,D).

Heritability and Chromosomal Partitioning
of Phenotypic Variance (Aim 2)

We found that the overall SNP-based heritability values of the
seven phenotypic traits was highly varied. Of the traits we
measured, we found only two traits had hy,, 65% confidence
interval that does not span 0; spleen mass (h,, lower 65% CI =

V(E) S.E. hgnp S.E. Lower
65% CI
4.465 16.157 0.807 0.614 0.193
0.591 0.327 0.089 0.345 0
1.252 0.801 0.030 0.417 0
35.944 20.227 <0.000 0.372 0
14.956 4.739 <0.000 0.201 0
<0.000 0.002 0.999 0.688 0.311
0.017 0.015 0.318 0.459 0

0.311) and body mass (hy,, lower 65% CI = 0.193) (Table 1). The
remainder of the assessed phenotypic traits had hy,, 65% lower
confidence intervals spanning 0 (Table 1).

Analysing heritability apportioned across chromosomes using
GCAT for any traits found to have non-zero heritability
estimates, we found that body mass had a significant linear
relationship between the amount of variance explained by an
individual chromosome and its respective length (F; 55 = 12.41,
p-value = 0.001483, Adjusted R*> = 0.2824) (Supplementary
Table S2). We found that both per-chromosome gene count
and SNP variant count was significantly associated with
chromosome length (Supplementary Table S2).

Chromosomal variance partitioning revealed that there was no
single chromosome that explained a high amount of variance for
all traits, with macrochromosomes (1-12), microchromosomes
(13-27), and the sex chromosome (Z) explaining different
amounts of the variance across the assessed traits (Figure 4,
Supplementary Table §3). Generally, microchromosomes
explained a large amount of phenotypic variance relative to
their length, with body mass having the highest proportion of
variance explained on chromosome 22, and spleen mass having
the highest proportion of variance explained on chromosome 24.

Genome-Phenotype Association Test

(Aim 3)

We found that mass and beak surface area had the smallest
number of correlated SNPs identified, while head antero-
posterior cross section, as well as spleen and heart mass, had
several hundred correlated loci across the two models (Table 2).
We found moderate overlap in the phenotype-associated loci
identified by the auxiliary covariate model and the IS covariate
model in Baypass, with the latter model detecting the fewest
number of loci (Table 2, Supplementary Figure S5).

We performed a genome-phenotype association test and
found that across the seven phenotype-associated groups of
SNPs, a variety of different environmental predictors explained
patterns of genetic variance (Figure 5A). The environmental
predictor reporting the highest relative importance for any
phenotypic trait was bio03 (isothermality) on beak-correlated
SNPs. Considering the relative importance of environmental
predictors within each phenotypic variable, it appeared that
wing, beak and tarsus were most highly associated with
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ChromosomeZ

temperature variables (bio01-bio09), while body mass, spleen
mass, and heart mass were most highly associated with
precipitation variables (biol2-biol9). Some environmental
variables, such as bio0l (annual mean temperature), bio08
(mean temperature of wettest quarter), biol2 (annual
precipitation), biol5 (precipitation seasonality), and elevation,
did not appear to significantly correlate with any tested
phenotypic variable. The amount of genetic variation

explained by the environmental variables varied from
approximately 1-2% across the seven phenotype-associated
groups of SNPs (Supplementary Figures S6, S7).

Only a small fraction of phenotype-associated SNPs were
flagged as being under selection across the starling’s Australian
range using BAYPASS (0-5%, Table 2), and we identified a small
number of the genes to which these sites mapped (Figure 5B).
These included mass-associated galactokinase 1 (GALK1I), tarsus-
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TABLE 2 | Number of SNPs correlated with phenotypic traits in Sturnus vulgaris as identified as being outliers possibly under selection by Baypass using the Auxiliary covariate
model and the IS covariate model, and those identified as being under selection using the core model/POD analysis. Total phenotype-associated SNPs is the union of the
SNP lists generated using the Auxiliary covariate model and the IS covariate model. Total phenotype-associated SNPs under selection is a subset of the row above, listing
only those SNPs that were flagged as under selection by the Bavpass core model, with an XtX threshold of 22.628 determined by POD calibration.

Mass
Aucxiliary covariate model 54
IS covariate model 16
Total phenotype-associated SNPs 62
Total phenotype-associated SNPs under selection (XtX>22.628) 3

associated Protein transport protein SEC61 (Sec61), wing-
associated Phosphatidylinositol glycan anchor biosynthesis
class U protein (PIGU), spleen-associated Sodium channel
protein type 5 subunit alpha (Scn5a), and heart-associated
LHFPL tetraspan subfamily member 3 protein (LHFPL3) and
CUB and sushi domain-containing protein 2 (CSMD2)
(Figure 5B, Supplementary Table S4). We did not find any
relationship between a SNP site being categorised as BAYPASS
outlier or not BAYPASs outliers and SNP 1 (Fg 128208 = 1.802,
p-value = 0.0716) (Figure 5A).

Variance in Phenotype, Genetics, and

Environment (Aim 4)

We found that phenotypic dispersion, averaged within sample
sites, was significantly correlated with Hs values previously
calculated to capture the within local gene diversity (F ,
127, p-value = 0.00389, Adjusted R’ 0.4738)
(Supplementary Figure S3).

Using our linear mixed effect model to assess the effects of
genetic and environmental variance on phenotypic variance, we
found only one significant second level interaction, which was the
interaction of genetic dispersion and env axis 2 (ground cover
variation and partially annual precipitation variation) (Table 3;
Figure 6). This interaction showed that when ground cover
variation and precipitation variation is low, there is little
change in phenotypic dispersion, regardless of the underlying
level of genetic diversity. However, when there is high variability
in vegetation cover and precipitation, we see a decrease in
phenotypic dispersion when genetic dispersion is low, and an
increase in phenotypic dispersion when genetic dispersion is high
(Figure 6B). More generally, we identified a significant
correlation between genetic dispersion and phenotypic
dispersion but found no significant effect or interaction effect
with D2INT or env axis 1 (Table 3).

DISCUSSION

Our results demonstrate that environmental variables
(particularly elevation) play important roles in shaping spatial
trends Australian starling genetics. The relationship between
allelic frequencies and environmental variables across the
starlings’ range may be indicative that strong spatial patterns
associated with historic introductory regimes could be reinforced
by differing environmental gradients during colonisation and

Tarsus Head Beak Wing Spleen Heart
88 430 53 113 294 259
19 21 8 17 26 25

100 442 60 122 303 268
2 1 0 6 2 4

expansion. Further, we identified that both genetics and plasticity
explain previously identified ecogeographical phenotype trends
across the Australian range. We examined a range of phenotypic
traits that appear to be heritable (body mass and spleen mass) or
negligibly heritable (e.g. beak surface area and wing length) across
the starlings’ Australian range. For SNP variants associated with
each of these phenotypes, we identify key environmental variables
that correlate with genetic patterns, identifying temperature and
precipitation variables that putatively play important roles
shaping phenotype in this invasive population. Finally, we
illustrate that overall phenotypic dispersion is correlated with
underlying genetic variability, and that these interact positively
with the level of vegetation variation within a region, suggesting
that an interaction between ground cover and genetic variation
plays an important role in shaping plastic development in
Australian starlings.

Environmental Predictors of Allelic Patterns

Across the Australian Range

Examining environmental and spatial predictors of S. vulgaris
allelic patterns across the Australian range, it is unsurprising that
the spatial variables explain such a large proportion of the overall
trends. This confirms previous isolation-by-distance analysis that
identifies physical distance between sites as the largest
determinant of genetic patterns (Stuart al,, 2021b).
However, the gradient forest (GF) analysis does allow us to
identify underlying environmental associations independent of
spatial effects.

The environmental variables of altitude and temperature
seasonality are identified as the two most important predictors
of allelic change across the Australian range (Figure 3A). The
importance of altitude is surprising, because starlings have an
upper elevation limit of 2000m (Higgins et al., 2006), and because
the maximum altitude of the sampling sites was only 500-600 m.
Nevertheless, we see elevation having a strong effect on allelic
frequencies at this upper most sampling limit, with the step plot
depicting a sharp rise in importance of altitude at around 500 m
(Figure 3B). Selection mediated by elevation may be a result of
direct selection pressure via partial oxygen pressure shifts (Lim
et al, 2021), or due to co-varying factors such as ecosystem
assemblage differences (e.g. Samuel et al,, 2015). Some of these
differentiating patterns follow the Great Dividing Range, a band
of mountains that stretches along most of the eastern Australian
coastline forming the continental divide. The Great Dividing
Range plays a variable role in limiting avian geneflow (Pavlova

et
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FIGURE 5 | Phenotype-Genetic correlations, and environmental predictors across the Australian Sturnus vulgaris range. Panel (A) depicts a heatmap of relative
environmental predictor importance on groups of phenotype-associated SNPs, with colour indicating the relative importance of each environmental variable in explaining
PCA-summarised genetic information (rows add up to unity) with environmental predictors bioO1 = Annual Mean Temperature, bio03 = Isothermality, BIO4 =
Temperature Seasonality, BIO8 = Mean Temperature of Wettest Quarter, bio09 = Mean Temperature of Driest Quarter, bio12 = Annual Precipitation, bio14 =
Precipitation of Driest Month, bio15 = Precipitation Seasonality (Coefficient of Variation), BIO18 = Precipitation of Warmest Quarter, BIO19 = Precipitation of Coldest

Quarter, elev = altitude, mnNDVI = mean normalized difference vegetation index. Panel (B) depicts all phenotype-associated SNPs under selection across the starling
genome, with overlapping genes annotated.
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TABLE 3| Factors affecting phenotypic dispersion in Sturnus vulgaris, using a linear mixed effect model examining correlation to distance to introduction site (D2INT), genetic
dispersion, env axis 1 (temperature variation and a component of precipitation variation), and env axis 2 (ground cover variation and a component of precipitation

variation).
Fixed effects Std. Error Df t value Pr (>[t) Sig
(Intercept) 6.72E-03 1.69E+00 41.696 0.00152 b
D2INT 3.27E-03 2.09E+02 -0.939 0.34858
Env Axis 1 4.59E-03 1.47E+02 0.101 0.91983
Env Axis 2 4.02E-03 2.08E+02 -1.409 0.16045
Genetic dispersion 4.55E-03 2.02E+02 2.138 0.03368 *
D2INT * Env Axis 1 4.76E-03 2.09E+02 -0.685 0.4942
D2INT * Env Axis 2 3.79E-03 2.08E+02 0.178 0.85923
D2INT * Genetic dispersion 4.47E-03 2.09E+02 0.161 0.87244
Env Axis 1 * Env Axis 2 5.95E-03 2.05E+02 —-0.606 0.54537
Env Axis 1* Genetic dispersion 4.01E-03 2.11E+02 -1.128 0.2608
Env Axis 2 * Genetic dispersion 5.21E-08 2.07E+02 2.665 0.00829 *
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FIGURE 6 | Trends in Sturnus vulgaris phenotypic, genetic, and environmental variability, with panel (A) average sample site measures for phenotypic dispersion
(upper left), genetic dispersion (upper right), environmental axis 1 (temperature variation and a component of precipitation variation) (lower left), and environmental axis 2
(ground cover variation and a component of precipitation variation) (lower right), and panel (B) representing the significant interaction between env axis2 and genetic
dispersion on phenotypic dispersion.

et al, 2013; Keighley et al, 2020), and though no strong
population difference is seen across this range in Australian
starlings (Stuart et al., 2021b), our results suggest elevation is
likely still exerting small scale allelic effects. The second most
important environmental predictor was temperature seasonality,
providing further evidence that temperature fluctuations, which
also captures extreme temperature events, may be a more relevant
driver of survival and evolution of small insectivorous avian
species, compared to mean temperatures (Vasseur et al., 2014;
Gardner et al.,, 2017).

Region-specific patterns indicate that a relationship between
both higher temperatures and higher precipitation plays an

important role in shaping allelic trends along the southern
Australian coastline (Figures 3C,D). Meanwhile, allelic
patterns along the eastern Australian coastline appear to
covary primarily with altitude- and precipitation-related
variables.

Even when removing spatial effects on allele frequencies
through GF analysis, a divide between the south and east of
the starlings’ range is evident. It is possible that differing selection
regimes imposed in the climatically different introduction points
meant that during colonisation and expansion in these two
subpopulations they became locally adapted within their
regions. Each subpopulation now remains distinctive, not just
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because of neutral allele patterns such as genetic drift occurring

independently ~within the subpopulation, but because
environmental variables have shaped genetic variants
differentially. Finally, for inland Australia the mean

temperature of the driest quarter is most important for
explaining patterns of allelic diversity, likely due to radical
drops in precipitation, and this increases with distance from
the continental divide. These results align with predicted
environmental PCA based sample site groupings identified in
Stuart et al. (2021b), and identify which of the differential climate
variables are having the greatest effect within a region.

Heritability and Non-heritable Plasticity
Across Phenotypic Traits in an Invasion

We report a wide range of heritability values across the seven
phenotypic measurements assessed as part of this study. The large
error bars resulting from the small study sample size does mean
that cross-study comparisons of these heritability values are less
useful (particularly true for lower heritability values; Visscher
et al.,, 2014). However, using the 65% CI around the estimated
hy,,p, values, we identify that the phenotypic measures of body and
spleen mass had snp-based heritability values above 0, and
presumably higher than the snp-based heritability values of
the remaining phenotypic traits with hg,, measures not
significantly different from 0.

While we interpret the heritability values for body and spleen
mass as indicating these phenotypic traits are like more heritable
than the others used in this study a true heritability value
approaching unity (as has been estimated by the h,, values)
would be biologically unlikely, and thus we may expect the true
hyp,p, values to be towards the lower end of the confidence interval.
Nevertheless, it is apparent that trends in body and spleen mass
across Australia appear to be correlated with genetic relatedness,
an interesting result considering that both these traits may be
strongly influenced by non-genetic factors (Smith and Hunt,
2004; Husby et al, 2011) alongside heritable components
(Ubosi et al., 1985; Renning et al., 2007). It is possible that
selection during range expansion in response to novel pressures
have resulted in selection and high heritability estimates for these
traits, such as summer maximums driving mass clinal variation
(Andrew et al, 2018), or effects of infection, and parasite
exposure/release on an invasive species’ spleen mass (Ardia,
2005; Brown et al.,, 2015; Martin et al., 2015). The limitations
of correlation-based heritability estimates must be acknowledged
here however, as correlation analysis discern if positive
associations are causal in nature, and so these trends may in
fact be driven by an external adaptive or demographic factor. The
remainder of the phenotypic traits assessed as part of this study
were identified as having negligible heritability estimates: beak
surface area, wing length, tarsus length, head antero-posterior
cross section, and heart mass. Such low heritability is not unheard
of, as similarly low heritability estimates have been reported in
other species, for instance Silva et al. (2017) found zero wing
length heritability estimated for the house sparrow (Passer
domesticus) (Silva et al, 2017). Likely then these traits are
determined more so by plastic responses, though it is possible

Ecogeographical Patterns Within an Invasion

that the correlation-based analysis resulted in an underestimation
of heritability in our data. Underestimation would likely be the
case if phenotypic variation is determined by a very small number
or singular SNP variants, that act independently to the overall
genetic similarity used for heritability estimation in GCTA
(Domingue et al., 2016). Hence even for traits found to have a
hy,, estimate non-significantly different from zero we still
perform phenotype-association and outlier detection tests
using BAYPASS.

Out of all the phenotypic traits assessed in this study, only the
degree of variance in body mass was found to be heritable and
significantly associated with chromosome size (Figure 4A). Body
mass is a complex and undoubtedly highly polygenic trait, and
has been found to behave similarly across many different species
and studies (Robinson et al., 2013; Bérénos et al., 2015; Santure
et al., 2015; Silva et al., 2017), and appears to behaving likewise
within this invasive population.

Interpreting these trends broadly, we infer that body mass and
spleen mass are more dependent on underlying genetics, while
phenotypic traits with non-significant hg,, values such as beak
surface may vary only with environmental gradients, irrespective
of broad underlying genetics. Considering these results within the
context of previous findings in this species (Cardilini et al., 2016),
the ecogeographical relationships identified in Australian
starlings in that study may result from genetic gradients or
environmentally driven gradients. Maximal temperatures
predicted patterns of variation in body mass and bill surface
area (Cardilini et al., 2016), consistent with Bergmann’s (Meiri
and Dayan, 2003) and Allen’s (Allen, 1877) rules, which predicts
small body size and larger bill size in warmer climates. We may
then infer that while smaller body size in response to higher
temperatures are likely to be more broadly heritable, patterns in
beak surface area likely arise due to plastic effects, at least within
the Australian starling population. Such hypothesis may be tested
in future common garden experiments that raise individuals
under standardised conditions, with additional focus on
regions with differing frequencies of key phenotype-
associated SNPs.

Phenotypic, Genetic, and Environment
Correlates

The above two sections have demonstrated that despite strong
spatial genetic patterns, environmental variables are shaping
allelic trends across Australian starlings, and that phenotypic
traits across the Australian range have different levels of

heritability. Following on from this, we examined
relationships ~ between  phenotypic,  genetic,  and
environmental  variability, and assessed which

environmental variables appeared to be shaping individual
phenotypic traits.

Unsurprisingly, our study found that within Australian
starlings, overall phenotypic variance is correlated with genetic
variance, but the strength of this relationship is primarily
influenced by precipitation and vegetative ground cover
variation, rather than variation in temperature. This result
suggests that stable temporal patterns of ecosystem plant
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assemblages help to maintain less variable phenotypes,
presumably through plasticity because phenotype does not
depend on genotype in this circumstance. Conversely, highly
variable ground cover may interrupt plastic convergence to this
general-purpose phenotype, so that genetics assumes more
importance. Determinants of phenotypic plasticity within
populations has a major impact on long term avian species
persistence (Vedder et al., 2013). Our results demonstrate that
environmental stability may be a key consideration in limiting or
maintaining plasticity in this species. Because increases in
environmental variability are associated with climate change
(Thornton et al.,, 2014), we must consider that the evolved
plasticity limits of species may be reached, impeding their
ability to respond rapidly to change and thereby endangering
long term persistence of populations (Reed et al., 2010).

With respect to trait-specific environmental predictors, we found
the strongest association between isothermality (daily verses seasonal
temperature oscillations) and beak surface area-associated SNPs.
Previous research using maximal temperature data concluded that
beak surface measurements adhere to Allen’s rule (Allen, 1877;
Cardilini et al,, 2016), reflecting a widely found pattern of shape
shifting in response to warmer environments (Ryding et al., 2021).
Our results suggest that the trend may be more so driven by patterns
of temperature variability. We also identified high importance of
temperature variability measures in explaining tarsus-associated
SNP genetic patterns. A non-significant association between
temperature and this phenotypic measure was found previously
(Cardilini et al., 2016), however only temperature extremes were
tested in these initial models (maximum summer temperature and
minimum winter temperature). It is possible then that assessment of
phenotypic adherence to Allen’s rule may sometimes need to be
expanded to cover temperature variability.

In agreement with previous findings regarding heart mass not
adhering to Hesse’s rule (organisms will have larger hearts in colder
environments) (Cardilini et al., 2016), we see that precipitation has
the greatest effect on heart mass-associated SNPs, particularly
precipitation of coldest quarter. Precipitation also strongly
correlates with genetic patterns in spleen mass and body mass-
associated SNPs. A significant correlation has been found between
body condition and spleen sizes, and climatic conditions (including
precipitation) across numerous avian species, with the direction of
effects mediated by the nature of parasite-induced natural selection
within the species (Moller and Erritzge, 2003). Considering that both
spleen mass and body mass were found to be heritable, we may
hypothesise that precipitation during warm and dry months may
have a strong effect on fitness, and hence adaptation, within this
population. An alternate explanation for these genetic,
environmental, and phenotypic correlations is that these patterns
have resulted from range expansion along environmental gradients.
Therefore, future analyses of these traits should investigate whether
range edge effects can be detected in genes of interest. Four
phenotype-associated genes (GALKI, Scn5a, LHFPL3, and
CSMD2) were flagged as under selection across these three traits
and may play important adaptive roles in responding to
precipitation regimes across Australia, and other environmental
factors that may covary with precipitation (e.g. via CSMD2
mediated pathogen responses (Alber et al, 2020)). Despite the

Ecogeographical Patterns Within an Invasion

importance of elevation in shaping broad allelic patterns across
the Australian starlings’ range, it does not appear to play a
particularly important role in influencing any of the phenotypic
traits measured as part of this study, or at the very least does not
appear to co-vary with phenotype-associated SNPs identified in
this study.

CONCLUSION

Within the novel invasive Australian range, we found that adherence
to biologically significant ecogeographical patterns within starlings
may be accomplished through a complex sum of heritable and non-
heritable components. Heritable components of selection may be
driven by only a small number of biologically significant SNPs, for
which oftentimes temperature variability or precipitation during
warmer, dryer months play a vital role. A better understanding of
environmental and phenotypic interaction is invaluable for helping
predict climate shift responses (Tian and Benton, 2020). Further, to
what extent phenotypic shifts are non-heritably plastic gives us
important information about how climate shifts may result in
lost genetic diversity. Functional restrictions in avian genetics
(O’Connor et al, 2019) mean that selection driven by
ecogeographical patterns in many species may result in allelic
diversity loss for less plastic traits. Investigating phenotypic shifts
within invasive populations, particularly those that differ to the
species’ native climate, provide an indirect means of assessing
climate change vulnerability.
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