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Abstract: We report on the dual mechanical and proximity sensing effect of soft-matter interdigitated
(IDE) capacitor sensors, together with its modelling using finite element (FE) simulation to elucidate the
sensing mechanism. The IDE capacitor is based on liquid-phase GaInSn alloy (Galinstan) embedded
in a polydimethylsiloxane (PDMS) microfludics channel. The use of liquid-metal as a material
for soft sensors allows theoretically infinite deformation without breaking electrical connections.
The capacitance sensing is a result of E-field line disturbances from electrode deformation (mechanical
effect), as well as floating electrodes in the form of human skin (proximity effect). Using the proximity
effect, we show that spatial detection as large as 28 cm can be achieved. As a demonstration of a
hybrid electronic system, we show that by integrating the IDE capacitors with a capacitance sensing
chip, respiration rate due to a human’s chest motion can be captured, showing potential in its
implementation for wearable health-monitoring.

Keywords: stretchable; polydimethylsiloxane; liquid-metal; capacitor

1. Introduction

Soft electronics that enable conformal contacts on irregular surfaces is an emerging area with
increasing importance. The development of this technology is expected to enhance human–machine
interfaces to cover areas such as medical and e-health applications, robotics, and communications [1–12].
Flexible and stretchable electronics are vigorously studied for the choice of materials and integration
strategies [5–7,9,10,13]. However, flexible electronics is only suitable for a non-conformal substrate
that is static or does not undergo significant strain in the x-y axes during operation [7,13]. Stretchable
electronics, on the other hand, offers more degrees of freedom that can theoretically tolerate mechanical
strain in all three axes. This leads to increasing interest in the field of wearable devices for
health-monitoring. In such applications, soft sensors with a Young’s modulus that matches that
of skin are particularly attractive. This allows for prolonged human body attachment for continuous
health monitoring [5,9,13,14]. Hence, besides the functionality of the sensor, there is a need to
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address the mechanical robustness and the system integration strategies with high performance
integrated circuits (IC) [5,7,9,13,15–18]. This calls for novel materials and approaches, such as the
use of liquid metal or stretchable conducting materials, in place of conventional metal materials that
are rigid [19–21]. Several studies have reported soft-matter capacitors comprising of a microfludics
channel of liquid-metal (Galinstan) and described the theoretical model of capacitance change effect
under mechanical deformation [22,23]. While there are reports of sensors with similar structures being
used for bio-sensing and proximity sensing, the implementation of such sensors in real systems is still
lacking [24,25].

In this work, we report on the experimental characterization together with a finite element
(FE) simulation model of soft interdigitated (IDE) capacitors sensors. The IDE capacitor was
fabricated from serpentine microfluidics channels of GaInSn liquid alloy (Galinstan) embedded
in a polydimethylsiloxane (PDMS) matrix. The soft IDE capacitor, besides responding to perpendicular
strains in the x-y axes, also responded to proximity sensing of a human finger that has not been
reported before. In addition, previous reports have not described the IDE capacitor using FE simulation
with proper boundary conditions. We will address these in this paper. Experimentally, the opposite
capacitance change in the x and y directions allows for detection of direction specific strain with a
resolution of 0.02 pF/(% engineering strain) as verified by our FE simulation model. Proximity sensing
is achieved via the modifications of the capacitor’s fringing E-field by the surrounding dielectric
medium [26]. We show that spatial detection as large as 28 cm can be achieved by varying a human’s
finger distance to the IDE capacitor. The described FE simulation model provides a design guideline
for future implementation of such a class of sensors. Finally, as a demonstration of a hybrid electronic
system, we show that when the IDE capacitor sensor attached to a human chest is integrated with a
functional capacitance sensing chip, it can be used for on-body respiratory sensing by utilizing the
proximity effect, thus demonstrating its potential as a soft sensor suitable for use in wearables for
health monitoring.

2. Fabrication Process of Soft PDMS-Liquid Metal IDE Capacitor

The stretchable capacitor was composed of two layers of PDMS (Dow Corning Sylgard 184).
The first layer consisted of a microfluidics channel in the form of an IDE design, fabricated using a soft
lithography approach [9]. Special design care in providing for the inlet and outlet points were necessary
to ensure the Galinstan filled the microfludics channel properly without trapped air. The master mold
was made using a permanent resist (SU-8 3050, Microchem, Westborough, MA, USA), where the PDMS
pre-polymer was casted over the pre-fabricated design to a thickness of ~500 µm and removed after
curing by peeling. The second layer consisted of a plain piece of PDMS molded to the same thickness
of ~500 µm. For the formation of the closed microfluidics channel, the two PDMS layers were surface
treated using a light remote O2 plasma treatment before contacting with each other. A post-baking step
(90 ◦C, 2 h) ensured a permanent bond of the two layers of PDMS. Finally, the microfluidics channel
was completely filled with Galinstan using a needle and syringe approach. The Galinstan was injected
from the inlet point while air was extracted from the outlet point simultaneously to allow the complete
fill of the microfluidics channel. The height of the Galinstan electrodes was dependent on the master
mold, and was 100 µm in this case [9,27,28]. Figure 1a,b shows the fabrication process flow of the soft
IDE capacitor, and a photo image of the fabricated IDE soft capacitors with various sizes, respectively.



Materials 2019, 12, 1458 3 of 12

Materials 2019, 11, x FOR PEER REVIEW  3 of 12 

 

 
(a) 

 
(b) 
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resealed with PDMS to avoid leakage. 
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Figure 1. (a) Fabrication process flow of the soft IDE capacitor, and (b) photo image of the fabricated
IDE soft capacitors of various sizes. The height of the liquid metal electrode was 100 µm.

While encapsulated in the elastomer matrix, the PDMS provided good barrier resistance to moisture
as reported earlier, which otherwise would cause the oxidation of the Galinstan [9,28]. We immersed
the soft IDE capacitor in water for a period of 10 min and no visible and electrical change to the
capacitor were observed. Hence, this allows for its use without degradation in practical environment.
For electrical contact to the IDE capacitor, short sections of tungsten (W) wires (Goodfellow, 125 µm,
Huntingdon, UK) perforated the PDMS into the Galinstan reservoir and was resealed with PDMS to
avoid leakage.

3. Electrical Characterization and Modelling of a Static IDE Capacitor

The capacitance of all the fabricated IDE capacitors were first measured and calibrated using a
benchtop LCR meter (Keysight E4980A, Santa Rosa, CA, USA) at 1 kHz. In this set of measurements,
parasitic capacitance from the connecting wires to the LCR meter caused an offset to the intrinsic
capacitance by a fixed positive value. From the linear fit of the data points, the parasitic capacitance
was extracted as the y-intercept when the electrode length was zero. Correcting for the parasitic
capacitance, the actual capacitance of the IDE capacitors ranged from 1.05 pF to 2.40 pF. Figure 2
shows the as-measured capacitance across a total electrode length from 15 mm to 44 mm, together with
the corrected capacitance values and modeled values based on empirical equations. The corrected
capacitances agree very well with the capacitor model. It should be noted that the main discrepancy
between actual values and measured values comes from the wires’ parasitic capacitances of ~0.68 pF.
In subsequent measurements, the wires’ parasitic capacitances were removed from the measured values.
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Figure 2. As-measured capacitance across a total electrode length from 15 mm to 44 mm, together
with the corrected capacitance values and modeled values based on empirical equations indicated in
the legends.

In our IDE capacitor design, the electrodes were of non-negligible thickness, and that was
advantageous to enhance its capacitance and sensitivity. As such, a single coplanar capacitor model
was not sufficient. Instead, we used a combination of co-planar capacitor and bi-planar capacitor
model connected in parallel, as shown by the schematic in Figure 3.
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Figure 3. Schematic showing the electric field lines connecting two electrodes of the IDE capacitor.
Due to the non-negligible thickness of the electrode, the two contributions of the electric field lines are
the direct field lines, and the fringing field lines connected in parallel.

In this model, the electric field lines consist of those that flows directly between the sides of the
two electrodes, as well as the fringing field lines that flow from the top and bottom of the electrodes.
Further, the effective capacitance of such a structure is described using Equations (1) and (2) for the
coplanar model, and Equation (3) for the parallel plate model.
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where ε is the dielectric constant of the PDMS matrix, A is the area of the electrode given by channel
length × height of the microfluidics channel, and d is the spacing (100 µm) between the electrodes.
The above model for a static IDE capacitor was found to be in excellent agreement with experimental
values, plotted out together with the measured capacitance in Figure 2, validating the accuracy of
the model.

Fassler and co-workers have attempted to study the relationship between the deformation of IDE
capacitors and the effect on its capacitance using empirical equations [23]. In their model, they assume
that the electrode thickness plays a negligible role in the capacitance, and use only a single co-planar
model. However, the thickness of the electrode does contribute to the effective capacitance and should
be accounted for as described in Equation (3). In addition, the study is only limited to mechanical
strains in the x-y axes. Although model has been reported to predict the change in such a capacitor due
to the deformation of the system, it is done by setting assumptions, and does not allow for dynamic
boundaries conditions. In addition, the model does not take into account the modifications of electric
field lines due to an external change in dielectric material, which we termed as the proximity effect in
this work. This effect is similar to reported works on electric-field sensing but has not been discussed
thus far for IDE capacitors [26]. Hence, in this work, we further the study by modelling both the IDE
capacitor’s deformation and proximity effect using FE simulation. This allows for dynamic boundary
conditions to be set. By coupling the simulated results together with experimental measurements, we
elucidated the mechanism of capacitance sensing. The FE simulation was performed using Abaqus
and the setup is described in Appendix A of this paper. Separately, for the following functional tests
described in the following sections, a larger IDE capacitor was fabricated in order to achieve a higher
sensitivity and easier handling. The new IDE capacitor was fabricated using the same process flow
described earlier and the base capacitance was ≈9.6 pF after the parasitic capacitance correction.

3.1. Functional Test—Strain Effect

The mechanical deformation of the IDE capacitor led to a change in its geometry and a resultant
change in capacitance. As the IDE capacitor was strained in the x-axis (space between electrodes
pulled apart), the adjacent electrodes increased in distance from each other, causing a reduction in
the capacitance. On the other hand, when the IDE capacitor was strained in the y-axis (electrodes
elongating), the effect of the electrode elongating and a decrease in distance between adjacent electrodes
resulted in an increase of the capacitance. In the FE simulation, we applied the same boundary
condition at both ends of the PDMS during the stretching action. Figure 4a shows the FE simulation
model where we applied a fixed constraint on one side and a stretched displacement condition on
the other side, while Figure 4b,c shows the experimental measurements, FE simulated values of the
capacitance change w.r.t to the two different strain directions up to 50%, and a comparison to the model
described by Fassler et al. [23]. Good agreement between experimental and simulated values was
obtained, validating the accuracy of the FE model. On the other hand, though showing a similar trend,
there existed some error between the measured values as compared to earlier proposed model, thus
showing the advantage of FE simulation in such a study [23]. Finally, the IDE capacitor demonstrated
a resolution up to 0.02 pF/(% engineering strain).
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Figure 4. (a) FE simulation model where a fixed constraint was applied to one side and a stretched
displacement condition was applied to the other side. Stretching in both x- and y-axes was simulated.
(b) Relationship between capacitance and the x-axis strain. and (c) relationship between capacitance
and y-axis strain comparison between experimental, FE simulated, and the earlier model proposed [23].

3.2. Proximity Effect

In this section, we describe the proximity sensing effect of the IDE capacitor through the disturbance
of the E-field lines with objects placed at different distances from it. Figure 5a shows the testing setup
photo images where the IDE capacitor was connected to a precision impedance analyzer (Agilent 4294A,
Santa Clara, CA, USA) for capacitance measurement. The corresponding capacitance was measured
as a human finger was moved between different distances from the surface of the IDE capacitor, as
shown in Figure 5a. The proximity sensing mechanism is described as follows. Capacitive sensors use
capacitive transducers to detect the proximity of a body, and are broadly classified in three modes:
transmit mode, shunt mode, and loading mode [26]. Our setup behaved as a transmit mode where
one side of the electrodes acted as a transmitter, and the other side as a receiver. Figure 5b shows an
illustration of the different capacitance paths of the system as a human finger approached. The original
capacitor electric field was now coupled to the receiver side through the human finger, creating two
parasitic capacitances (C1 and C2) in series. Thus, the effective capacitance of the system increased
based on the capacitance summation rule in a parallel configuration between the intrinsic capacitance
C0 and the parasitic capacitances C1 and C2. C0, C1, and C2 were, in turn, dependent on the distance of
the human finger from the capacitor due to the strength of the electric-field coupling. The further away
the finger was from the capacitor, the weaker the coupling and the smaller the effective capacitance.
In our experiment, a reduction of capacitance was seen as the finger moved towards the capacitor,
while capacitance increased when the finger moved away from the capacitor. The proximity effect
could be felt by the sensor from a distance as far as 28 cm. Compared with the dielectric property of air,
human tissue is considered to be a conductive material. From the perspective of electrostatics, the
boundary of human tissue was assumed to be a floating electrode, where the total electrical charge at
the surface was equal to zero. The entire FE simulation model had a volumetric size of 10 cm × 5 cm ×
3 cm, and the IDE capacitor, air, and the human finger model is shown in Figure 5c.
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Figure 5. (a) Photo images showing the testing setup where a human finger is positioned at different
positions above the IDE capacitor. (b) Illustration of the different capacitance paths as a human finger
approaches the capacitor. C0 is the intrinsic capacitance and C1C2 are the parasitic capacitances. (c) FE
model in the numerical simulation (finger and IDE capacitor indicated) with a size of 10 cm × 5 cm
× 3 cm.

Figure 6a,b shows the capacitance versus distance of a human finger placed above the IDE
capacitor up to 28 cm (both experimental and simulated indicated in legend), and time based
capacitance measurements as the finger hovers above the IDE capacitor at a height of ~1–3 cm,
respectively. In this simulation, a simple numerical finger model was constructed (Appendix A).
The main factors resulting in the discrepancy between the experimental and simulated values were
due to the leaky fringe electrical field and the finger model difference. In addition, the simulated
distance was limited at 10 cm due to calculation complexity beyond that. Nonetheless, the trend of
the capacitance change agreed very well in both experimental and simulation, and the most sensitive
region lay within 1 cm from the IDE capacitor. The disturbance in the field line resulted from the float
electrical potential. When the distance between the finger model and sensor was within 1 cm, the leaky
fringe electrical field around the finger became large, resulting in a significant capacitance change.
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Figure 6. (a) Measured capacitance w.r.t. various distances a human finger was placed from the IDE
capacitor, and (b) transient capacitance plot when a human finger hovered above the IDE capacitor in a
cyclic manner at a height of ~1–3 cm above.

4. Demonstration of an IDE Capacitor Based Flexible Hybrid Respiratory System

Complementary Metal Oxide Semiconductor (CMOS) chips and printed circuit boards (PCBs)
integrated with soft components allow them to be interfaced comfortably with the human body.
The co-design of composite materials and electronic circuits/system in a monolithic form of a flexible
hybrid electronic system provides the guideline for on-body wearables. In this section, we demonstrate
a prototype hybrid flexible respiratory system by integrating the IDE capacitor to a rigid capacitance
sensing circuit using external wires [29]. In subsequent measurements, the capacitance data measured
by the chip is transmitted wirelessly via Wi-Fi protocol through a Raspberry Pi to a computer for
readout. In the current setup, the IDE capacitor was connected to the external chip using tungsten wires.
More reliable interconnects suitable for flexible system integration will be further investigated [30].

The human body respiratory detection was achieved by utilizing the proximity sensing effect of the
IDE capacitor, where the sensor was attached to the human chest. The expansion and contraction of the
chest caused change in the effective dielectric constant of the surrounding medium and disturbed the
electrical field lines. This allowed for the respiratory motion to be picked up in a straightforward manner.
Hence, the sensor was placed at a location where chest motion was obvious in this demonstration.
Figure 7a shows the photo image of the integrated system attached to a human chest, while Figure 7b
shows the logged capacitance values by the circuitry over 50 s. During the respiratory rate tracking,
the sensor and electronics were fully covered up by clothing. Notwithstanding the slight motion of the
clothing during breathing, we did not observe any distortion to the acquired waveform. Although
noise was present in the collected capacitance data, the undulating trace indicated the respiratory
motion was clearly visible over a range of ~0.2 pF. We demonstrate two different respiratory rates of
20/min and 60/min as shown in Figure 7b. In both cases, the sensor responded adequately, and the
captured rates matched with manual counting. The implementation shown here is straightforward but
effective, thus paving the way for such sensor to be implemented in a wearable medical device.
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5. Conclusions

In summary, we describe in detail the fabrication and electrical characterization of a soft
PDMS-Galinstan based IDE capacitor. An FE simulation model was developed that allowed for
dynamic boundary conditions to be applied, matching with experiments. With the Galinstan electrode
completely encapsulated in the soft PDMS matrix, the IDE capacitor was mechanically robust to
physical deformation as well as moisture. In addition to strain sensing in both the x and y axes, we show
the proximity effect of such a class of soft sensors by modifying the surrounding dielectric medium.
The disturbance of the electrical field lines by surrounding objects resulted in a change in effective
dielectric constant, and consequently, a change in the capacitance. This effect allowed for spatial
detection, and we showed experimentally that a sensing distance up to 28 cm can be achieved. The FE
simulation elucidated the capacitance change mechanism and provide a guideline for more different
applications. Finally, we demonstrate for the first time the use of an IDE capacitor based flexible hybrid
electronics respiratory system utilizing the proximity effect. An accurate human breathing pattern was
successfully tracked, paving the way for its use as a part of continuous health monitoring applications.
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Appendix A

The finite element (FE) model was built up and simulated using commercial software Abaqus
for non-linear FE analysis. We constructed two FE models to simulate the effect on the capacitance of
the sensor due to deformation and proximity. In the FE model, the PDMS substrate was modelled
using a C3D8RH element. PDMS was modelled using a hyperelastic material model (Mooney–Rivlin
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model in Abaqus) and was incompressible. The material parameters used were equivalent to the initial
Young’s modulus = 1 MPa and Poisson’s ration = 0.49, obtained experimentally. Since the channels
were completely filled with a nearly incompressible fluid, the surface-based fluid cavity capability
was used, and the pressure applied by the fluid on the surface of channel was determined using the
cavity volume.

To obtain the capacitance of the deformed sensor, the steady-state linear electrical–mechanical
analysis (piezoelectric elements in Abaqus) was performed on the deformed solid mesh, where the
piezoelectric constants were set to zero and the dielectric constant parameter was 2.62. In order to
obtain the capacitance, an electrical potential ∆U was applied on the interfaces between the elastomeric
matrix and liquid metal at the left and right channels. The charge Q in the channel was calculated
using numerical simulation and the capacitance was then obtained as:

C =
Q

∆U

In the proximity sensing simulation, the human finger was modelled as a simple model with
dimensions as shown in Figure A1. In this model, the human finger was regarded as a near perfect
conductor compared with the PDMS and air. To determine the capacitance of the position sensor,
the human was set to a floating electrical potential, where the net surface electrical charge was zero.
The resulting capacitance as a result of the finger distance to the sensor was extracted using the same
methodology as the deformation model described in the previous paragraph.
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