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Abstract
The Carnot cycle and its deduction of maximum conversion efficiency of heat inputted and

outputted isothermally at different temperatures necessitated the construction of isothermal

and adiabatic pathways within the cycle that were mechanically “reversible”, leading eventu-

ally to the Kelvin-Clausius development of the entropy function S with differential dS ¼ dq=T

such that
H
C dS ¼ 0 where the heat absorption occurs at the isothermal paths of the elemen-

tary Carnot cycle. Another required condition is that the heat transfer processes take place

infinitely slowly and “reversibly”, implying that rates of transfer are not explicitly featured in

the theory. The definition of ‘heat’ as that form of energy that is transferred as a result of a

temperature difference suggests that the local mode of transfer of “heat” in the isothermal

segments of the pathway implies a Fourier-like heat conduction mechanism which is appar-

ently irreversible, leading to an increase in entropy of the combined reservoirs at either end

of the conducting material, and which is deemed reversible mechanically. These paradoxes

are circumvented here by first clarifying the terms used before modeling heat transfer as a

thermodynamically reversible but mechanically irreversible process and applied to a one

dimensional atomic lattice chain of interacting particles subjected to a temperature differ-

ence exemplifying Fourier heat conduction. The basis of a “recoverable trajectory” i.e. that

which follows a zero entropy trajectory is identified. The Second Law is strictly maintained in

this development. A corollary to this zero entropy trajectory is the generalization of the

Zeroth law for steady state non-equilibrium systems with varying temperature, and thus to a

statement about “equilibrium” in steady state non-thermostatic conditions. An energy trans-

fer rate term is explicitly identified for each particle and agrees quantitatively (and indepen-

dently) with the rate of heat absorbed at the reservoirs held at different temperatures and

located at the two ends of the lattice chain in MD simulations, where all energy terms in the

simulation refer to a single particle interacting with its neighbors. These results validate the

theoretical model and provides the necessary boundary conditions (for instance with regard

to temperature differentials and force fields) that thermodynamical variables must comply

with to satisfy the conditions for a recoverable trajectory, and thus determines the solution of

the differential and integral equations that are used to model these processes. These devel-

opments and results, if fully pursued would imply that not only can the Carnot cycle be
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viewed as describing a local process of energy-work conversion by a single interacting parti-

cle which feature rates of energy transfer and conversion not possible in the classical Carnot

development, but that even irreversible local processes might be brought within the scope of

this cycle, implying a unified treatment of thermodynamically (i) irreversible (ii) reversible (iii)

isothermal and (iv) adiabatic processes by conflating the classically distinct concept of work

and heat energy into a single particle interactional process. A resolution to the fundamental

and long-standing conjecture of Benofy and Quay concerning the Fourier principle is one

consequence of the analysis.

Introduction
Amajor objective of this work is to focus on heat conduction as it directly relates to the formu-
lation of the Second law [1] where the definition of heat is concerned, and the implications of
strictly conductive heat flow on how systems may be described by reference to such a phenom-
enon. General considerations taking into account conductive heat lead to rigorous theorems
that describe conditions where various minimum entropy principles obtained under stated
conditions, (Chap. IV [2], Sec. 3.2 [3]) which revealed that the much cited Prigogine deriva-
tions (see esp. p.76, [4]) are approximations at best (p.17–18, par. after Eq (55) [3]) and where
these minimum principles need not necessarily obtain. A careful restatement of conductive
heat based on the Benofy and Quay (BQ) study and analysis of heat conduction [5] lead to a
description of any steady state system (fluid phase in particular) with a temperature gradient
with the fluxes obeying Onsager reciprocity conditions to any order (Sec.4, Eqs (49–54),
Appendix, Eqs (A3–A6) [6]) without the use of the cardinal time-reversibility arguments
which was proven to be a mathematically inappropriate and frequently incorrect concept when
applied to physical systems [7, 8]. Other illustrations of conductive heat include the theory of
thermal desorption of gases from a surface (sec. 4.4, Eqs 84–98 [9], Eqs 1–44 [10]) where the
modern forms stem from the foundations laid by Redhead [11], where it is shown that for dis-
integrating systems, there is a coordinate trajectory along which the entropy is conserved; such
trajectories are termed “recoverable” [9] which extends the Redhead analysis. A new formula-
tion of statistical mechanics for such disintegrating systems had to be constructed for such
non-equilibrium (NE) and irreversible phenomena (Sec. 3, Eqs 24–32 [9]). This development
could be written in variational form for the class used to derive the more precise form of the
Kelvin relations (Eq 1 [12]) as

d
Z
@C

dS

� �
U ;fxg

¼ 0 ð1Þ

where the (Euler-Lagrange) variation of the entropy S is not over the system but the trajectory
@C of a “macroparticle” subject to the constraints of fixed energy content U and external con-
straints {x} pertinent to the entire system, where the standard Kelvin identities appear as first
order relations (Sec. 3, Eq 18–19 [12]). Liouville spaces are not used in the trajectory descrip-
tion (p.169, top par. [9]). In the above description, the system is in the steady state with “work-
heat” interconversion where the usual partition of work and heat is maintained. Thus one
interesting but not obvious question to pose given the above sequence of deductions concern-
ing work-heat transformations would be whether “pure” heat conduction, as a phenomenon
described by the Second law as leading to an increase in entropy when conveyed between two
heat reservoirs can in fact be decomposed into a series of interactions that in fact imply
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conformance to the Second law at the local level—as with the above examples of work-heat
optimal transformations—whilst maintaining optimal efficiency relative to the moving frame
of reference used, without any violation of the Second law as it is currently understood, espe-
cially in relation to fixed frames of reference? This question also reverses the very involved dis-
cussion of BQ concerning the Second law (p.10 last par.- p.11, first par. [5]), Fourier heat
conduction and their theory of Thermomagnetics where the concept of “locality” seems to be
associated with non-work transitions, i.e. pure heat transfer without work (p.11 [5]). BQ have
defined the Fourier principle F for all practical purposes as embodied in the inequality q.r
T� 0 where q should be interpreted as solely the heat conduction current with T the
temperature:

“On the other hand, as seen above, F (the Fourier principle) is a strictly local principle that
cannot be applied as it stands to systems as a whole but holds for every point of a system
and does not permit local exceptions based on the behavior of the rest of the system. No
matter what happens in the rest of the system, it is the local temperature-gradient that deter-
mines, along with the material properties, the direction of heat-conduction at a given
point.” (Italics mine)

Such a strict partitioning is also associated with zero work, if all the energy transferred is due to
conduction, i.e. heat energy transfer. Clearly this viewpoint is adopted whenever the First law is
expressed as

dU ¼ dqþ dW ð2Þ

with the energy dU composed of increments due to heat dq and work dW, where these two
increments are strictly orthogonal and do not share the same function space.

Incidentally, it was shown through a rigorous contrapositive argument that the BQ condi-
tion (akin to their understanding of F) for all steady state systems

R
V r � Jq/T)dV� 0 [13] had

to be replaced by
R
V r � (Jq/T)dV� 0 (Eq 13 [14], p.55, Eq (13) [2]), which lead to a correction

−εrT in their thermoelectric equation (Eq 13 [15]) from their expressionrϕ = τrT (Eq 14
[15]). Also, using the corrected expression lead, by expansion of terms, to a different descrip-
tion of thermoelectricity where the Kelvin identities are first order approximations [12], where
in a moving frame, the equality of the corrected expression obtains for a defined recoverable
trajectory. For instance, (p.12, Eq (34(a-b), second citation, p.15 [12, 16]) the expressions for
the Seebeck coefficient (with σT, c = 0, T = 0) and without Nernst law assumptions is

εT 0 ;c ¼
ZT 0

0

sT;c dT

2
4

3
5=T 0 ð3Þ

and

εT};cT
} � εT 0 ;cT

0 ¼
Z T}

T 0
sT;c dT ð4Þ

respectively, where the T’s are the temperatures, the ε’s the Seebeck coefficient and the σ’s are
the absolute Seebeck coefficient for current I = c. This may be contrasted to the (approximate)
Kelvin form

S2 � S1 ¼
Z T2

T1

m=Tð Þ ð5Þ
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with the S’s being the Seebeck coefficient according to Kelvin, and μ the Thomson coefficient.
For BQ then, Fourier heat conduction is a strictly local phenomenon, whereas the Second law
with the Carnot optimization refers to global boundary conditions, where local violations (e.g.
the movement of “heat” energy from a colder to a hotter region) can occur if there is a global
compensating mechanism (for instance, a Carnot device working in reverse transporting heat
from a colder to a hotter thermal reservoir, where work must be performed on the system) so
that in a complete analysis, no violation of the Second law would take place. Whilst it stands to
reason that subject to the Second law being true, this must necessarily be the case, there seems
to be a paradox in this approach in that it presupposes some type of super-memory effect
where for any arrangement of the system, the various heat and work terms would adjust the
efficiency in such a manner that there is no violation of the Carnot maximum efficiency for net
transfer about two thermal reservoirs with differing temperatures; if not some remarkable
memory effect over any arbitrary configuration of the system, then a non-random long-ranging
force field must be posited for any arbitrary system such that however improbable, no violation
of the Carnot efficiency would ensue. Since such a hypothesis is improbable, we attempt here
to construct a paradigm whereby heat (as defined by energy transfer due solely to a tempera-
ture difference) is both analytically global and local in scope so instead of assuming the BQ par-
titioning of processes that are deemed to be either analytically global or local in nature,
however improbable, it was decided to construct a paradigm whereby heat (defined as a form
of energy transfer due solely to a temperature difference between two regions of a homoge-
neous material) was both analytically global and local in scope within the limits set by the
atomic nature of matter; this implies that the force interactions would be interpreted as having
energetics that are defined in both mechanical and thermodynamical terms locally. Since previ-
ous work had developed a paradigm of thermal desorption where the temperature of the mole-
cule on the substrate surface is higher than the free molecules with zero entropy change for the
moving ensemble of particles as it leaves the surface (Sec. 3 Development of Kinetic Postulates,
Sec. 4.4 [9]), it was considered possible to extend this model to heat conduction as well, if one
could account for the fact that in normal heat conduction, the system is not disintegrating,
unlike the disintegrating case of a system of a fixed number of molecules leaving the surface.
For a disintegrating system a theorem was proved (p. 177, Sec. 4.4 [9]) which asserted the
following:

“If the generalized Carnot engine is disintegrating, then it is necessarily a frictionless
device”.

The method used for a non-disintegrating system is to design a mechanism whereby one
could consider scattering on several equally spaced lattice planes; if each lattice plane had a
recoverable (zero entropy) trajectory, then the sum of all the scattering would also be recover-
able. Thus this mechanism is both local, and at the same time global in terms of the Carnot effi-
ciency. We believe such an analysis is more realistic as it does not involve the assumption of
improbable events as discussed above. Since the above shows that many irreversible processes
could be reduced to one that was equivalent to a conductive process, or to a recoverable system
(as with thermocouples), then such a paradigm could conceivably simplify thermodynamical
analyses, apart from providing a theoretical interpretation that could encourage the framing of
the thermodyanamical equations for the First and Second laws in terms of such transitions
about moving frames where the work and heat terms are not viewed as orthogonal and separa-
ble. One simplification that does away for instance of the need for time reversibility in develop-
ing reciprocity relations was the manner in which a steady state system within a temperature
field was reduced to a strictly conducting system [6, 8, 17], where all the fluxes induced by the
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forces have a conductive component; other potential simplifications might result from the the-
ory that draws attention to the nature of heat transport as a potential source of work without
contradicting the Second law. As mentioned above, the problem one faces in forming this para-
digm is that previous work focused on developing the recoverable or zero entropy trajectory
for unidirectional irreversible scattering of particles under a mean potential �WðrÞ (Eqs 93–98
[9]), whereas for basic steady state heat conduction processes involving a lattice chain—the
model used here—there is also net back-scattering that must be accounted for and so appropri-
ate local terms have to be identified, so that a net recoverable trajectory results. One spin-off
from this paradigm is the generalization of the Zeroth law for a temperature non-invariant
steady state system.

As with all paradigms—especially those that are more recently mooted—the elaboration of
any of the details of the method outlined are protracted, often multi-generational intense
research endeavors: the research questions that would arise might include the following:

1. how does the reference model adopted here for bounded particles translate for systems with
particles in a free fluid molecular environment?

2. how does one deconvolve the various dynamics of the subspaces associated with the motion
from an averaged motion?

3. what type of density distribution function(s) might be expected from the energy transfer
mechanism and what is the relationship of the distribution function to the overall
dynamics?

Questions such as the above for more complex systems would be topics addressed for future
work, as the concepts introduced become more clear in its scope in time with further elabora-
tion by various workers. However, in the creation of the most basic paradigm of heat transfer,
the probability density function is not required to describe the motion; the operational defini-
tion of temperature via the BQ diathermal fiber [13] coupled to the Dhar-RLL condition Eq
(30) for steady state systems is an adequate basis for the definition of temperature and the ener-
getics associated with the temperature parameter. The description of the paradigm given here
is independent of the results of future technical developments; the focus here is on the descrip-
tion of heat as given by various axioms and not on the mathematical and computational results
that are based on various axioms that differ from what is being described here. Indeed, the sur-
vey of the field here shows that effort seems to be directed not so much to questions of interest
to the natural philosophy of the area under investigation but more to the analytic and numeri-
cal solution of differential, integral and algebraic equations as things-in-themselves within
fixed axiomatic structures that are not considered important for further consideration. For
instance, it is acknowledged below by one prolific worker that despite the concept of tempera-
ture being ill-defined and controversial, nevertheless effort can be directed to novel mathemati-
cal outcomes—both analytic and numerical—irrespective of any precise definition of
temperature. The work here, on the other hand does not have one iota of pure mathematical
novelty—indeed the mathematics used here is trivial- but rather focuses on the basic concepts
that have been used and continue to be used in framing equations and how it might be possible
to re-conceptualize some of the basic propositions in thermodynamics, which could also influ-
ence the way mathematics is used to solve physical problems in thermodynamics.

State functions, density functions and entropy considerations
The development of the Carnot cycle necessitated the construction of isothermal and adiabatic
pathways within the cycle that were assumed to be mechanically “reversible” which lead
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eventually to the Kelvin-Clausius development of the entropy function S where for any revers-
ible closed path C,

H
C dS ¼ 0 based on an infinite number of concatenated Carnot engines that

approximated the said path and where for each engine of infinitesimal extent ΔQ1/T1 + ΔQ2/T2

= 0 where the ΔQ’s and T’s are the heat absorption increments and temperature respectively
with the subscripts indicating the isothermal paths (1, 2), (excerpt of E. Clapeyron, “Memoir
on the Motive Power of Heat”, Fig 1, p.38 [18]) where for the Carnot engine, the heat absorp-
tion is for the diathermal (isothermal) paths of the cycle only.

Since “heat” has been defined as that form of energy that is transferred as a result of a tem-
perature difference (p.73 [19], 1st cite, p.229 of [1, 20]) and a corollary of the Clausius state-
ment of the Second law is that it is impossible for heat to be transferred from a cold to a hotter
reservoir with no other effect on the environment, (p.10, Clausius deduction [5]) these state-
ments suggested that the local mode of transfer of “heat” in the isothermal segments of the
pathway does imply a Fourier heat conduction mechanism (to conform to the definition of
‘heat’) albeit of a “reversible” kind, but on the other hand, the Fourier mechanism is apparently
irreversible, leading to an increase in entropy of the combined thermal reservoirs at either end
of the material, leading at first sight to a paradox. These and several other considerations lead
BQ [5, 13] to postulate that the Fourier heat conduction phenomenon to be another ancillary
principle in thermodynamics, (p.9 [5]):

“We shall argue that Fourier’s theory contains a further thermodynamic principle . . . as a
sort of addendum to it. This addendum we shall call . . . Fourier’s Principle, or simply F”.

The difference between the Zeroth law and F according to BQ is that the Zeroth law is mean-
ingless for a single point, and for any two points it is indifferent to the mode of transport (con-
version, radiation or convection). The Fourier principle (p.9, bottom par. [5]) is a local
principle, which obtains for each point in the system if a temperature gradient is definable
there. Here, we create a paradigm whereby the Second law, which according to BQ cannot be
applied to F since the Second law is a global statement, actually implies the Second law where
the energy transfer is that of one corresponding to optimized Carnot efficiency. This develop-
ment then runs in the opposite direction to that envisaged by BQ, who could modestly claim
that against their arguments, there might be a possibility of efforts that could result in subsum-
ing Fourier conduction under the Second law (p.21, top par. [5]):

“The fact that contemporary engineering seems to have found no problems with its heat
flow equations . . . confirms the reasonableness of taking Fourier’s inequality as a thermody-
namic principle that can be sustained in its own right, unless perhaps, someday someone
succeeds in subsuming it under the Second Principle”.

Whilst we maintain the truth of the inequality for strictly conductive heat transfer, with the
principle being strictly local in nature, we do say that it it subsumed by the Second law, where
the Second law statements can also be applied to this local process (in all cases within the limits
of atomic dimensions). With hindsight, we understand that the gradient of the temperature
requires the temperature to be defined at all neighborhoods of a point which does not obtain
for atomic systems, and so a local effect would extend typically to a region of some atomic or
particle diameters to suitably define gradients of thermodynamic variables; in the development
here, it would extend at the minimum to the average distance between two particles. This work
presents equations that model heat conduction as a thermodynamically reversible but mechan-
ically irreversible process where due to the belief in mechanical time reversible symmetry, ther-
modynamical reversibility has been unfortunately and incorrectly linked to mechanical
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reversibility [8], that has discouraged such an association that is being made here. The model-
ing is based on an application of a “recoverable transition”, (Sec.3 Development of Kinetic
Postulates, pp.168–170 [9], see esp. p.244 on new first order rate expression proposal [10])
defined and developed earlier on ideas derived from thermal desorption of particles from a sur-
face where the Fourier heat conduction process is approximated as a series of such desorption
processes, with due consideration for backscattering in the current formulation not made in
former treatments. We recall that the original Carnot engine required both adiabatic and iso-
thermal steps to complete the zero entropy cycle, and this construct lead to the consequent
deduction that any Second law statement that refers to heat-work conversion processes are
only globally relevant (p.11, bottom paragraph [5]). Here, on the other hand, we examine Fou-
rier heat conduction as an essentially local process based on the results of MD simulations and
model this process as a zero-entropy forward scattering process relative to each of the atoms in
the lattice chain being treated as a system where the Carnot cycle can be applied individually.
In order to deconvolve the various force interactions in this framework, and to ensure that
both forward and backscattering processes are accounted for, recourse is taken to a simpler ref-
erence model which is generalized to the continuous-force lattice system of the MD simula-
tions. The MD simulations illustrate that it is possible to give a quantitative interpretation to
the theoretical constructs attempted here. Since the scope of the project is extensive, and where
the concepts of temperature, equipartition and principle of local equilibrium (PLE) has not
been extended to NE systems unambiguously, due to a lack of consensus, which did not dis-
courage the development and application of mathematical and algebraic techniques to solve
problems in the field. We limit ourselves to systems that do not seem to contradict these
assumptions for NE systems, but the analysis here in not founded on these assumptions. We
assume the validity of the PLE (p.7 [21]) but with augmented variables, unlike standard linear
irreversible thermodynamics whereby for any steady state, the stationary thermodynamical
variables corresponds to the equilibrium variables for the same quantity; in our case, we shall
apply the assumption to the definition of temperature through the device of the BQ diathermal
fiber to determine NE temperature [13], and relate the value determined by the diathermal
fiber experimentally to the Dhar-RLL theoretical definition of temperature that obtains from
an equipartition theorem; the energy variable from the First law obtains for all systems in any
state. This PLE has been mathematically disproved [22] theoretically for non-augmented vari-
ables where the additional variables are required to described the NE state; subsequently,
NEMD simulations of a hysteresis dimer chemical reaction subjected to extreme temperatures
of several million Kelvins (and large temperature gradients of similar order) show that the
principle breaks down [23–25], corroborating the previous theoretical result. NEMD simula-
tions of a simpler non-chemical reaction of a LJ fluid system seemed to corroborate the validity
of the Onsager reciprocity relations for extremely high temperatures and temperature gradients
and results such as these gave support to using this principle for describing irreversible systems
in general [26–28]. There is however a difference in how this principle is being used here,
where two temperatures are associated with a particular particle; these temperatures are con-
structed relative to interactions at two different phases of the forward and reverse energy scat-
tering processes. In complex interactions, simulations has shown that a virtual Gaussian
(Maxwell-Boltzmann (MB)) energy distribution [29] associated with a fixed temperature may
result as a summation of various NE processes with non-Gaussian or MB distributions. Hence
there is no reason to assume that the energy profile over the “averaged” trajectory of the single
particle would have a Boltzmann energy profile, but that the deconvolved backwards and for-
wards process could in the reference model. Indeed, in standard equilibrium applications, equi-
partition for instance applies only when the associated (p, q) momentum-spatial coordinates
are “canonical” [30], a point often neglected in mathematical treatments. For this reason, only
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approximate theorems could be derived concerning energy-interconversion processes in the
determination of reaction rates, [23–25, 31] which was ignored in some paralleling develop-
ments [27, 32]. Indeed in standard and stable renderings of the Fokker-Planck (FP) equation
for systems characterized by a single temperature T, but where system particles are subjected to
resistive forces, such as −αv with the resistive coefficient α coupled to the velocity v [33] in a
random fluctuating force field F0(t) which arises from a Brownian heat bath for the particle of
massm, with γ = α/m the following dynamics

m
dv
dt

¼ �av þ F 0ðtÞ ð6Þ

leads to the second order, double moment Fokker-Planck expression for the velocity probabil-
ity density P given an initial velocity v0

Pðv j v0Þ ¼
m

2pkTð1� e�2gsÞ
� �1=2

exp �mðv � v0e
�gsÞ2

2kTð1� e�2gsÞ
� �

ð7Þ

where s is the time elapsed. What is interesting in Eq (7) is that a temperature T can be associ-
ated with a NE profile, which transforms to the time-independent profile when s!1 for that
specified temperature T: Eq (7) is useful for transient isothermal phenomena, where a zero cur-
rent steady state obtains when s!1 and may be contrasted to the non-zero steady state cur-
rent probability of Attard for instance (Eq 63 [34]) where over a smaller subsystem length L
(theoretically, the limit L! 0 exists) whose ends are at ±L/2 and are maintained at T+, T−

respectively. Making use of various assumptions, such as the adiabatic evolution of the Hamil-
tonian (meaning no heat flow to the isolated system), and the cardinal time-reversibility prop-
erty (Eq 4 [34]), a steady state probability density (Eq 63 [34]), supposedly non-“Gaussian” is
derived consisting of exponential terms in the numerator and a type of steady state partition
function in the denominator. The connection of this and other related work to the Jarzynski (J)
equality is noted (p.224103–8 [34]); J is discussed in later sections. The work here, on the other
hand is focused on “local” properties (within limits of molecular distances). In response to the
above, we conjecture that the equilibrium density is a special case of the NE constant tempera-
ture steady state with non-zero independent fluxes and forces (J,X) respectively, where the
same algebra can be used in deriving the density distributions for the various ensembles

(Chap.2 [35]). Thus if the system Hamiltonian operator is Ĥðp̂; q̂;OÞ where (O� (V, N)) for

the equilibrium state, then solving the quantum Schrodinger equation ĤOCO;i ¼ EiCO;i leads

to the energy eigenvalue spectrum Ei from which the density is derived by standard methodol-

ogy (Chap.2 [35]). Solving for the steady state condition ĤO0CO0 ;i ¼ EiCO0 ;i where (O
0 = {O

0 [
(J,X)} will according to the conjecture provide a local density distribution with the temperature

determined by the BQ diathermal fiber. Relative to the ĤO equilibrium Hamiltonian, the den-
sity ρO0 will have a structure of a possibly non-Gaussian perturbation. We show (paragraph
after Eq (45)) that our theory of recoverable transitions is not(a) dependent on the shape of the
probability distribution and its departures from the thermostatic quantities nor (b)on equipar-
tition results that refer to the potential energy. The generalized temperature is determined by
the Dhar-RLL result Eq (45).

BQ have extended the operational definition of NE temperature by recourse to the “dia-
thermal fiber” [5, 13] which extends the Zeroth law to NE systems; if there is no net flow of
energy between regions (quasi-points) A and B that is connected by this fiber, which can only
conduct thermal energy with no transport of matter, then these regions are defined to be at
the same temperature. Implied in this definition is a connection to the thermostatic systems.
Thus if our reference system is known to be in thermostatic equilibrium, (say located in
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region B) with temperature T, and the NE system is at region A, with a designated tempera-

ture T̂ , then according to this definition T ¼ T̂ . The definition allows one to deconvolve a
complex NE process into one that is composed of different temperatures that are equivalent
to the thermostatic temperatures ascribed to the same region for these different processes, for
instance we show different temperatures obtaining for the forward and back-scattering pro-
cesses in our lattice chain. From above, we note that the density-in-phase distribution is either
rescaled in the temperature as in the FP example above, or else the density-in-phase distribu-
tion is anomalous [34], so that the equipartition results that are obtained from averaging
using these distributions will not provide the standard thermostatic results even for the same
local Hamiltonian, since there is ambiguity with regard to the temperature or the density-in-
phase distribution used in averaging. In this work, the density distribution is of no relevance;
the NE temperature will be determined by recourse to the BQ fiber and the Dhar-RLL result
of Eq (45). On the other hand if a deconvolution is attempted, then it becomes possible to
define NE temperature obtaining for each of the separate processes subjected to the axioms of
the Second law obtaining for these systems; the first axiom used here is that for each of these
separated processes, the temperature would be the same as for that determined by the diather-
mal fiber. However, since we are partitioning the processes, the time coordinate for a
sequence belonging to a particular process is discontinuous in some neighborhood of that
variable. It is not obvious how this partitioning scheme is equivalent to the methods currently
used, where there is a conflation of these various processes [34, 36–39]. The interest of
researchers, judging from the literature, are the dynamics of processes as described by the
solution of differential, integral and algebraic equations that are set up with different bound-
ary conditions; the content of the research being primarily the ability to solve and describe
these solutions and the reasons why these equations were selected. The interests here, how-
ever, focuses on the relationship of heat transfer and the Second law, and the consequences of
those relationships using the primary definitions provided by the pioneers of thermodynam-
ics over the last few centuries.

The equations that derive from the paradigm developed here shows that the “work” done in
the transfer of energy in the single particle representation are at optimal Carnot efficiency—
which is the conductive energy due to a temperature difference—and is equal in magnitude to
the energy transfer rate due to Fourier conduction, which by definition is the heat transfer rate.
This implies that the two forms of energy are not mutually exclusive, as assumed in standard
thermodynamic analyses, and that a more generalized treatment that can subsume both these
forms of energy in thermodynamics is feasible. Such a detailed exploration is reserved for
future consideration. The MD simulations show that it is possible to give a numerical interpre-
tation to each of the constructs attempted here. Such views and results as these, if developed to
a successful conclusion could imply that the Carnot cycle can be viewed as describing a local
process of energy-work conversion and that irreversible local processes might be brought
within the scope of this cycle, implying a unified treatment of irreversible, reversible, isother-
mal and adiabatic thermodynamic processes.

Principles were developed in connection with the thermal desorption problem, where it was
proven that the irreversible desorption of particles on a surface [9] within a relaxation time τ
conforms to an adiabatic scattering zero entropy process along the center-of-mass frame of the
desorbing particles (Sec.4.4, Eqs (85–98) and Eqs (30–44)resp. [9, 10]). To summarize the
more detailed treatment found in (Sec. 4.4 [9]), for transitions between states i with probability
pi before a transition and p0i after, where state i transmutes into another state (denoted by
primes), the entropy change ΔS assuming the form given by equilibrium thermodynamics and
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assuming the PLE is

DS ¼ kk0D
XN
i¼1

pi ln pi ¼ 0 ð8Þ

for the entire transition of all states i imply

piðEi;TÞ ¼ p0iðE0
i;T

0Þ: ð9Þ

A recoverable transition is defined as one that conserves the probability of an energy chan-
nel or microstate of the system such that ΔS = 0. This condition is met whenever S = S(P), for
probability distribution P, where δP = 0. The above follows from the fact that the events associ-
ated with process with energy state i0 follows directly from state i, conserving the probabilities
[8, 9, 17]. This leads in turn for any of the canonical Maxwell-Boltzmann, Fermi and Bose-Ein-
stein probability distribution to the relation

Ei=ðkTÞ ¼ E0
i=ðkT 0Þ ð10Þ

where the E’s are energy variables between the two states with defined temperatures T, T0 and
where the partition function Z too is conserved, i.e. Z ¼ Z 0 (Eq 65 [9]), and where if we
summed the energies in Eq (10), we have the heat energy Q ¼Pnt

i Ei conforming to (Eq 73
[9])

Q
kT

� Q0

kT 0 ¼ 0 ð11Þ

or the entropy is conserved for this “heat pulse”movement which has been described as a recov-
erable trajectory. In this theory, theQ’s represent the total energy of the ensemble of particles
(Sec. 3–4, pp.168–179 [9]). We note that the prime and unprimed variables refer to the same
system making a transition. These transitions are “thermodynamically reversible” in the sense
of zero entropy change [8], but is clearly mechanically irreversible [8]. The above system follows
[9, 10] an event streamline, where each event is separated by a relaxation time tau leading to the
primed state; clearly this transition is non-cyclical, and the initial and final states differ in spatial
location as well as in the thermodynamic state;. For the ith state transiting a sequence of states q,
the probability does not change (Eq 14 [9]) i.e. Pq

i ¼ ci or dP
q
i ¼ 0 as in the thermal desorption

problem [10], which is a mechanically time irreversible process leading to the disintegration of
the system as particles leave the surface. It was previously proved that the concept of time-rever-
sal invariance, a central tenant in the description of physical systems is a mathematical contra-
diction [7, 8, 17, 40] in the manner that it is applied mathematically to physical models of
systems. Nevertheless, research still persists that depicts this natural irreversibility or absence of
time-reversal invariance as an anomaly leading to discovery of high impact [41]. If the NE
entropy S is written as S ¼ SðS;O;PðtÞÞ per particle of the disintegrating ensemble, where S,
O,P and t are the NE, thermostatic, probability spectrum and time variables respectively, and
for any fixed (S, O) = Λ then the recoverability condition δ P = 0 in the NE domain within a
relaxation time δt = τ implies dSðL;PðtÞÞ ¼ 0. If all the particles on a surface are at tempera-
ture Tb, then the particle flux after desorption is Ta, then Tb> Ta (p.178, ref. 40 within of first
citation [9, 42]), the total work function �Wþ

c which includes the kinetic energy of the center of
mass velocity of the particle ensemble is such that dS ¼ 0 and �Wþ

c ¼< Qb > � < Qa > fulfill-
ing the conditions of a recoverable trajectory (Eqs 97–98 [9]). For the usual first order kinetics
desorption problem, the rate constant kd based on this model of recoverability theory was later
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shown to be (Eq (44) [10])

kd ¼ 2
dGð�X=ððRð0Þð1� a2ÞÞÞ

dt
j
t!0

ð12Þ

where R(τ) is the autocorrelation function for white noise (Gaussian temperature heat bath of
the surface)

RðtÞ ¼ kT
kðmÞ exp� ajtjð cosbtþ a

b
sinbjtjÞ

where �X ¼
ffiffiffiffiffi
2 �W
k

q
is determined from experiment and the error function is

GðXÞ ¼ 1ffiffiffiffiffiffi
2p

p
Z X

�1
ðexp�y2

2
Þdy:

From the Theorem (p.177 [9]) this disintegrating system coupled to a definite temperature
reservoir for the surface is frictionless. In particular, it is mechanically irreversible since the
particles cannot traverse past the surface, and the intermolecular potential allows only for
escape through the forward motion during molecular desorption.

For the above system, [10] that is disintegrating, the ad-atoms on the surface of the substrate
eventually all leave the surface, and each of these ad-atoms have instantaneous energy E0,
where E0 ¼ E � dW , dW being the work done by the particle on the force-field it traverses,
which is absorbed into the field. The particles then move on to infinity in space if no work
potentials are present along the trajectory when the kinetic energy of the particles are still posi-
tive. Clearly for this situation, no structure is preserved of the original system, and there is uni-
directional motion. Of interest then is to investigate the possibility of modeling energy transfer
processes that has something of the form above of zero entropy trajectories relative to the
defined heat terms, but where the system is not disintegrating, i.e. where structural integrity is
preserved as in typical descriptions of thermophysical systems in the steady state. The reason
why this system is relevant is because of the temperature gradient, i.e. the temperature
decreases along the streamline, which is consonant with that of conductive heat transfer. How-
ever, a critical issue here is to ensure that no violation of the Second law is implied in framing
the model. Thus some Second law consideration is warranted to ensure no violation. The Clau-
sius statement C of the Second law (p.184 [43]) may be stated as:

“No process is possible whose sole result is the transfer of heat from a cooler to a hotter
body”

whereas the Kelvin-PlanckK version (p.185 [43]) is

“No process is possible whose sole result is the absorption of heat from a reservoir and the
conversion of this heat into work”.

The subtle proof of their equivalence is well-established (p.185–187 [43]). Thus a refutation of
K refutes C, and so experiments or rather simulations that apparently contradicts C cannot be
categorized as heat transfer according to F as framed by BQ. Therefore the conductive heat sys-
tem that is chosen in what follows must locally on average not contradict C. Therefore, F pro-
vides a criterion to distinguish, at the local level, whether or not heat conduction is taking
place. Several inferences of a faulty nature has been pointed out (p.179, Sec. 5 [9]) with regard
to the Feynman rachet and pawl device (where no proof was given to show violation of the
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Second law in the original Feynman exposition (Chap.46 [44]) which was used as a basis to
derive microscopic laws from the macroscopic, with apparent endorsement of Prigogine and in
line with his philosophies [45]. The reference to this device—which is not disintegrating—to
derive microscopic laws suggests the possibility of deriving work from a single temperature
source in violation to theK principle. More recent works has in fact argued very strongly for
the impossibility of such a device existing in nature e.g. [46], thereby proving as a consequence
that C is a true proposition due to the C �K equivalence. It can be inferred from this fact alone
that the Kondepudi analysis is not tenable, in addition to all the other detailed arguments of
non-tenability [9]. Thus systems analyzed theoretically, or in experiments and simulations
must be carefully constructed to have the minimal number of variables so that no contradiction
of C orK ensues [47]. An incomplete set of variables is at the heart for instance of the Maxwell
analysis under the section “Limitations under the Second law” (Chap.22, p.338 [48]). A more
complete description of the Maxwell demon using quantum mechanics given by Brilloun [49]
resolved the issue when he took into account the photons that were required to probe the parti-
cles that had to require energies satisfying the inequality (Eq (4) [49]) hν1 >>kTo, where the
blackbody radiation of the cavity was an energy masking factor that lead to the anomaly
reported by Maxwell. We note that the current arguments refer to mechanical systems without
coupling to the electromagnetic fields, where the arguments above are not complete. We shall
not refer to such coupled systems in this work concerning the Zeroth law and temperature dif-
ferentials that might be indicated at a theoretical [50] or experimental level [51] in this work.
Thus systems that contradict C cannot be considered as heat conductive transfer in the BQ
sense at the microscopic level whenever there is violation of F. This means that the system
described in [52] with alternating masses in an FPU lattice chain cannot locally be considered
as pertaining to Fourier heat conduction in the BQ sense or the C statement. This implies that
the theoretical analysis must be such that the minimum size of the system must be such that F
always holds between two contiguous regions; in an atomic system, the temperature gradient
between two neighboring particles must have a temperature gradient that satisfies F. This crite-
rion then implies that further variables, as in the Brilloun analysis of the Maxwell demon must
be used to show work- heat conversion taking place between contiguous regions. In order to
conform to the Fourier principle strictly, all energy conducting phenomena due solely to a tem-
perature difference must be free of conversion processes. Interestingly, in the inhomogeneous
lattice chain model, [52] it is claimed that the steady state temperature profile is “saw tooth” in
nature such that positive gradients exists in alternate segments along the direction of heat flow,
in contradiction to C. For such a system of alternating particle mass magnitude of ratio 2.62,
the lighter particles are hotter than the adjacent heavier ones such that there is a periodic sign
change of the gradient value and “it is not because of a thermal conductivity K that oscillates
on the microscopic scale” (p.184301–2 [52]). If this conductivity argument is correct, then the
F principle q.rT� 0 is violated locally, if we presume that the heat current energy transfer is
from the hotter to the colder reservoir, and that this same nonzero direction of transfer obtains
for all neighboring regions where the principle is violated. If we consider the portions to the
left and right of a segment consisting of the two unequal masses coupled by force fields as rep-
resenting homogeneous reservoirs with fixed temperatures corresponding to the temperature
of the mass it is coupled to in the segment, for each of the reservoirs, then the Carathéodory
definition of heat and C statements of the Second law would be violated if the energy transfer
referred to heat with no work inter-conversion, in addition to F for adjacent segments i, i + 1
respectively, where Ti+1 − Ti� 0 if the average energy flux across the masses are on average the
same as when Ti+1 − Ti�0, which follows from energy conservation. The apparent paradox(es)
may be resolved if it is understood that the energy flows that result from force interactions
between dissimilar particles (an analogy here is the Peltier effect in thermoelectrics where the
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coupling of an electric current along dissimilar material interfaces leads to a reversible heat
absorption) involves work-heat conversion and therefore (a) cannot be viewed as a local phe-
nomenon in the BQ sense and (b) is not conductive heat in the BQ, Clausius and Carathéodory
sense in order for the Second law to hold; the Second law was conceptualized within the frame-
work of matter existing as a continuum if no vacuum were present; the atomic paradigm used
here implies that these statements must be qualified so as to allow for both the continuum and
atomic paradigms, where an appropriate averaging process over some atomic dimensions
defines a spatial point in the continuum model. Thus for example, one might extend the Clau-
sius Second law statement Ce to:

“No process is possible whose sole result is the transfer of heat from a cooler to a hotter
body through a locally homogeneous medium”

where a locally homogeneous medium is defined as one in which the particle masses and/or
force fields are exactly the same over all the equivalent lattice points of the periodic array or
grid to cater for the possibilities suggested by some investigators [52, 53] mentioned above.
With such a definition, many of the conductive heat systems studied would not be defined as
such at the atomic level where thermal rectification and other effects due possibly to phase
transitions occur [53–64]. Hence it is essential to reduce a heat conduction system to its sim-
plest possible form that is consonant with C; Ce and F for studies that wish to relate to all these
stated principles. On the other hand, the system must be completely described, so that no con-
tradictions arise with regard to the Second law, as in the case of systems that admits a Maxwell
demon or its equivalent ([45, 47, 49, 65], chap.22, p.338 [48]) because of incomplete descrip-
tion. The criterion used here is that if the system description and dynamics based on a para-
digm does not contradict the Second law, mechanics and energy conservation, then it is an
admissible theory that may be compared and contrasted to other paradigms and viewpoints
that fulfill the same criterion.

Comment of some relevant current trends in heat conduction and other
energy transport problems
In as far as the elementary recoverability transition is defined as the equality δS = 0, it must be
discussed in relation to other developments involving equalities. It was explicitly stated that the
Liouville (p, q) space also used in the Hamiltonian development was not the space considered
(p.169, top par. [9]) in the trajectory analysis, and this was also reiterated in the development
of a stochastic equation to replace the Liouville equation in [66, 67] due to its general non-
validity. For reactive systems, such as applied to [68, 69] a macromolecular (chemical reaction)
system NE transition

A⇋B ð13Þ
the J concept [70–72] initially utilized equilibrium statistical mechanical expressions (e.g. ΔF =
−β−1 ln(Z1/Z0)) for free energy difference variable ΔF and partition functions Z with β = 1/(kT)
to derive

expð�bWÞ ¼ expð�bDFÞ
where supporting and complementary variants have been further adduced e.g. [73] using mas-
ter the equation approach that assumes time reversibility -shown to be untenable [8]; J assumes
also the Liouville equation in a deduction (Eq (9) [8]). Hänggi and Talkner [74] also describe
more recent elaborations of this equality assuming time-reversibility; a common theme in this
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development is the use of a transition HamiltonianHlðzÞ described in z(λ(t)) = (p, q) space
thereby implying that canonical coordinates are being utilized [30], and where the PLE is
assumed with thermostatic potentials of quantum statistical mechanics such as the free energy
Fλ = −β−1 lnZλ at all times during the transition described by the parameter λ(t). A Hamilto-
nian that is explicitly time dependent is not generally a constant of the energy and furthermore
if it is axiomatically defined to be the energy content of the system under consideration, then
an elaborate yet to be proven theorem is required to show that under canonical coordinate
transitions, it is possible under constant temperature conditions at the very least, a general path
must always exist such that the transition along this coordinate frame involves only work tran-
sition with no reference to heat when both quantities are represented in the Hamiltonian that
is axiomatically taken to represent the energy U in all of mechanics and statistical mechanical
theory where< H >¼ U ¼ W þQ whereW andQ are the work and heat energy content rel-
ative to a defined standard state. Nevertheless, assume for the moment that an adiabatic path-
way exists, where the Hamiltonian transits in such a manner that

W ¼
Z ts

0

dt _l
@Hl

@l
ðzðtÞÞ: ð14Þ

so that instead of the inequality (Eq (1) [70]) �W⩾DF one can calculate

expð�bWÞ ¼ expð�bDFÞ

where

DF ¼
Z 1

0

dlh @Hl

@l
i: ð15Þ

From a paraphrased Carathéodory statement of the Second law (pp.198–206 [43]): “In the
neighborhood of any equilibrium state of a system characterized by an arbitrary number of var-
iables, there exists states that are not accessible by a reversible adiabatic pathway” lead to a the-
ory where for the above system described by the First law differential

dQ ¼ dU þ
Xf

i¼1

YidXi ¼ dU þ dW ð16Þ

with the Y’s representing forces, dW the increment of work done by the system on the environ-
ment, the X’s the conjugate extensive variable of the forces, U the system energy with heat con-
tent Q, there exists an infinite number of non-intersecting surfaces described by the same
function σX(U,X) where each non-intersecting surface i is given by a real number ci so that the
surface is described by σX(U,X) = ci; instead of the energy, one can also use the temperature var-
iable t so that for each ci, the equation σt(t,X) = ci defines an adiabatic state uniquely. Since X
may be taken to be independent over a certain domainD, the fact that two interrelated vari-
ables are used to characterize the surface implies that the inverted equation t = gt(ci,X) 6¼C
where C is a constant for all t,X where certain conditions of the implicit function theorem con-
cerning the determinant of the differential matrix gt must be met for this routine condition to
hold [75]; for this situation, t1 6¼ t2, where X1 6¼ X2 for some X1;X2 2 D. As pointed out below,
the free energy differential dF ¼ �SdT �Pm

i widxi þ
P

jmjdNj refers to the total adiabatic

work done whenever −SdT = 0 for the canonical ensemble where there is no need to consider
the chemical potentials for δNj = 0; from Carathéodory’s theory, we have in fact dQ = λdσt.
Then from Eqs (16, 15), with dQ = 0, and the fact that the Hamiltonian transitions are taken to
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be ensemble averages over the end points, we can write

dQ ¼ 0 ¼
Z X2¼Fcðl¼1

X1¼Fcðl¼0Þ
dlh @Hl

@l
i þ

Xf

i¼1

YidXi ð17Þ

where Fc is a mapping function from λ to the X domain, leading to

�DWjX2X1 ¼
Z 1

0

dlh @Hl

@l
i ð18Þ

but where in general, the temperatures differ during the transition since here t1 6¼ t2 for a spe-
cific class of adiabatic transitions that can be equated with work-only terms for the canonical
system. Generally of course, Z X2

X1

dlh @Hl

@l
i ¼ DW þ DQ 6¼ W

where the endpoints are at X1, X2 corresponding to λ = 0, 1. However, assuming this is the case
for all transitions, where the Hamiltonian setup refers to work only changes between any point
X1 and X2, then the temperatures at the endpoints of the transition is not constant in general,
contradicting the defined conditions of the canonical ensemble used to derive the J equality; all
systems using such results refer to constant temperature conditions during the transitions (Eqs
2(a, b), 5, 7 etc. [70]). The only other possibility given that the equality is correct is that it is
true only over a certain class of pathways, with a continuously changing Hamiltonian, but the
functional forms have yet to be specified, at least in detail. We note that in (par. before Eq (9)

[70]), canonical coordinates [30] are specified (i.e.y = (z,z0)). Such assumptions are common-
place [76], together with the fluctuation-dissipation theorem that depends on on time revers-
ibility and its inference that the NE entropy has a form that connects densities P (Eq (1) [77])
such that PðDSÞ=Pð�DSÞ ¼ eDS=kB , and from this the curious result for non-disintegrating sys-
tems< P(ΔS)/P(−ΔS)>= 1 results in< e�DS=kB >¼ 1 (Eq (2) [77]). Clearly, the entropy still
has to be defined from thermostatics, and changes to S are attributed to the result of the NE
fluctuation-dissipation theorem; Kim for instance has stated “the symmetric fluctuation associ-
ated with forward and backward manipulation of the NE work is contingent on time-reversal
invariance of the underlying mesoscopic dynamics” which would lead to the ratio of the densi-
ties above to be unity [78]. In addition, the Kondepudi zero entropy analysis was shown to be
flawed (Sec.5.1 [9]), since it refers in its algebraic structure to the Feynman rachet and pawl
type devices which was later shown to be untenable, [46], we do not here develop any reference
to the condition< P(ΔS)/P(−ΔS)>= 1 in our irreversible condition δS = 0, since in the devel-
opment of our paradigm below, mechanically irreversible back-scattering processes are
implied, in addition to a temperature shift, which is not featured at all in the J development and
its derivatives [70–72, 77, 79]. It is noted that in recoverability theory, the condition of the
probability of states δP = 0 (conservation of probability for events Pi)when applied to systems
exhibiting such transitions, and using the equilibrium form of the partition function ZR—as an
approximation, as with J and subsequent developments—leads to the identity (last par., Sec.
4.3, p.177 [9]) lnðZR=Z

0
RÞ ¼ 0 due to the simultaneous change in both temperature and energy

levels, a situation not contemplated in the J development where indeed the above condition for
the isothermal system obtains when (Eq (8) [70])< exp(−βW)>= Z1/Z0 = 1 or for the trivial
case when the average ensemble work is zero. Most treated cases, as in chemical transforma-
tions given in Eq (13) and discussed for instance in [68] are for isothermal non-zero work
transitions.
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Further, the fact that the Helmholtz free energy expression was used implies a canonical dis-
tribution with the exponential term that sets the partition function in the denominator as a
normalizing factor; some e.g. Attard [34] presented a development where the non-equilibrium
density is not of the simplistic form used in [70]; however, time reversibility is a centerpiece of
this development which has a sequel, some highlights therein include [36–39]. We note that
the J development definitely utilizes the Helmholtz free energy F (par. after Eq (8) [70])

DF ¼ �b�1 lnðZ1=Z0Þ ð19Þ

with differential (Eq (8.7.10) [33]) dF = −SdT − pdV + ∑j μj dNj or in general form force terms
χi, dF ¼ �SdT �Pm

i widxi þ
P

jmjdNj which interestingly implies that the Helmholtz energy

at constant temperature would yield the increment of the total work done by the system with-
out heat transfer, since by definition the heat increment is dQ = TdS in standard notation; the
simplified form of the Gibbs free energy on the other hand would have the expression

G ¼ �b�1 lnðZÞ þ PV ¼ b�1 V @ lnQ
@V B

� �
N;T

� lnZ
� �

; (unfortunately), experimentalists have

occasionally identified the Helmholtz with the Gibbs energy [80] in such chemical transforma-
tions in order to determine the approximate work increments. These and the ambiguity of the
theory, not least the use of thermostatic potentials for far from equilibrium processes and the
nature of the work involved could very well mean that the theory is approximately correct
most of the time, but that some systems have energy distributions that creates measured dis-
crepancies between theory, simulation and experiments [69]: for instance the discrepancies
found in the K+ ion in the gramicidin channel could well be due to the non-canonical coordi-
nates used that in that particular case leads to a severe distortion of the probability density dis-
tribution due to the approximate nature of the theory, in addition to the ambiguity of relating
the Hamiltonian to an apparent work only transition.

There were at least 3 different ways in which NE principles and properties were deduced in
previous studies [3, 6, 9, 81, 82]. Firstly, if the PLE is assumed as a strong principle [26, 28, 76],
then thermostatic potentials such as given by [70] for NE systems and using time comparisons
for irreversible and reversible transitions (Eq 33 [3]) e.g.

Z A

B

@Sret

@t
dt ¼

Z A

B

@Sirr

@t
dt ð20Þ

reminiscent of [70], where a continuous form of the Liouville equation is used (par. between
Eq (7) and Eq (8) [70]), where with independence of switching times, (Eq (9–10) [70]) it is con-
cluded that

exp� bW ¼ expð�bDFÞ;

Eq (20) with fixed time transition endpoints on the other hand lead to an inequality (Eq (46)
[3])

gAðtÞ ¼ sirrðAÞ � sretðAÞ � 0 ð21Þ

which is a general principle of minimal entropy production which subsumes Prigogine’s
entropy production principle which obtains under a restricted set of conditions (Sec. 12.B.1
[83]). Comparison of transition times in this case leads to an inequality.

Secondly, if circular integrals are taken over the thermodynamical space of a steady state
system for energy U and entropy S respectively (Eq (1–2) [6]), then exact coupling relations
are derived, such as a new result for the Kelvin heat engine (Eq (43) [6]). These equalities refer

One-Particle Heat Conduction Description and the Second Law

PLOSONE | DOI:10.1371/journal.pone.0145026 January 13, 2016 16 / 47



to a canonical distribution that admits of both heat and work increments for a subsystem
within the system, which is not evident in [70] from the discussion given above.

Thirdly, in non-synthetic MD studies involving hysteresis chemical reactions [24, 82], it was
shown that the probability density for non-canonical coordinates, such as obtains along a
chemical reaction trajectory from reactant to product and vice-versa was in general non-Boltz-
mann by direct sampling. This has important implications for computing standard transitions
between species that assumes the J equality, when the probabilty density is non-Boltzmann
therefore implying that the form of the work energy as calculated directly from the Helmholtz
free energy expression for a standard Hamiltonian in the canonical ensemble Eq (19) from the
partition function is not exact. For a total system Hamiltonian H that models a chemical reac-
tion written

Hðp;qÞ ¼
Xn
i¼1

p2i
2m

þ
X
i<j

Vðqi � qjÞ ð22Þ

the method of statistical mechanics leads to the probability distribution having the form ρ(p,q)
*exp[−H(p,q)/(kT)] and so for the separable Hamiltonian coordinates, the kinetic energy

Ek;i ¼ p2i
2m
and potential form V(|ri − rj|) would have Boltzmann distributions. The internal coor-

dinates for artificial aggregations such as molecules are characterized by relative velocities and
positions for any two particles k, l forming a molecule at a certain time interval, where one
could write for instancePj ¼ pk þ pl ; Rj ¼ 1

mkþml
ðrk þ rlÞ; k 6¼ l. Permanent aggregated

states may be expressed as canonical transformations Q =Q(p, q),P(p, q) [30] and the Hamil-
tonian in the transformed coordinates must in a canonical ensemble also have the Boltzmann
density distribution; for systems using internal coordinates that are not canonical, no general
theory exists that can predict even for equilibrium systems the density profile; nevertheless the-
ories have been created that assumes Boltzmann densities for these internal coordinates [32,
76]. The intermolecular coordinates (ri, rj) about a bond of a molecule that is both forming and

breaking, is relevant to depict the internal kinetic energy of the bond Kint;i;j ¼ 1
2
mðvi � vjÞ2 ¼

1
2
mð _rÞ2 termed IKE and the total internal energy of the interparticle pair TIEC is given by

Emol;tot ¼ 1
2
mð _rÞ2 þ Vðjri � rjjÞ. Detailed equilibrium MD simulations show that for the hyster-

esis chemical reaction considered [31], IKE shows a steady state density that does not have a
Boltzmann profile (Fig 4, p.896 [24]); TIEC too does not feature a Boltzmann density profile
(Fig 5, p.897 [24]). The very formidable literature that has accompanied the J, Crookes and
allied equality developments that uses the statistical potentials that presupposes the quantum
Boltzmann density profile could therefore be expected to be generally approximate in nature
[68, 69, 72, 74, 74, 80]. For instance, In the case of the dimer dissociation reaction

2A Ð A2 ð23Þ

the absence of an accurate probability density meant that (Eq (33–34) [82]) only an approxi-
mate expression was written in the absence of the exact knowledge of the density function e.g.

ThDSi ¼ T
Z rf

r¼0

DSr2rf Pðr2Þdr2 � Wrf ð24Þ

or

hDSi � Wrf

T

 !
ð25Þ

One-Particle Heat Conduction Description and the Second Law

PLOSONE | DOI:10.1371/journal.pone.0145026 January 13, 2016 17 / 47



whereWrf ¼ DGmol (Theorem 3, Eq 32 [82]) is the total change in free energy about the bond

trajectory. Exact forms require a steady state density profile, such as (Theorem 5, Eq (64),
p.225 [82]) the standard enthalpy of reaction DH0�ðTÞ is given by

DH0� ðTÞ ¼ xmax þ
Z rb

r¼0

DWr2
rf

Pðr2;TÞ � T
@Pðr2;TÞ

@T

	 

� Pðr2;TÞT

@DWr2
rf

@T

 !
dr2

where for instance the probability density is given by P(r2, T). The exact expression for the
entropy expression given above Eq (25) becomes (Eq (62),Theorem 4, p.224 [82])

DS0� ðTÞ ¼ �
Z rb

r¼0

@

@T
DWr2

rf
Pðr2;TÞ

� �
dr2:

Prominent workers in non-equilibrium thermodynamics theory do not feature the density
factor in their foundational work [27, 32, 76].

Nevertheless, it is essential to relate the current developments to the extensive technical lit-
erature that seeks to illustrate and explain phenomena by solving differential, integral and alge-
braic equations associated with models not focused on the axiomatics mentioned here, F, and
the Second law, nor on the qualifications to them made here. Most other works cited here write
down a conservative Hamiltonian subjected to gradients of temperature to illustrate various
phenomena. One interesting development does away with the Hamiltonian description since it
is opined that most NE systems do not converge to an equilibrium state that is typical of Ham-
iltonian systems (Sec.1., p.032131–1 [59]); in particular, very little focus is given to the detailed
balance condition that is used in the updating procedure for Monte-Carlo type dynamics [7, 8,
17, 40]. A system considered by Saad for instance comprises N Ising-like spins interacting on
sparse and densely connected networks, driven by two interacting processes σ and τ with linked
update probabilities (p.032131–2 [59]) Pσi(t + 1) and Pτi(t + 1) that have exponential functions
of a common “temperature” and various spin interaction terms where all the sites re updated
independently. The results show (Fig 1 [59]) the apparent co-existence of both equilibrium and
NE domains; this was a preliminary study because no thermodynamical criteria were provided,
nor theorems adduced to describe rigorously the nature of the coexistence; in standard thermo-
dynamical equilibrium theory for instance, the phases can be defined, and there is the equality
of the chemical potential for species in phases that are in equilibrium. One pertinent observa-
tion here is that for our purposes, one must be able to chose the simplest possible system that
will not express complex phenomena/phase transitions that will make the variables or factors
involved in the analysis inadequate, such as the discussion about the Maxwell demon and
Feynman device demonstrates. The “updating” procedure in the recoverable trajectory, on the
other hand conserves the probability density P during the coordinate transition q(t)! q(t +
δt), where δ P = 0 for each streamline of channel i. Thus, if the NE entropy SNE can be written
SNE ¼ SNEðPÞ, then the transition is recoverable since dSNE ¼ 0 along the updated trajectories;
furthermore, the temperature is not constant unlike the Saad [59] system. Another work where
there are temperature gradients is provided in [60]. As stated above, one objective of the work
was to subsume the phenomenon of heat conduction within the Second law which BQ felt had
not been articulated (p.21 [5]), where by definition, Fourier heat conduction conforms to the
definition of heat energy transfer without any compensation, leading to zero efficiency conver-
sion relative to the temperature reservoirs between the two points or regions between which
there is energy transport by virtue of a temperature difference. In order to complete the identi-
fication of Fourier conduction with pure non-work heat transfer, in agreement with the Car-
athéodory definition, BQ also introduced the condition (p.13 [5]) q = 0)rT = 0. Clearly this
condition, in order to be compatible with Carathéodory’s definition of heat demands the fact

One-Particle Heat Conduction Description and the Second Law

PLOSONE | DOI:10.1371/journal.pone.0145026 January 13, 2016 18 / 47



that isothermal heat transfer is realized as a result of minute temperature gradients that can be
introduced in either direction, and does not constitute another energy type or category accord-
ing to this Carathéodory definition. In particular, all systems and mechanisms that admit of
conversion had to be eliminated as referring to heat transfer, including any that locally seemed
to violate the C statement of the Second law, such as the system report in [52]. If the C state-
ment is violated locally between two adjacent mass segments of differing mass, then it becomes
mandatory to interpret the movement of heat against a temperature gradient as due to a con-
version process as in the case of Peltier conversion in thermoelectrics. The study of Alamino
et al. is very interesting from the above point of view because for exactly the same reason the
energy transferred cannot be classified as pure conduction if the C statement is violated locally
between two surfaces. A plethora of different interaction mechanisms have been described in
[60], where it is admitted that the critical definition of temperature “has remained an open
question for a long time” (First par. [60]). We adopt the BQ definition of temperature by
recourse to their diathermal fiber that obtains for both equilibrium and NE systems, but which
seems to be not defined in these mathematical model studies; [60] are interested in the magne-
tization regime under mutual heat flux exchange of two adiabatically isolated surfaces, which
cannot in any way resemble the two systems considered here in the Section below, since our
lattice systems are not adiabatically isolated. Similar to previous work [59], in this study the
two planes σ, τ respectively are updated for each spin state on the plane (Eqs (1–2) [60])
according to the Monte Carlo-like probability (for the σ plane) P½siðt þ 1Þ� / exp½bssiðt þ
1Þhs

i ½sðtÞ; tðtÞ� with an interactive “Hamiltonian” with form hs
i

Js
Ns

P
j6¼isj þ J 0stti with similar

expressions for the τ plane. Also, there is a set of spin particles on the plane, which is to be con-
trasted with our single particle on each lattice site in our model; even unequal masses [52] leads
to a contradiction of the C form of the Second law, unless one can identify it as a subsystem of a
system where the C Second law statement is obeyed; thus complexity has to be interpreted
thermodynamically in such a way that the laws of thermodynamics are maintained. The actual
rate of heat flow and its fluctuations are not the major focus in their studies [60]. Of interest is
the period two cycle in spin magnetizationMσ oscillating from +1 to -1 in time (2 in reduced
units). A phase diagram for various interaction strengths across the two planes is mapped out
(Fig 4 [60]). These studies show how the introduction of complexity can obscure the C Second
law statement if there is a energy mapping between the magnetization states and net energy
flow interpreted as “heat” flow “across two planes of Heisenberg spin lattices” for fixed and dif-
fering “temperature” parameter β against a temperature gradient unless one can also locate
some compensating mechanism in the “environment”, which must also be characterized.
Therefore, in order to describe conductive heat flow in terms of a disintegrating engine in this
work, the system must be reduced to the simplest form of interactions whereby the Clausius
heat transfer criterion holds between two thermal reservoirs; the literature references here do
not conform to such a criterion unless compensating mechanisms are also brought into the
argument that would preserve the truth of the Clausius statement. Similarly, for a more micro-
scopic treatment of diffusive flux current [61] the temperature parameter so essential for char-
acterizing heat flow is not prominently featured in the derivation of the additivity principle (Eq
(10) [61]) which refers to coupled subsystems being independent but where at the point of con-
tact the density maximizes a certain probability current (par. after Eq (10) [61]) PN+N0(q, ρa, ρb,
t) where the ρ’s refer to the densities of the subsystems and q a type of time current density
where the integrated current Qt = qt. Indeed, the tacit assumption seems to be a system with a
fixed temperature parameter if the G density (Eq (17) [61]) is Gaussian and is related to the
canonical ensemble. By utilizing the BQ fiber concept, the center of mass motion of an ensem-
ble of n particle can be characterized by a temperature T where 3

2
kTn ¼< k:e: > if the
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diathermal fiber is connected to a reservoir at thermal equilibrium of known temperature T;
relative to some other standard one would have T = g(<k.e.>, n). In any case, the total thermal
energy current density Q would have the form<Q> =< k.e.> +<V>. It is not apparent how
the fluctuations in diffusive flux in general can be related to Fourier heat conductive flux theo-
retically, since one would have to map particle number flux to a single localized particle having
a spectrum of energy values for localized systems, and also relate a functional form of particle
density with an entire spectrum of energies with a particular localized particle and its tempera-
ture. Indeed, it could be that the failure of the “caloric theory of heat” [84] is in part related to
investigators being able to maintain and conceive of heat as some type of diffusive “material
substance”. Thus detailed theories of diffusive current fluctuations in NE systems may not be
applicable to heat transfer processes unless particle distribution$ energy density mapping
functions are uniquely described; so far, this area seems not too well explored, if at all. Despite
the lack of detailed mapping theorems, some scaling theory or relationship has been derived to
relate diffusion to heat conduction recently [85], where it is claimed that if the mean square
deviation in 1D diffusion is given as hΔx2i = 2Dtα, (0< α� 2), then the thermal conductivity
scales as κ = cLβ where L is the size of the system, β = 2 − 2/α and if for normal diffusion α = 1,
then β = 1 and Fourier’s law holds. In what follows, fluctuations are critical to our description,
not as objects in themselves, (e.g. cumulant expansions (Eq (3–5) [61]) but in terms of net
energy transfer within a stochastic loop Eqs (36 and 37). A relatively wholistic and comprehen-
sive study of heat conduction phenomena relative to the current specialist literature is given for
example in [63]; the work does not however discuss heat conduction from the point of view of
the relation to the Second law in the manner found in the Carathéodory definition of heat flow
as a response to thermal gradients and the topological structure of the phenomenon in phase
space which he described. There is however, reference to ergodicity and phase space dynamics.
The absence of proof of ergodicity for practically all heat conduction systems studied (2nd par.,
p.3 [63])—thereby having to assume convergence to average values—lead the authors to state
at the very outset (Eqs (1–2) [63]) this tacit assumption in their discussion where they write
“There are at least two distinct situations in which Fourier’s Law is observed to hold with high
precision. . .” where the first situation is the conservation of flux or energy at any instant of
time

cvðTÞ
@

@t
Tðr; tÞ ¼ �r � J ¼ r � krT½ �

subjected to specified initial conditions at time t = 0 of the temperature distribution and the
second situation where the temperature of the heat reservoirs coupled to the system is invari-
ant, where a stationary steady state is assumed (rather than proven) to exist with no net matter

flow so that the heat current vector ~J ¼ ~J ðrÞ is a function of position only, wherer � ~J ðrÞ ¼
r � ðkr~T ðrÞÞ ¼ 0 and where kð~T Þr~T ¼ Const: in one dimension. By showing that the con-
tinuous form of the Liouville equation does not exist in the standard form, where for a conser-
vative Hamiltonian with partitioned coordinates

Hðp;qÞ ¼
X

i

p2
i

2mi

þ VðqÞ ð26Þ

such as those that represent heat conduction systems (p.2, Eq (3) [63]) only a trivial solution
obtains q = C t + β (Theorem 1, Corollary 1 [66, 67]), it was proved as a consequence that the
celebrated recurrence theorem of Poincaré and Zermelo (p. 1102 [66, 67]) on which ergodicity
and convergent time-averaging is based does not obtain in general. Similarly, the ergodic
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theorem of G.D. Birkhoff (p. 1109 [66, 67])

hAi ¼ lim
C!1

Z C

0

f ðP; tÞdt ð27Þ

that provides a limit a.e. hAi of a function on a domain V, for all points P 2 V for V defined by
the Hamiltonian coordinates is dependent on the truth of the continuous form of the Liouville
equation (p.20, Lemma 1 [86]) and therefore must also be subjected to a re-examination. Inter-
estingly, Bonetto et al, state that local thermodynamical equilibrium is based on strong ergodic
properties (2nd par., p.3 [63]) and that such properties have only so far been proven only for
systems evolving via stochastic dynamics, and even here the relevant conserved quantity is usu-
ally the particle density rather than the energy density [87]. The only Hamiltonian system for
which a macroscopic transport law has been derived is for a gas of non-interacting particles
(p.3 [63]), which is not the system described here nor in all the major references provided here.
Work on thermal conduction nevertheless goes on despite any proof of ergodicity being forth-
coming. The main concern in this work is not focused on ergodicity, and the results are not
dependent on the condition holding with regard to the zero entropy trajectory, which follows
from the conservation of probability, and not from the Hamiltonian phase space pathway; fur-
ther, the shape or form of the probability density profile need not be necessarily Gaussian; the
basic requirement is that the entropy S has a functional form S ¼ S½P� for a probability den-
sity P where for each energy type i, δPi = 0 which is the condition that is fulfilled here, since
each event of a collision is an energy interaction characterized by i. Heuristically, if the entropy
were dependent on the kinetic variables κ independently of the probability, i.e. S ¼ Sðk; PÞ
then the Boltzmann definition of entropy as related to arrangement of microstates only would
be compromised. Hence we deduce P = P(κ). We also note that the shape of the probability
density or probability of states is arbitrary as long as there is no change along a state or event
streamline (Eqs (24–27), p.168 [9]).

Also, for this particular representation, the temperature is that other quantity that needs to be
characterized, and the kinetic energy and its relation to temperature is the key principle utilized
in the entropy formulation. Dhar [53] states that there has been no rigorous derivation of the
Fourier law expressed (Eq (1) [53]) as J(x, t) = −κrT(x, t) “starting from a microscopic Hamilto-
nian description”. The objective here is not to derive the Fourier law from the microscopic Ham-
iltonian but to show that heat conduction is compatible with the recoverable transition, and that
the Fourier principle can be subsumed by the Second law, which is to be contrasted to the view
of BQ that F stands external to it. It could well be that [88, 89] the Fourier law is only the first
term in a power series expansion—where F stands independently of the order in the expansion
(p.13, 3rd par. from bottom [5])—and that anomalies with that first order form is due to this
incomplete description, including the anomaly that κ!1 wheneverrT! 0 for fixed N, the
lattice chain length, and for anomalous diffusive transport κ* Nα, α 6¼ 0. where the value of α
is system dependent; for instance for 1-D unequal mass distribution of gases (p.502, Fig 1 [53])
α = .32 for a mass ratio A = 2.62. Anticipating results in later sections, Dhar [53] has defined the
local temperature Tl, T(x) using the local or continuous approach for 1D (Eq (23) [53])

kBTl ¼ h p2l
ml

i ð28Þ

kBTðxÞ ¼
h
X

l
ðp2l =mlÞdðx � xlÞiX

l
dðx � xlÞÞ

ð29Þ
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where the discrete form will be used, which is also equivalent to the continuous form if the time
sequence index is l and integration is over the space-time coordinates. The definition of tempera-
ture is a strictly rigorous result for any Hamiltonian (p.475 [53]) from equipartition of the
kinetic energy (k.e.) only, with no reference to the potential terms. Much of the review in [53] is
devoted to calculating kinetic coefficients, such as the use of the Green-Kubo formula for ther-
mal conductivity that requires fluctuational averages

k ¼ 1

kBT2
lim
t!1

lim
L!1

1

L

Z t

0

dtJ ð0ÞJ ðtÞ

of the heat current vector J ðtÞ. The Green-Kubo and allied methods require the use of time
reversibility properties that were proven to be open to question [8]; but here we are not inter-
ested in determining the kinetic coefficients etc. that comes from complex algebraic procedures
but in examining the nature of heat flow in relation to the Second law, and to clarify the BQ
assertion that F is independent of the Second law. Here we show that the Second law actually
subsumes the phenomena of Fourier heat conduction in a pathway that is mechanically irrevers-
ible, but thermodynamically reversible in terms of zero entropy generation about the defined
path. These two concepts—mechanical and thermodynamical reversibility—are not viewed in
contrary terms in practically the entire literature devoted to analyses. Further, it is implied here
that the flow of heat occurs in such a manner that there is a conflation of the same process in
both adiabatic and heat transfer processes, whereas in the conventional description of the Sec-
ond Law using Carathéodory ideas, a loop integral traversing orthogonal adiabatic surfaces that
do not overlap and isothermal surfaces (Sec. 8.8, p.201 [43]) is utilized to prove the existence of
the entropy function of state. The intense work in finding solutions to differential, integral and
algebraic equations centered about heat transport phenomena are not focused on the general
thermodynamical structure of the phenomena as judged by the available literature. Further, the
methods used, especially in the determination of the kinetic coefficients require assumptions,
where (p.469 [53]) it is stated that “although these derivations are not rigorous, they are quite
plausible. . .” but Dhar also cautions that the method assumes the PLE and also states that (p.470
[53]) “There are several situations where the Green-Kubo formula. . . is not applicable.” The use
of the heat diffusion equation for instance (p.469 [53]) S(x, t) demands S(x, t) = S(x, −t), which
requires the use of questionable time reversibility for the correlation function. This work does
not correspond to the focus and topics pursued by most of the workers cited here. We do not
make any major assumptions, apart from the integrity of certain expressions linking temperature
to energy, such as derived from the RLL method (see below), which are considered to be exact
expressions. Gedanken (G) experiments using the BQ “diathermal fiber” [13] leads to the same
conclusion as demonstrated below. Using the (harmonic) Hamiltonian of the RRLmethod [90],
written (p. 473, Eq (37) [53]) in the form

H ¼ 1

2
PTM̂�1P þ 1

2
XTF̂X

it was deduced that for white noise coupled reservoirs, (p.475 [53]), the local Kelvin temperature
Tl for species l was given by

h p2l
ml

i ¼ kBTl ð30Þ

and because h(d/dt)xl pli = 0 this result for the definition of the temperature was valid for any
Hamiltonian system according to Dhar. We henceforth refer to this result as the Dhar-RLL con-
dition, which we here adopt as our method of determining the Kelvin temperature, which we
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also equate as an axiom to the temperature that would obtain if the BQ diathermal fiber were
used experimentally to determine the temperature as described below. If we connected one end
of a BQ diathermal fiber to a region of molecular dimensions of a system (sys) to probe its tem-
perature in a G experiment, and the other end to a thermal reservoir at equilibrium (res) with
temperature Tres, where the potential of the system V(rsys) at the point of contact of the fiber to
the system is set equal to the reservoir, V(rsys) = V(rrev). The fiber is designed to be made up of
non-compressible thin rods that slide on each other without friction from the surfaces of sys to
rev, with conservative site potentials inside the fiber to maintain its integrity. Also we may allow
the fiber to transfer all the kinetic energy of a particle in either sys or res that interacts at the sur-
face of the fiber to the other system that it is connected to, and the mean rate of collision or inter-
action of the reservoir with the BQ diathermal fiber is adjusted so that it equals that of the
system per unit area. Then by hypothesis and definition, the temperatures of sys and res are the
same if the net transfer of energy sys! res = Q and sys! res are the same for a time greater
than the relaxation time τ of the interacting system; technically it may be more correct to state
the condition as applying if ∑i δQ/(∑i|δQ|)! 0 as the time t!1 for the heat increments trans-
ferred δQi over the time sequence in this G experiment. As pointed out in (p.468 [53]), the con-
vective parts of the motion must be subtracted out in many of these current terms. A solution
whereby a net zero energy transfer will occur is when the probability density P(E) with respect to
the kinetic energy E satisfies Psys(E) = Pres(E) and Pres(E) is a Canonical distribution. However,
even if this is experimentally not the case, then over a time duration larger than the relaxation
time, the total average kinetic energy transferred in either direction must be the same, and there-
fore the average k.e. per molecule which is reflected in the balance equation must have the rela-
tions Qsys =

R
OE

EPsys(E)dE =
R
OE

EPres(E)dE =Qres for the quantity of kinetic energy “heat” per
particle. This is the same equipartition result as for the RRLmethod as extended by Dhar to any
Hamiltonian (Sec. 3.1, par. before Eq (49) [53]). In our reference model, we note that the change
of energy during a collision for the same potential energy for both particles involved Eq (48),
and so the “equipartition” results for the kinetic energy of an equilibrium system are valid within
this representation for the NE steady state system as well. Indeed, it is explicitly mentioned that
the potential energy equipartition result is of no relevance to the model of heat conduction and
that it is included to suggest that for even more complex phenomena, the potential terms might
contribute to the overall dynamical structure. The Dhar observation of having to subtract the
convective kinetic energy is maintained here by placing the fiber at the equilibrium plane when
the potential energy is zero as shown in (Eqs (51,52)). Indeed it is shown by the G experiment
that the potential can be incorporated into the kinetic equipartition result exactly (Eqs (51,52))
for a particular system with an arbitrary conservative potential Vc

In terms of stochastic analysis, there are descriptions of temperature invariant systems
which attempt to correlate the mesoscopic and macroscopic aspects of non-disintegrating sys-
tems [64] where full description of the thermodynamics may be attained by addition of revers-

ible heat from the stochastic quantities such as d0 ~Q to derive a measurable heat d0 ~Qm by a

transformation or mapping process, e.g. d0 ~Q 7!d0 ~Qm � d0 ~Q � Td @~F
@T
. There is no resemblance

of these stochastic trajectory analysis and its relation to the macroscopic body to the concepts
being developed here to encompass or subsume heat flow within the Second law as defined by
BQ; the focus is not on the same topic.

An example of a locally homogeneous system that would comply with the extended Clausius
statement of the Second law Ce is the structured assembly of a 1D lattice chain of identical mas-
ses with the same conservative intermolecular potential between adjacent sites i and i + 1,
where the particles have a mean time independent position whilst involved in the process of
transferring energy between the two ends of the lattice chain that are maintained at different
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temperatures. A thermodynamical model is developed here that incorporates the above recov-
erable trajectory for such a non-disintegrating lattice chain. Since attempting to model such a
process is a very involved task, with possibly unproven assumptions being surreptitiously
imported into the creation of the theoretical structure that could be simulated and computed,
the following methodology is utilized to ensure as far as possible that no extraneous concepts
are imported:

1. Identify a discrete non-disintegrating model system that, from theoretical considerations
would have to conform to the above process of a recoverable process whilst conforming to
the extended Clausius Second law statement Ce

2. Apply that model to the continuous lattice chain, even in a restricted subsystem of a single
particle in the lattice chain to extend concepts that would have to be used for a more com-
prehensive treatment of irreversible phenomena

3. Quantitatively check the model for numerical agreement with total heat flow terms

4. Extend the model from just one particle interaction with the adjacent pair to longer ranges
of interactions so that one might be able to predict the kinetics and thermodynamical vari-
able profile over the entire lattice

5. Lastly, from the above, it may be possible to construct a more comprehensive and extensive
thermodynamical theory by generalization of the above item (4) that might be able to
encompass both equilibrium and NE interactions.

Here we describe results for items (1–3) above where the experimental result is consistent
with the theoretical paradigm: items (1–3) illustrates feasibility and proof of concept. The next
step would be to extend the 1-particle interaction description developed here to multiple inter-
actions. The other items in the methodology list (4 and 5) are project proposals that has the
scope of creating a paradigm that subsumes various classes of processes and transitions men-
tioned previously (adiabatic, isothermal, reversible and irreversible).

It was demonstrated before [7, 8, 17] that the pivotal concept of time reversibility is mathe-
matically incorrect in its major applications to wide-ranging phenomena, and that these falla-
cies have been incorporated into mainstream thermodynamical interpretation of the various
classes of processes and transitions (e.g. see pp.36, 52, 141–7, 356–7 [91]).

The basic ideas associated with the Carnot cycle with its ‘reversible’ pathways has not
escaped characterization based on these so-called ‘reversibility’ postulates, and hence the above
remarks require some qualification. The original work of Carnot [92] describes essentially a
work cycle whose work energy variable w is not a perfect differential and where the introduc-
tion of heat (Figs 2 and 3, p.70 [92]) into the working substance involves the transfer of heat
about vanishing temperature gradients where there is “. . . no contact between bodies of sensibly
different temperatures” (p.68 [92]). More recently, work have attempted to incorporate adiaba-
ticity in thermal heat transfer [93] coincidentally along similar lines much earlier (e.g. Sec.
4.3.1 “Verification of the theorem for an adiabatic process for a perfect gas”; Sec.6. where it is
stated that “It appears that the problems that remain in this paper are the working out of the
details of the kinetics of energy transfer, for instance in relation to the Fourier heat conduction
law. . ..” [9]) but in (e.g. Eq 12–13 [93]) there are irreversibilities that arise from discontinuous
velocities of their system of interlocking pistons with discontinuous temperature variations of
the systems between the pistons, and where there is work transfer contact between bodies of
sensibly infinitesimally different temperatures, which contradicts the Carnot assumptions, and
which is avoided in the current development where purely dynamical systems with specified
Hamiltonians are studied without adiabatic temperature discontinuities. Also, a net stationary
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frame of reference is involved where the internal source term i(x)� 0 (Eq (58) [93]). The
assumptions made in applications of Carnot’s analysis (p. 133, R. Clausius, “On the application
of the theorem of the equivalence of transformations to the internal work of a mass of matter”
[18]) encouraged views developed in the previous centuries to conceive heat as a degraded
form of energy that increased the entropy of a system by traversing a thermal gradient from
hot to cold (thus increasing the entropy of the system), as seen for instance in (Eq (58) [93]).

Indeed the calorimetric definition of heat (1968 5th Ed, p.73 [19]) is “. . .that which is trans-
ferred between a system and its surroundings by virtue of a temperature difference only”.

Carathéodory conceives of heat (J. Kestin ed., Introduction, p.229 [1]) in the following man-
ner: “‘Furthermore, when two bodies of different temperatures are brought into contact, heat
always passes from the hotter to the colder, and never in the reverse direction’”. Here we shall
show for recoverable transitions, which includes heat conduction, the energy transferred is
actually “work” in the local sense, although the movement is from hot to cold, in accordance
with previous definitions. The degradation idea is also evident in É. Clapeyron’s 1834 work
(p.38 [94]):“. . .in any mechanism designed to produce motive power from heat, there is a loss of
force whenever there is a direct communication of heat between two bodies at different tempera-
tures and it follows that the maximum effect can be produced only by a mechanism in which con-
tact is made only between bodies at equal temperatures”. This coupled with the definition of
heat above lead to the concept of “reversible transfer”, where the concept of “reversibility” is a
rationalization imported from mechanics with its belief in the reversibility of its laws in classi-
cal and later in quantum physics and thermodynamics [91]. The derivation of the Onsager rec-
iprocity relations and the Boltzmann H-theorem are examples of misapplications of such time-
reversible and Liouville equation assumptions [7, 8, 17, 66, 67].

Finally, it was proven that the pivotal Liouville equation, derived from the Hamiltonian in
(p,q) Liouville phase space is in general not valid as a continuous equation, where a stochastic
analog of the same form was derived in its place [66, 67]. In particular, attempts to deduce
zero-entropy paths from Liouville space were shown to be flawed (see references therein at [66,
67]). It was expressly stated in [9] that the zero-entropy “recoverable trajectory” developed
there is not described in Liouville space (p.169, top par. [9]), and that further, as illustrated in
the current work, there is a stochastic back-scattering of energy involving a non-conservation
of energy about a stochastic work cycle that at first sight would not readily follow from a stan-
dard mechanical Hamiltonian using continuous, non-stochastic variables. If such Hamiltoni-
ansHðp;qÞ are used in describing NE mechanical systems, then assuming a general average
f�p; �qg for all coordinates j where j 6¼ i, then

H
@H
@qi
ðqi; �p; �qÞdqi ¼ 0 which is not observed in the

simulation results obtained here, implying that the introduction of hybrid elements (random
energy impulses at the ends of a chain of vibrating atoms in this case) to simulate thermostated
regions for instance destroys the continuum description of the mechanical Hamiltonian and
that, in addition some very complex cooperative phenomena may be involved with the stan-
dard Hamiltonian where the assumption of averaged coordinates do not apply. In particular,
thermodynamical systems involving averaged variables—as in thermodynamics—cannot be
described by such primitive mechanical Hamiltonians; and if used, theorems would have to be
created to relate the mechanical phase space of the Hamiltonian to the averaged motions of
particles characterized by the respective phase space [95].

The conventional description of conductive heat transfer describes the transport of “heat”
energy through assumed reversible dynamical laws, and which involves a positive local internal
entropy production rate σ, so that

R
V σdV = dSi/dt� 0 [96]. If the entropy vector has a compo-

nent Js = Jq/T (Jq being the heat current vector), then at the steady state

r:Js ¼ �Jq:rT=T2 6¼ 0 ð31Þ
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in a temperature gradient with a non-zero heat current present and indeed in conventional
descriptions, σ has the above component due to the conductive heat contribution (Ch.III, p.24,
Eq (21) [96]). One important aspect of the expressions for σ is that it allows for the identifica-
tion of the Onsager reciprocity coefficients that couple forces and fluxes (Ch.IV, pp.33–36
[96]). Previously, it was remarked (p.163, Sec.2 [9]), in keeping with the Clausius definition,

that for closed systems a more appropriate definition would be _S ¼ �RVðr:Jq=TÞdV which

would yield zero entropy production apart from the system boundaries. Further, BQ have
argued that Fourier’s inequality (following Eq (31) with Jq = −κrT), embodying F

kðrTÞ2=T2 � 0 ð32Þ

is a local principle, not subject to the Second law since the latter refers to global work-heat tran-
sitions, and may well be an independent principle.

Recall that the modern Carnot cycle is strictly developed with 2 types of heat transitions of
the working substance, the “isothermal” and the “adiabatic”.

One conclusion of Carathéodory thermodynamics [20] for “‘macroscopic’” systems is found
in Axiom II: In every arbitrary close neighborhood of a given initial state, there exists states that
cannot be approached arbitrarily closely by adiabatic processes.

In what follows, we show that relative to a particular subsystem, within the heat conducting
chain constituting atom i and the adjacent one i + 1, pure heat energy transfer (according to
the Carathéodory definition of heat) occurs and in accord with conventional definition, but at
the same time according to the major assumptions of recoverable transitions [9] where the fol-
lowing conditions obtains:

1. A net adiabatic process in the forward direction occurs

2. The energy transfer being the work done, conventionally considered the heat increment

3. The work is mechanically irreversible, but thermodynamically reversible (zero entropy)
where the micro-transitions complete a Carnot-type loop within the subsystem

4. The stochastic integral for the energy about a loop is not zero, implying that the mechanical
Hamiltonian is non-conservative in such hybrid systems

5. There is a distant implication that both adiabatic and isothermal processes may be unified,
at least at the micro-level, which would require answering challenging questions as to how
macroscopic descriptions, such as due to Carathéodory, emerge from the micro-processes,
which encompasses both adiabatic and isothermal ones.

The above seems to indicate that if the direction of this research project is deemed reason-
able, then there are gaps that need to be bridged between some of the more conventional defini-
tions and the deductions that are being made here as detailed and itemized in (1–5) above,
since for example a vectorized work term appears as ‘heat’ in this representation, the defined
entropy change is zero (thermodynamically ‘reversible’) with mechanical irreversibility along
the dynamical trajectory, with non-conserving Hamiltonians for averaged coordinates.
Another added complexity to this and other thermodynamical description is the assumption of
‘local’ equilibrium raised to the level of a ‘Principle’ [21, 97, 98] for fundamental applications.
This principle was proven mathematically and via simulation to be incorrect [22, 23]; in partic-
ular the eminent works of B. C. Eu, García-Colín and their followers e.g. [99] where some

“uncompensated function” N was introduced to create a perfect entropy differential dSðtÞ
dt

for
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irreversible processes having the form (Eq 15 [99])

dSðtÞ
dt

¼ 1

TðtÞ
dQðtÞ
dt

þ dNðtÞ
dt

ð33Þ

was explicitly disproved in (Sec.2, p. 838, Proof [100]) and shown not to be feasible [22, 23] on
other physical grounds. This scheme therefore cannot be applied to heat conduction, even if
there is some stationary conservation of entropy, since it cannot be applied to disintegrating
systems, even if the theory were entirely correct. What is evident, however, is that this assump-
tion of the PLE obtains for a large class of systems over extremely large magnitudes of forces
and fluxes, which explains its utility, despite it being not an exact principle, but an (extremely
good) approximation to the NE state functions using the equilibrium state functions without
augmented variables. It is critical to note that the current work does not in any way conform to
the Clausius Inequality and the sub-Carnot efficiency that it implies for real systems since the
development here is based on a certain defined class of spatially non-stationary disintegrating
systems that retains its optimum heat to work efficiency (p.177 [9]) at all stages of its
trajectory.

One major objective of this work includes answering the significant question posed by BQ
in their seminal study of heat conduction, the Second law and magnetothermoelectric phenom-
ena [5] which has profound implications as to how thermodynamical systems are to be consid-
ered in framing new theorems, as they have done. Their views include two of thermodynamical
significance (p. 9, bottom par. and p.21, top par. [5]):

• The flow of heat without compensation—argued as synonymous with the energy current
flow associated with Fourier conduction—is a local phenomena (within the limits of material
continuity) with no reference to the global statements of the Second law.

• The Fourier principle stands as a principle that is independent of the Second law.

This work qualifies the above axiomatics. Here, a paradigm is presented where within the
limits of material continuity, the Fourier principle is local in nature but it also conforms to the
Second law locally. We therefore show that it lies within the scope of the Second law. The for-
midable literature concerning heat conduction very briefly surveyed above is by and large not
concerned with any of the above issues, especially on the most basic relations to the founda-
tions of thermodynamics, which is at the core of the current work: there is an emphasis on Nat-
ural Philosophy, the area within which Kelvin preferred to define his prodigious labors in
physics, where he refused the designation “physicist” [5], preferring the term natural philoso-
pher. This was because he was interested more in ontological questions, such as the framing of
hypotheses and laws, which were predominantly not, even in his time, the primary occupation
of his peers, who were preoccupied with solving various mathematical problems based on the
axioms and laws structured by natural philosophers such as Kelvin.

Some obvious assumptions used in this work is put forward as axioms. They include the
following:

Axiom 1 Temperature parameters may be ascribed at the steady state to each of the oscillat-
ing particles along the lattice chain based on the extended Zeroth law

Axiom 2 The equilibrium classical density-in-phase distribution and the probability distribu-
tions for Fermionic and Bosonic systems are unique for any particular temperature.

Axiom 3 For systems probed by the diathermal fiber, the thermostatic temperature of the
fiber is the same as the steady state system temperature, and corresponds to the density-in-phase
distribution for that temperature for the system concerned with a specified Hamiltonian
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Axiom (1) refers to the fact that the temperature parameter is stilled used as a significant
thermodynamic variable for nonisothermal NE systems. Here, we focus on the Fourier law that
assumes that the temperature variable and its gradients can be used to characterize heat flow,
as also is the presupposition in the definition of heat in thermostatics and in Carathéodory
thermodynamics. Since our characterization of temperature uses the BQ diathermal fiber con-
nected to a thermal reservoir in thermal equilibrium, Axiom (2) ensures that our temperature
parameter is unique for a NE system. Axiom (3) justifies so much theory [53] that couples sys-
tem Hamiltonians with the temperature parameter. We use the Dhar-RLL deduction to relate
the theoretical temperature to the BQ method of determining NE temperature, using the
Axiom that both the Dhar-RLL temperature is equal to the BQ experimental criterion. We do
not utilize the concept of the PLE in the traditional sense here, since two temperatures are asso-
ciated with a particular particle or scattering site, and where the BQ concept of temperature
that couples an equilibrium reference system of known temperature to a NE system via a “dia-
thermal fiber” where whilst a temperature might be specified, the energy distribution need not
be Boltzmann for both canonical and non-canonical coordinates. The only use of “equiparti-
tion” here is the Dhar-RLL result which seems to also follow from the G experiment above,
which is applied to the deconvoluted processes of forward and backward scattering interac-
tions, which means that the time segments admit discontinuities. These phases of the trajectory
may be sampled in principle by the diathermal fiber, and by the Axioms above (1–3) each of
the processes would be characterized by the temperature T; for a single particle over Nb time

averaged readings, or for a single instance of time for Nb particles T ¼ hPNb
i¼1 pi

2=ð2miÞi ¼ T̂
for massesm and momentum p.

Materials and Methods
Below the computational methodology and the equations and theory on which it is based is
developed.

Description of the simulation system
The results presented here refer to a 1000 linear atomic chain, labeled 1 to 1000 (where it might
be envisaged as a horizontal structure) from left to right, with the first 200 atoms on the left
thermostated to 4.0 (reduced units) whilst atoms 800–1000 were maintained at 1.0. The
method of thermostating used a classical, non-synthetic algorithm developed or popularized
by Hafskjold and Ikeshoji [101] where the thermostated atoms were scaled according to
_q0
i ¼ aþ b _qi, with α and β common to all relevant atoms to maintain the temperature T where

T ¼ 1
ð1þNb�NaÞ

PNb
i¼Na

m _q2 and in reduced units,m = 1; Na is the initial index of the particle and

Nb the last for the respective thermal reservoir. Here and elsewhere, the validity of the Dhar-
RLL theorem for the determination of temperature for the deconvolved processes is assumed.
One operational definition of temperature requires the use of a ‘diathermal fiber’, according to
the method of BQ [13] for NE systems. These assumptions give the form of the probability

density for the equilibrium portion of the fiber as ρi, as ri ¼ Yexp �Hðpi ;VÞ
kT

� �
(p.41, Eq 7 and

p. 63, Eq 9 [102]) where the T is the same as for the region of the NE system coupled to it. We
have shown from the elementary FP equation that there is either distortion or rescaling of the
temperature for the entire process; on the other hand, for separated processes in NE systems
with the BQ fiber used to determine temperature, the use of this density refers to the mean
total energy interchange with the diathermal fibre connected to a system in equilibrium; the
exact density for the combined potential and kinetic energies need not be MB as demonstrated
in the G experiment. This mean energy is related to the “thermal quantum” that was
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mentioned previously (Theorem, p.239 [10]) in another context. No coherent theory exists
that is able to unify the concept of temperature for both the equilibrium and NE regimes
exactly, nor is a mathematical definition of NE temperature forthcoming; hence we use the
operational BQ method to determine temperature. One the other hand, the use of these densi-
ties for NE regimes in Linear Irreversible Thermodynamics and in the calculations of transition
probabilities (p.553, Eq (15.2.10 [33]) must be contrasted to recent developments of NE densi-
ties [34] and the basic FP development for transients already alluded to. Currently, this work
assumes the mode of transfer to be due to the kinetic energy changes during collisions and
Dhar deduces that such a density is applicable to all Hamiltonian systems with the condition
(p.475 [53]) h d

dt
xlpli ¼ 0 for the definition of temperature as described above; we showed from

G experimental considerations that this is the case irrespective of the density distribution. Also
we have partitioned the processes and the temperatures obtained pertain only to the various
partitioned processes can be enumerated in a discontinuous time sequence and which are
probed by the BQ fiber since one must define the various processes as belonging to a particular
scattering channel, and sampling is done relative to the data in each of the channels which is
absent in the traditional analysis. The thermal energy content is widely defined in continuous
and conservative systems as �Hðpi; qi;VÞ,H the Hamiltonian and V the coordinate dependent
potential. For our discontinuous system partition, both the average kinetic energy and potential
limits exists by measurement, and the mean thermal energy of the system<Q> is defined to be
(for equal mass systems)

< Q >¼ �Hðp;qÞ ¼ p:p=2mþ VðqÞ ð34Þ

for each of the scattering channels.
As is well know, the harmonic potential only [90] does not yield the expected Fourier heat

conduction law Jq = −κrT, with near constant κ, but one might also say that for the harmonic
interaction potential between particles, the thermal conductivity κ is a very sensitive function
of the temperature, and that it is also not a local property but may be a function of the entire
temperature distribution. Hence there is no reason to suppose that the Fourier heat conduction
law breaks down for Harmonic potentials. These and others are very interesting research ques-
tions, as Lebowitz et al. have testified to [63]. Here, the interparticle potential V between parti-
cles i and i + 1 in a lattice chain has been defined as having the following form by several
workers:

V ¼ khðqiþ1 � qiÞ2=2þ bhðqiþ1 � qiÞ4=4: ð35Þ

Here kh = 1.0, bh = 0.5 where these parameter values are chosen for good reproducibility,
e.g. as determined by Tejal et al. (Fig 6 [55]). The q’s are the displacement from the equilibrium
position with the separation distance of unity, and the force on particle i due to particle i + 1 is
defined as Fi;iþ1 ¼ � @V

@qi
. For such systems as a lattice chain, we define the partitioned work

done on i due to the force from i + 1 as

Dwiþ1!i ¼
Z t2

t1

Fi;iþ1 _qi dt � m
I
stoch

Fi;iþ1 dqi ð36Þ

between the time interval [t1, t2], and the work done on i+1 due to the force from i as

Dwi!iþ1 ¼
Z t2

t1

Fiþ1;i _qiþ1 dt � n
I
stoch

Fiþ1;i dqiþ1 ð37Þ

for large enough time interval t2 − t1 form, n being integers. The above equations pertain to
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systems that oscillate, as with particles along a lattice chain, and the loop or circular integral
given are over cycles (m and n respectively) where

H
stoch refers to the average work done over

the consecutivem or n cycles respectively. The equations become exact as t2 − t1 !1, i.e.

I
stoch

¼
R t2
t1
Fi;iþ1 _qi dt

m

as t2 − t1 !1 form consecutive cycles. The above equations normalized over unit time are
defined thus:

dw2!1 ¼ Dwiþ1!i=ðt2 � t1Þ ð38Þ

dw1!2 ¼ Dwi!iþ1=ðt2 � t1Þ: ð39Þ

We make use of the standard Simpson second order 3-point formula (fourth order error)
numerical integration [103, 104] for the over 3 million (M) consecutive time steps of stepsize
0.001, equal to the MD timestep. Since all the particles are oscillating, particles i and i + 1 too
can be viewed as oscillating back and forth an average of approximatelym times (to the nearest
integer) about their mean position. If this partition force were conservative, then

lim
m!1

Dwiþ1!i=m ¼ 0 ð40Þ

lim
n!1

Dwi!iþ1=n ¼ 0 ð41Þ

and the above limits for large values of time intervals are not observed in all the simulations
carried out (see Table 1) with varying lengths from 3 to 10 M time step intervals, where, when
these integrations of different time lengths are normalized to per unit time, yielded the same
numerical quantities at the steady state. Hence these stochastic path integrals (involving a
hybrid system of random energy and momentum impulses at the reservoir coupled to a stan-
dard system Hamiltonian without a time dependent variable) have non-conservative “‘Hamil-
tonians’” even if the classical Hamiltionian is continuous with continuous variables having no
explicit time dependence. We note that distinguished theorists routinely use the Liouville and
Hamilton equations in modeling these heat conduction problems e.g. [63, 90].

Table 1. The particle index number # is provided by the header on the l.h.s., with all the other variables (such as the δw’s) fully described in the
text. The temperature of the particle # and that of the adjacent one on its r.h.s. with index #+1 appears in columns 4 & 5. Column 6 are the results for <Ta>
given by Eq (82). The u.s.d of the results for the δw’s is approximately 0.12 × 10−1 and that of the temperatures 0.14 × 100.

part.# δw2!1 δw1!2 temp. # temp. #+1 <Ta>

250 -0.21070E+00 0.21110E+00 0.35166E+01 0.35038E+01 0.35162E+01

300 -0.21031E+00 0.21046E+00 0.33159E+01 0.33037E+01 0.33154E+01

350 -0.20958E+00 0.20976E+00 0.31287E+01 0.31141E+01 0.31283E+01

450 -0.20978E+00 0.20988E+00 0.27131E+01 0.26945E+01 0.27127E+01

500 -0.21036E+00 0.21034E+00 0.24834E+01 0.24830E+01 0.24830E+01

550 -0.21185E+00 0.21182E+00 0.23192E+01 0.23078E+01 0.23187E+01

650 -0.21076E+00 0.21086E+00 0.18816E+01 0.18692E+01 0.18812E+01

700 -0.21149E+00 0.21146E+00 0.16796E+01 0.16676E+01 0.16792E+01

750 -0.21236E+00 0.21231E+00 0.14668E+01 0.14619E+01 0.14664E+01

doi:10.1371/journal.pone.0145026.t001
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Formulation of Theoretical Reference Model
Assuming the validity of the Dhar-RLL definition of temperature to be valid for the decon-
volved k.e. equipartition, this particular model will be shown to exhibit recoverable transitions
in the manner described below. For what follows, two related models of heat conduction are
discussed:

(i). a discrete case where there are no interparticle potentials, but only a quadratic site poten-
tial, and where energy transfer along the lattice chain is through elastic collisions between
particles (described as the reference model)

(ii). a non-discrete system where the particles in the lattice interact via continuous potentials
(Eq 35).

System (i) is the reference model, and because of its discrete nature of particle interactions, can
be modeled as a recoverable process with less ambiguity compared to continuous systems. Sys-
tem (i) is then generalized to system (ii), where a 1$ 1 correspondence is made between the
variables in (i) and that of (ii), so that the factors involved in recoverable transitions for contin-
uous systems may be identified. System (i) with its isolated potential is modeled as conforming
to the extended equipartition concept of Dhar-RLL for the two scattering processes, with two
associated temperatures about one particle label using the BQ diathermal fiber which is made
to interact during one phase of the scattering process. It no net change of energy transfer is
observed, and if each of the energy quantum transferred is monitored, then one can define
both a temperature to that scattering process, and also test out the validity of the energy proba-
bility density function associated with the amount of energy transferred by computing the
probabilities; the Zeroth law is invoked to determine its temperature. Although the reference
model is here used only as a template, where its set average equilibrium separation distance deq
is not a relevant variable when constructing from it the continuous model which is simulated,
yet one can still, by equating the thermal k.e. energy at the equilibrium point to the maximum
amplitude kT ¼ khd

2
eq to derive an estimate for the equilibrium separation distance,

deq �
kTm

kh

� �1=2

; Tm ¼ ðTh þ TlÞ=2 ð42Þ

where Tm, Th, and Tl are respectively the mean temperature of the 1D uniform conducting
material, held at the ends at temperatures Th and Tl.

Of note here is that the localized particle exhibits two temperatures as it interacts with adja-
cent particles; there is the mean kinetic energy temperature and the temperature associated
with the transfer of energy from particle i to the adjacent particle (on the right, particle i + 1) in
a basic adiabatic transition. Once the reference model is described, which involves discontinu-
ous elastic collisions, it is then applied to the continuously interacting case that we validate by
simulation; the key link to the continuum is to realize that each moment of time constitutes a
“collision” interaction of the coupled particles relative to this “‘isolated’” reference model.

The theoretical reference model is “isolated” in the sense that its energy is well defined and
localized except for the time of collision with elastic hard sphere energy interchange as shown
in Fig 1(a) where they oscillate in the horizontal direction due to a site potential V acting verti-
cally with a small horizontal projection which we can assume to be harmonic with regard to its
displacement qi from the horizontal equilibrium position at qi = 0, (this assumption is not

mandatory but it simplifies matters) and so the potential energy Vi ¼ khq
2
i

2
, the kinetic energy is

k:e:ðiÞ ¼ m _q2i
2
and the total energy Ei = Vi + k.e.(i). The model is eventually modified to cover

the situation in Fig 1(b) by appropriate choice of subsystem where even in the coupled state,

One-Particle Heat Conduction Description and the Second Law

PLOSONE | DOI:10.1371/journal.pone.0145026 January 13, 2016 31 / 47



one can conceptualize each particle as being isolated at each instance of time t. For what fol-
lows, particle i is referred to simply as i. The proof of the feasibility of this model is that a simu-
lation of an allied system with the same dynamical structure—as will be demonstrated—has
been described in detail [105].

A recoverable transition (Theorem and Eqs (85–86) [9]) considers the streamline

dS ¼ d
QE

T

� �
¼ 0 ð43Þ

where QE is defined as for<Q> in Eq (34), i.e. QE =<Q>; the energy term QE is for the whole
ensemble or for the time average following Gibbs for a single particle or system. The potential
is not utilized to determine T the temperature, which is computed according to the Dhar-RLL
rationalization where only the kinetic energy is considered.

Heuristic justification of why extended equipartition could be a ‘strong’ principle in multi-
temperature, 1 particle representations that rely on the Dhar-RLL condition

The general classical Hamiltonian for any one particle

H ¼ p2i
2m

þ Vðqi;OÞ ð44Þ

for process b (before) a collision and a (after) a collision would cover (p, q) phase space @Va

and @Vb of the overall space for all possible interactions Vc, where Vc = @Va [ @Vb; O are the
set of variables that pertain to the NE situation. If the set of eigenfunctions and energy eigen-
value for the quantum version of Eq (44) for processes a and b are {ψa,i, Ea,i} and {ψb,i, Eb,i}
respectively, then for sufficiently large numbers of states, using the standard optimization tech-
niques to derive the canonical distribution would yield for the steady state the probability dis-
tribution

Pa;i ¼ ebaEa;i=Za;Za ¼
XM
i¼1

ebaEa;i

Fig 1. Schematic (a) represents adjacent particles that interact by hard sphere elastic collisions where a harmonic potential operates about the equilibrium
position with no direct harmonic or other force coupling between these particles except for the hard sphere collisions. Schematic (b) represents a system
where the adjacent particles interact continuously and directly though an inter-particle potential function, such as given in Eq (35).

doi:10.1371/journal.pone.0145026.g001
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with similar expressions for processes b. This argument presumes that an energy spectrum

{Ei, NE} exists for the Schrodinger equation ĤNECNE;i ¼ ENE;iCNE;i describing NE time-depen-

dent steady states with nondegenerate energy eigenvalues and that the methods used for the
equilibrium canonical ensemble also apply for the NE steady state simply because the equilib-
rium state is a special NE state with zero net fluxes. The canonical distribution is chosen in this
particular instance for a single particle/system assuming that solutions exist for the Schro-
dinger equation and that the temperature β can be characterized via the diathermal fiber that is
used as a probe to determine the temperature, and because the temperatures and eigenvalues

are not the same, we have in general that Pa,i ≢ Pb,i ≢ Pc,i. Averaging
p2i
2m
by the canonical distri-

bution yields the average kinetic energy k:e:aðiÞ ¼ kTa
2
and similarly for processes b, where Ta

(Tb) are determined by the diathermal fiber and is also the equilibrium temperature which is
used to parameterize the system for processes a and b that can be distinguished. Similarly using
time averaging and the Virial result the following equation obtains in general if the classical
equipartition obtains for the momentum coordinates according to the Dhar-RLL condition Eq

(30) for the left hand side of the following (p.80–83 [106]) equation pk
@H
@pk

¼ qk
@H
@qk

meaning that

the right hand side is equivalent to it. For the potential energy written p:e:ðiÞ ¼ kf
2
q2k we derive

from the kinetic energy and virial< p:e:ðiÞ >¼ kTa
2
. We note that the quantum result for the

steady state solutions to the Schrodinger equation {Ei} has the NE variables, such as those per-
taining to current flows and gradients, which are absent in the equilibrium system. Therefore,
these results are not equivalent to thermostatic systems where there are no current flows nor
gradients and the energy eigenvalues would include variables for the NE flow and gradient vari-
ables absent for the thermostatic situation. Because subsets for processes a and b are involved,
it is evident that Zc > Za, Zc> Zb, {ψc,i, Ec,i}	 {ψa,i, Ea,i}, {ψc,i, Ec,i}	 {ψb,i, Eb, i}; if process c
itself were probed by the diathermal fiber, it would register another temperature not equivalent
to that for processes a and b, given that processes a, b, and c are all in the steady state. How
would one rationalize the above from a classical standpoint? We note that the apparatus for
constructing the different ensembles pertain to equilibrium, possibly steady state NE situations
(although there has been little work to establish the nature of these ensembles for even steady-
state systems on a rigorous basis). The following assumes that the ensembles are valid for NE
steady states. Define a phase space regional function Ri, and a coordinate (p, q) set Oj where
Ri(Oj) = δij, that is if the coordinates all belong to the region Ri, then the function is unity, oth-
erwise it is zero. Then, from the BQ construct, we can define a temperature T which applies to
both thermostatic and steady state NE systems. Since steady state thermodynamical NE sys-
tems have extra variables to cater for gradients and fluxes of state variables, one cannot expect
a direct correlation between thermostatic and the steady state NE system, as has been proved
[22]. This is one reason why in the conventional description, distortions to the density-in-
phase %ðp; qÞ ¼ Ce�bH as in thermostatics with Θ = kT, β = 1/Θ for any one partitioned or
composite process. For a composite system that is not uniform in temperature, but where the
regions i have different temperatures, the density in phase implies for systems described well

by the canonical distribution %iðpÞ ¼ Cie
bi
Pm

j¼1

p2
j

2m for a region ðp;q; tÞ 2 Oi; t 2 Oti
i , whereR

Oi
%iðpÞdp ¼ 1, and

R
Oi
%i

Pm
j¼1

p2j
2m
dp ¼ m

2
Yi. The total density with np temperature parame-

ters would then have the distribution %ðp;qÞ ¼Pnp
i¼1 %iRiðp;qÞ for a system with np tempera-

ture parameters. Regions Oi are all non-overlapping. The results presented in the concluding
sections only assumes the validity of the Dhar-RLL condition Eq (30) for the definition of tem-
perature in conjunction with the dithermal fiber.
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Application of recoverable trajectories to heat conduction.
In developing the paradigm of heat conduction, only the k.e. of the localized particle along

the lattice is relevant for the determination of temperature. Hence the classically exact Dhar-
RLL equipartition result Eq (30) is of immediate relevance. We also write down the form that
includes the harmonic potential to suggest possibilities for more complex dynamics than the
model system presented here where Eqs (68–82) is not dependent on the potential form for the
paradigm proposed, that of heat conduction being a recoverable trajectory and where the phe-
nomena is subsumed by the Second law, which is a view not shared by BQ. The Dhar-RLL 1D
result for i for a particle is

1

2
kTi ¼< k:e:ðiÞ >¼< Ei � VðiÞ > ð45Þ

where the E’s refer to energy; in statistical physics conventions, “heat” is taken to be the mean
kinetic and potential energy of the system (p.212, Eq (6.4.3) [33]); only differentials of this
quantity with a subtraction of the defined work differential terms yields the heat increment
(p.214, Eq (6.5.9) [33]).

The temperature Ti of i from Dhar-RLL equipartition may be defined as an ensemble aver-
age, with k the Boltzmann factor as Ti ¼ 2

k
< k:e:ðiÞ > where

hk:e:ðiÞ þ Vii¼ hEii: ð46Þ

The above Eq (46) is computable for system in thermodynamical equilibrium. From the
above, for any process x within a x-temperature characterization of a particle, with a quadratic
or any arbitrary form of potential and where the kinetic energy also is present, we have as
above Ti;x ¼ 2

k
< k:e:ðiÞ>x and

hk:e:ðiÞ þ Viix ¼ hEiix: ð47Þ

The scattering processes must be defined. The particles would oscillate approximately about
the mean position qi = 0, and for any suitable choice of initial conditions, any process before a
collision is termed process b, and a refers to a process commencing just after a collisional inter-
action of particle i and i + 1. The equilibrium distance between particles is set to 1 in reduced
units. Let plj denote both the plane perpendicular to the vector qi − qi+1 which contains the q
coordinate point of contact between the particles during the jth collision of i and i + 1, and the
q coordinate during this collision process. The collision would impart a change of velocity d _qi

and kinetic energy δk.e.(i). By energy conservation, the average energy up to the time of colli-
sion for i, Qb is (for any i)

Qb ¼ hk:e:ðiÞ þ Vijpljiðaveraged over all j collisions with i þ 1Þ: ð48Þ

We note that Qb is also dependent on interaction with particle i − 1 which is not relevant
here for the transfer energetics of i to i + 1. Primed variables refer to the quantity after a colli-
sional interaction. For any i, Qb is time independent when the system is in a steady state. Then
the dynamical laws can be utilized to compute the change of k.e. for i (since the potential
energy remains unchanged at qi = plj) and thus we can compute Qa the energy just after the col-
lision as

Qa ¼ hk:e:0ðiÞ þ V 0
i jpljiðaveraged over all j collisionsÞ ð49Þ

where the time duration between the previous collision j − 1 is denoted Δtj; we define the mean
time between j collisions as as τmc. Averaging over the sampling time, we can compute average
quantities such as the Q’s, denoted by brackets<> and so over time τmc, the energy transfer
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δw is

dw ¼< Qb > � < Qa > ð50Þ

or δw/τmc per unit time over a continuous time period. Note that the normalized units used
here (i.e. per unit time) are not the same as for the un-normalized work terms in Eqs (36 and
37). To be a comprehensive, we feature two forms of the 1-particle representation, one that
assumes the equipartition result for harmonic potentials close to equilibrium assuming PLE
and the other that relies on the Dhar-RLL definition of temperature that does not refer to the
potentials at all.

For a harmonic potential, for a NE state close to equilibrium and which complies with the
PLE, the following holds

kTi;x ¼ hk:e:ðiÞ þ VðiÞix ¼ hEiix

where x� a for processes just after a collision and x� b for phases before a collision. The
Dhar-RLL result allows us to write the following equations for any conservation potential Vc

which is not approximate but exact:

k:e:b;0 ¼ k:e:bðlÞ þ VcðlÞ ¼ Eb ¼ Qb ð51Þ

k:e:a;0 ¼ k:e:aðlÞ þ VcðlÞ ¼ Ea ¼ Qa ð52Þ

where l is the distance of the particle from the equilibrium plane (when l = 0, Vcð0Þ ¼ 0) during
a collision and Vc is the potential of the particle. After a collision, all the potential energy is con-
verted to k.e. as the particle returns to l = 0 and the diathermal fiber is placed at the same loca-
tion l = 0 to determine the temperature. Then taking averages (the bracketed quantities are
averages) over all collisions, we can determine hlix and also

1

2
kTb ¼ hEbi ¼ hQbi ð53Þ

with a similar result for process a. Thus

hQbi
Tb

� hQai
Ta

¼ 0 ð54Þ

solely as a result of the constancy of k for both the a and b processes. This result or any of the
equivalents above is used as a template for creating a paradigm for continuous potentials. We
note that this result is not at all dependent on any equipartition result that refers to the poten-
tial and the classically exact expression for temperature is used from the Dhar-RLL result. Fur-
thermore, as long as a temperature is specified, there is no further reference to ergodicity as the
zero entropy result is due to the subtraction of the same factors of k above, and in Eq (59)
below, for instance. We note that the BQ diathermal fiber concept is used; if a steady tempera-
ture exists From Eq (46), for the simple case of harmonic potentials obeying equipartition, the
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following array of equations result:

Tb ¼ < Eb > =k ¼< Qb > =k ð55Þ

Ta ¼ < Ea > =k ¼< Eb � dw > =k ð56Þ

Ta ¼ < Ea > =k ¼< Eb þ dE > =k ¼< Qa > =k ð57Þ

k ¼ <
Qa

Ta

>¼<
Qb

Tb

> : ð58Þ

with δE = −δw. From one of the field properties of number theory (p.15, Field Axiom A4
[107]),

k þ ð�kÞ ¼ 0 ð59Þ

we deduce

dS ¼ < Qb >

Tb

�< Qa >

Ta

¼ 0 ð60Þ

which defines the recoverable trajectory. Some elementary remarks are in order concerning the
averaging process. We note that for N (consecutive) samples

< Qa >¼
XN
i¼1

Qa;i=N

 !
: ð61Þ

Then from Eqs (59) or (60) and some k0 (here k = k0 for Newtonian mechanics involving
masses),

hTai ¼
X

Qa;i

k0N
¼ Qa

k0
ð62Þ

) hQbi
hTbi

� hQai
hTai

¼ 0 ð63Þ

and the mean rate of energy transfer is δw/τmc. This appearance of a rate coupled with the use
of the BQ fiber for the determination of temperature provides the link between “thermostatics”
and dynamics, although as argued here, the energy density function need not correspond to
thermostatic densities. From the very basic equations above, a rate term can be deduced. The
application of this recoverability transition in Eqs (68–82) requires a focus on the kinetic
energy only, therefore all the potential terms may be are set to zero (or a constant):

Vi ¼ Vijplj ¼ V 0
i jplj ¼ 0 ð64Þ

and where

k ¼ kB
2
; ¼ k0 ¼ kB

2
: ð65Þ
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A generalization of the Zeroth law based on recoverable trajectory
The equilibrium understanding of the Zeroth law is that if two bodies are in diathermal con-
tact, and there is no net exchange of energy over at least a characteristic time τ, then they are
defined to be at the same temperature. The BQ definition of generalized temperature involving
their diathermal fiber relies on the Zeroth law, using the energy approach. Another entropic
approach is to examine the exchange of energy across the diathermal boundary between two
systems 1 and 2 (these labels determine the heat and temperature of the systems) and if there is
no net exchange of energy<δQ1 > = −<δQ2 > = 0, then if for any instant of time δQ1 = −δQ2

= 0 for non-work energy exchange only, and using the recoverable trajectory entropy change
δS = 0, we have

dQ1

T1

þ dQ2

T2

¼ dQ1

T1

� dQ1

T2

; ð66Þ

dS ¼ dQ1

T1

� dQ1

T2

¼ 0 ) dQ1ðT2 � T1Þ ¼ 0 ð67Þ

or T2 = T1 if |δQ1| 6¼ 0. Since in dynamic equilibrium |δQ1| 6¼ 0 most of the time, we conclude
T2 = T1, this time within the recoverable zero entropy formalism. Based on this same entropic
formalism, one can define a system in transition to be in extended equilibrium if δS = δ(Q/T) =
0. Clearly a computable algorithm must be available for this extended concept. If we therefore
define the Zeroth law in terms of Zero entropy transitions, then recoverable trajectories δ(Q/T)
= 0 can conform to the Zeroth law even if their temperatures differ across a boundary if the cri-
terion refers to zero entropy changes rather than energy (in at least closed systems). It will be
shown that for such systems, these differing temperatures can be defined or at least calculated
(as shown in the section below on applications of the theoretical reference model, especially
Eqs (79–82)) For continuous systems in the 1-particle representation, such an association of
two temperatures to a single particle (system) at different phases of its motion can be computed
and Table 1 shows values of the second temperature Ta; Tb in this case is<2Qb> with<Qb>

given by Eq (73), where Tb is the standard particle kinetic temperature for the b process. In the
current model of the continuous system consisting of single particle subsystems, the tempera-
ture is defined in terms of its kinetic energy where the particle iHamiltonian coordinates are
ð _qi; qiÞ with the potential energies partitioned away in our system definition Eqs (36 and 37).
From the above discontinuous model, we note that the spatially stationary system—through
stochastic averaging—consisting of the particle i is closed, since it always consists of one parti-
cle, but not isolated since it can exchange energy; in particular and it also conforms to a recov-
erable trajectory δ(Q/T) = 0 where the heat terms arises from the partitioned processes (a and
b) where the diathermal fiber is used to determine temperature. If we therefore define the
Zeroth law in terms of Zero entropy transitions, as above, then this closed system conforms to
the Zeroth law, with regard to the energy exchange leading to a double temperature characteri-
zation for the particle for the partitioned states a and b; thus in this sense we can say that the
two temperatures refer to the same particle in equilibrium with itself as defined from the
extended Zeroth law.

We have theoretically demonstrated that subsystem (a) of Fig 1 must have the particle
behaving as a recoverable trajectory based on the generalized Dhar-RLL equipartition theorem
for 2 temperature, 1-particle subsystems. Hence if the above model is applied to a system that
conforms to case (b) of the same Figure, and where there is numerical confirmation that the
vector “‘work term’” d _w � dw=tmc in unit time arising from recoverability theory is exactly
equal to the energy transfer across the thermostated ends of the chain in unit time, then one
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can conclude that a verification of conductive heat as a recoverable process has been made. We
demonstrate this to be the case for all the 9 atoms/particles situated evenly over the conductive
lattice, where there is close numerical agreement between the independently determined heat
transfer rate due to the thermostats and the numerical integration of various defined energy
processes for all of the above labeled particles.

Application of the Theoretical Reference Model described above to
lattice particles interacting continuously via potentials
Here the results of the previous section for discontinuous energy interactions is applied to the
problem of continuous steady state heat conduction (Fig 1(b)). This can be achieved by isolat-
ing the system to the “‘particle’” with coordinates ðqi; _qiÞ and where with k/2 = k0, it follows
that k0 < Ti > =< k.e.(i)max>. From Eq (53), we must have

k0hTii ¼ hk:e:ðiÞi ¼ 1

2
kTb ¼ hEbi ¼ hQbi

This isolation is achieved by the conditions given in Eqs (64 and 65). For what follows the
stochastic averages are determined, where the angle brackets<> is indicative of this process.
The partial heat is defined as Q = k.e.(i) for i, where k0 T(i) = Q = k.e.(i). T(i) is then a type of
fluctuating parameter associated with temperature. The reference system above is correlated to
the current model of particles interacting with a continuous potential by realizing that each
instant of time t involves an interaction via a potential, which takes the place of the transfer of
energy due to elastic collisions and the conservation of momentum in the reference system.
Thus for an interaction over time interval dt, and for the jth interval, the work performed on (i
+ 1) due to the force exerted by i is

dwj ¼ Fiþ1;i:
dqiþ1

dt
dtj: ð68Þ

Then Qb
Tb
¼ k0 and after the interaction time dtj, the following results, where subscripts a and

b refer to after and before the interaction over time interval dt at the jth interval respectively:

Qa ¼ ðk:e:ðiÞ � dwjÞ ð69Þ

k0Ta ¼ ðk:e:ðiÞ � dwjÞ ¼ Qa ð70Þ

and

k0 � k0 ¼ 0 ð71Þ
)

Qb

Tb

� Qa

Ta

¼ dS ¼ 0 ð72Þ

where Eq (72) defines a recoverable process. From the Theorem (p.177, “: If a generalized Car-
not engine is disintegrating, then it is necessarily a frictionless device” [9]), we infer that for
one-way scattering, such as for the thermal desorption problem, the Carnot optimum is always
maintained because the stopping potential would convert the center of mass motion of the
thermal packet into heat so that δS = 0. Eq (71) assures us that by virtue of that trivial equation,
the thermal energy exchange for each consecutive collision i conserves the entropy term S i ¼
Qi=T so defined, and so the average would trivially also conserve the entropy no matter what
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the potential form. Thus energy transfer processes is controlled by the mediating potential
which modifies the thermal energy content dynamically with time to maintain the mechani-
cally irreversible Carnot optimized trajectory. It is important to bear in mind that our force
fields have conservative potentials of the modified harmonic form Eq (35) where we have suit-
ably partitioned the forces Eqs (36 and 37) acting on the particles to determine the work that
will always ensure that Eq (72) obtains. Non-conservative potentials, that due for example to
radiation of convection would obviously not allow for compliance. It is therefore important to
model the equations to ensure that the fields are conservative, and therefore energy conserving,
so that the First law may be applied directly to each consecutive step in the trajectory or else
contrary results would ensue.

Then over n time intervals, where DT ¼ ndt,

< Qb >¼
Z

k:e:ðiÞdt=DT : ð73Þ

Define Δt = dt and F = Fi+1,i. For any one time interval Δt, the loss of k.e.(i) which would
give it some of the characteristics of i + 1, such as a lower temperature would also yield a heat
content Qa and work quantity δw given respectively by

Qa ¼ k:e:ðiÞ � F
dqiþ1

dt
dtj ð74Þ

dw ¼ ðQb � QaÞ spanning ½t1; t2�: ð75Þ

Over n time intervals, the averaged nδw has value

ndw ¼
Z t2

t1

k:e:ðiÞdt=Dt�
Z t2

t1

ðk:e:ðiÞ � F
dqiþ1

dt
DtÞdt=Dt ð76Þ

¼ þ R t2
t1
F
dqiþ1

dt
dt

� �
: ð77Þ

Thus δw per unit time is given by

Z t2

t1

F
dqiþ1

dt
dt

� �
=nDt ð78Þ

which is defined as being identical to δw1!2 in Table 1 and Eq (39). There is therefore complete
concordance between the two models. Here energy transitions are modeled in terms of one
particle that conforms to a recoverable process. Relative to the work transitions, one might
wish to also characterize the lower exchange temperature and heat energy Qa that allows for
work to be performed on the adjacent elements. Over n time intervals dt, one has

< Qajn >¼
R t2
t1

k:e:ðiÞ � F
dqiþ1

dt
Dt

� �
dt

Dt
:

ð79Þ
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Then<Qa> for one time interval is

< Qa >¼
R
k:e:ðiÞ
nDt

�
R
F
dqiþ1

dt
dt

n

0
B@

1
CA: ð80Þ

Hence,

< Qa > ¼ < Qb > �dw1!2:dtf g ¼ a ð81Þ

and < Ta >¼ 2a: ð82Þ

The results for<Ta> are provided in Table 1. We observe that it is lower, as it should be,
and this temperature is associated with the particle i. Thus in any one location, we observe that
we can evoke 2 temperatures that are consistent with the energy transfer across the crystal and
the extended Zeroth law in this modeling scheme.

Results
The use of an anharmonic potential allows for the system to exhibit a near linear temperature
gradient as shown in the snapshot in Fig 2 of a typical run [54–58]. The details of the simula-
tions follow below.

Mean Temperature Profile across chain
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Fig 2. Temperature Profile across chain. From Table 1, the u.s.d. for the freely vibrating particles is of the
order of 0.14 whereas the thermalized particles 1–200 are maintained at the average temperature
T = 0.40014E+01± 0.8E-02, and the colder themalized particles 800–1000 have the average temperature
T = 0.99987E+00± 0.2E-02.

doi:10.1371/journal.pone.0145026.g002
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All fluctuations in quantities are expressed as the uncorrected standard deviation u.s.d. and
the error ± are expressed in terms of this u.s.d. The u.s.d. is the ordinary standard deviation σ

where s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

PN
i¼1 ðxi � mÞ2

q
where the mean μ is m ¼ 1

N

PN
i¼1 xi; xi are the experimental val-

ues with N sample points. The E notation represents exponents to base 10. The results are for
the following parameters:

kh ¼ 1:0; bh ¼ 0:5ðeq:35Þ; deq ¼ 1:0

for the equilibrium interparticle distance deq set to 1 reduced units, where the potential is zero.
After many successive equilibration runs amounting to about 500M timesteps (where
dt = 0.001 for the timestep in reduced units), the production runs were initiated. The numerical
integrations utilized the well-established symplectic Velocity Verlet algorithm of Swope,
Anderson, Berens andWilson (p.81, Eqs 3.17–3.21 for the Allen et al. reference [108, 109]),
which is essentially second order. The production runs are for 100M timesteps, where a contin-
uous sampling of 3M time-steps (constituting a dump) are made over 20 dumps, where for
each dump, averages are made over the 3M time-steps. The various statistics are obtained over
another average over these 20 dump values and the fluctuations expressed as the uncorrected
standard deviation (u.s.d.). A current vogue in these studies is the fifth-order Runge-Kutta inte-
grator algorithm [55], where it is arguable whether more accurate results necessarily obtain
due to machine error accumulation; the objective here is to establish some principles that
require sampling a relatively larger portion of phase space that would be precluded by compu-
tational costs of more intensive computational algorithms that are only relevant for accurate
determination of specific properties over a smaller region of the phase space volume.

The rate of energy transfer into the 200 hot thermostated atoms at the left hand side of the
system is 0.21747E+00 ± 0.34577E-01 and for the 200 colder atoms is -0.21229E+00 ±
0.12843E-01. We find that the energy transferred to the adjacent atoms in Table 1, δw1!2

based on recoverability theory is in excellent quantitative agreement to the independently
determined energy flow into the thermostats in every instance. We note that the reverse work
of particle i + 1! i is negative meaning that there is a gain of energy due to its own force field.
The important point therefore is that one is observing a type of net one way scattering of
energy, from i to i + 1 due to the conservation of energy because atom i − 1 would have to scat-
ter energy into i to compensate for the loss of energy through the force field on the work done
to i + 1.

Discussion and Conclusion
Over especially the last two centuries, the main developments in thermodynamics include (a)
the partitioning of the energy into two distinct forms, workW and heat Q, from which the
entropy is derived from the latter where the entropy differential dS for a closed system is dS =
dQ/T, and (b) where the field of statistical theory in concerned, these concepts were cast in
terms of the Liouville equation and the associated Hamiltonian for both classical and quantum
systems. The mathematical contradictions of both the Liouville equation and the time revers-
ibility assumptions, both of which were incorporated into the more modern versions of ther-
modynamical theories [97, 110] have been demonstrated before [7, 17, 66, 67]. Here we have
outlined a method of conflating both these quantities via the concept of recoverable transitions
by creating a single particle model that incorporates all primitive interactions associated with
recoverability. Thus within this paradigm, the classical understanding of “heat” as that form of
energy that is transferred as a result of a temperature difference (due to the different source
temperatures) may be viewed in a recoverable trajectory paradigm as a work term, where such
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an association is strictly forbidden within the conceptual structure of standard thermodynam-
ics. By extending the reference model to a continuous system, it was shown from the simulation
results that a paradigm exists which points to the possibility of framing mathematical models
and equations that conforms to a recoverable trajectory. The paradigm developed above pro-
vides the boundary conditions and overall structure for the solution of differential and integral
equations to arbitrary accuracy by distinguishing interactions by partition schemes, leading in
the examples above of different temperatures associated with the same region or particle body,
and where the probability distribution profiles for processes a and b differ due to temperature
differences and energy densities. The paradigm also yields a ‘net effect’ of NE distribution pro-
files which is the standard model in the conventional descriptions in NE theory. Here the feasi-
bility of the paradigm is illustrated by the partitioning schemes due to a method of
distinguishing different types of processes in this process of deconvolution.

Of great interest, and of great challenge, is to extend these models to more than one particle,
so that the kinetics and thermodynamical profile of the system might be computed from these
elementary considerations, for instance to fluid systems. We also contradicted the view that the
Fourier law is strictly a locally defined process, unrelated to the Second law or which cannot be
deduced from the Second law, a claim central to the work of BQ in their theory of thermoelec-
tric and thermomagnetic effects [5], by framing elementary theoretical propositions that are
then tested out numerically in simulations for their feasibility, which incorporates the Second
law locally. BQ interpreted the Second law as pertaining to globally coupled heat-work transi-
tions, whereas (Fourier) heat conduction was viewed as local and also as only one component
of the energy definition (that of heat), and therefore had only local significance unrelated to the
Second law.

The Clausius, Kelvin, and more recently Planck and Carathéodory statements of the Second
law all necessitated the construction of pathways that were adiabatic or isothermal in nature in
order to deduce a global optimized value of the work that can be performed in a cycle. The con-
flating of the Carnot cycle into a single particle interaction attempted here may imply the possi-
bility of a corresponding extension of the axiomatic basis of thermodynamics to encompass
some of the transformations described here, e.g. the transfer of energy as “heat” energy across
the lattice chain to the thermal reservoirs which is locally a “work” term in the 1-dimensional
representation, and more importantly, for processes that are non-cyclical; the traditional ren-
derings of the Second law required stationary cycles, and the BQ view of F lent some credence
to this development.

One extension attempted here is the Zeroth law, where two temperatures may be associated
with a single particle in a classically considered irreversible system. In the 1-particle scheme
outlined here, it is possible to structure equations that represents the key quantities {Qa, Qb,
δw, Ta, Tb} associated with the conflated Carnot engine, which represents the most basic reduc-
tion unit. The next stage would be to consider what are the time dependent processes expressed
in mathematical terms that can contribute to the above 5 primitive variables, in terms of local
fluxes, forces and their various conjugate variables, especially the gradients. Such a characteri-
zation would solve or simplify the local problem of description. By analogy, extending these
ideas over more than one particle could conceivably lead to non-local descriptions of the vari-
ous kinetic phenomena.

It seems feasible from the preliminary results obtained here that thermodynamical pro-
cesses, both equilibrium and otherwise may be expressed in terms of a single concept where
equilibrium and NE processes might appear as limiting cases of this singular interpretation.
What is of interest in these initial forays is the nature of the representation; here we are able to
model systems that seem to conform to recoverable trajectories for single particle interactions.
Questions that immediately suggest themselves are whether these models are unique, and if

One-Particle Heat Conduction Description and the Second Law

PLOSONE | DOI:10.1371/journal.pone.0145026 January 13, 2016 42 / 47



not, do they imply a multiplicity of modes that recoverability theory can accommodate to inter-
pret thermodynamical phenomena relative to the unified concept being proposed here. Other
interesting questions would be to elucidate the relationship between the Carathéodory develop-
ment of the Second law concerning the non-accessibility of certain adiabatic states by isother-
mal transformations in the equilibrium state and how this situation arises from the above NE
development.
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