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Microbiota and cancer immunotherapy: 
in search of microbial signals
Raad Z Gharaibeh,1 Christian Jobin1,2,3

The intestinal microbiota, a conglomerate 
of microorganisms comprising bacteria, 
viruses, archaea and fungi, has been 
recognised as an important component of 
host physiology through, for example, its 
influence on nutritional biotransforma-
tion, immune response and xenobiotic 
metabolism.1 These functions are 
performed via a complexed and multilayer 
set of controls coming from within the 
microbial community as well as host 
factors. Consequently, this intricate micro-
biota–host partnership is viewed as an 
essential element of health. For example, 
intestinal bacterial, fungal and viral 
composition is different in patients with 
IBDs and colorectal cancer compared with 
healthy subjects.2–4 A number of investiga-
tive lines probing the impact of microbiota 
in disease initiation, progression and ther-
apeutics are currently underway. The 
microbial therapeutic field is particularly 
dynamic, in part due to the impressive 
success of faecal microbiota transplanta-
tion (FMT) for treatment of recurrent 
Clostridium difficile infection.5 Whether 
FMT or derivative synthetic cocktail could 
be applied to other disease conditions is 
unclear, and a number of clinical trials for 
the treatment of metabolic syndrome, 
diabetes and IBD are currently underway 
to address this question.

The field of cancer has been particu-
larly attentive to the interaction between 
bacteria and therapeutics.6 7 This impact 
of bacteria on therapeutics is wide and 
includes modulation of chemothera-
peutic and immunotherapeutic agents’ 
efficacy and toxicity via metabolic and 
immune-mediated mechanisms.8–11 In 
particular, the recent discovery that 
intestinal microbiota profoundly impacts 
responses of patients with cancer to 
immune checkpoint blockade therapy 
(Routy et al,12 Gopalakrishnan et al13 
and Matson et al14) has attracted much 

attention. In these studies, the authors 
used an antibody targeting the coinhibi-
tory receptor/ligand system programmed 
death-1 (PD-1)/PDL-1 administered to 
patients with metastatic melanoma13 14 or 
non-small cell lung cancer and renal cell 
carcinoma.12 The overall hypothesis 
pursued by these research teams was that 
heterogeneous and transient patients’ 
responses to immune checkpoint therapies 
are in part due to intestinal microbiota. 
In their study of response of patient with 
metastatic melanoma to anti-PD-1 therapy, 
Gopalakrishnan et al found higher relative 
abundance of Faecalibacterium prausnitzii 
in responding (R) compared with non-re-
sponding (NR) patients. Interestingly, 
using a different cohort of patients with 
metastatic melanoma, Matson et al found 
that responsiveness to PD-1 therapy is 
defined by an increased abundance of a 
group of eight species driven by Bifidobac-
terium longum.

In the case of non-small cell lung cancer, 
Routy et al observed increased relative 
abundance of Akkermansia muciniphila 
in PD-1 R compared to NR. Importantly, 
FMT in mice carrying tumours displayed 
improved response to anti-PDL-1 
therapy when faeces originated from R 
compared to NR patients, suggesting a 
functional impact of microbiota in ther-
apeutic responses. Therefore, microbial 

composition may possess predictive clin-
ical value for immune checkpoint blockade 
therapy such as PD-1. More importantly, 
these findings suggest that altering micro-
bial composition could represent a ther-
apeutic avenue for cancer management. 
Although the mechanism by which micro-
biota synergises with PD-1 therapy to 
enhance therapeutic efficacy is still unclear 
and likely involved improved tumour 
immune environment,15 an intriguing 
observation from these three studies is 
the lack of consensus microbial signals 
associated with PD-1 response. Indeed, 
each of the research teams identified 
different bacterial signals (Akkermansia, 
Faecalibacterium and Bifidobacterium) 
associated with PD-1 responses, a diver-
gence that could be related to a number 
of confounding factors such as sampling 
method/storage, DNA extraction, 
geographical differences, sequencing tech-
nology and analytical pipelines used by 
the teams. Alternatively, these microbial 
signals are intrinsic to each cohort but 
functionally related, which would suggest 
that function and not specific species 
better defines therapeutic efficacy.

Among all confounding factors 
mentioned above, the analytical pipeline is 
the most straightforward one to address. 
Therefore, the sequencing data for the 
three studies were obtained and reanalysed 
using QIIME V.1.9.116 for the 16S data 
and MetaPhlAn217 for the metagenome 
shotgun sequencing data. Linear discrimi-
nant analysis effect size (LEfSe)18 was then 
used to identify biomarkers associated with 
R and NR. Using this common approach, 
a significant (p<0.05) difference in beta 
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Figure 1 Linear discriminant analysis (LDA) scores (generated by linear discriminant analysis 
effect size (LEfSe)) computed from QIIME closed-reference operational taxonomic units (OTUs) at 
97% similarity to the greengenes reference using the metagenome shotgun sequencing data show 
differentially abundant taxa in the gut microbiota of patients who responded to programmed 
death-1 (PD-1) treatment. Shown taxa have p value <0.05 and LDA score >2. Each bar represents 
a different OTU.
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diversity (weighted UniFrac) between 
R and NR in Gopalakrishnan et al and 
Matson et al (no 16S data were generated 
by Routy et al) was detected. In the case 
of alpha diversity (Chao1), only Gopal-
akrishnan et al’s data showed significant 
difference (p<0.05), with R having higher 
diversity than NR. However, when both 
data sets were combined, the difference 
in alpha but not beta diversity between 
R and NR was lost. At the taxa level, our 
approach was able to reproduce Gopal-
akrishnan et al’s results but failed to detect 
Bifidobacterium in Matson et al’s data set 
using LEfSe. It is worth mentioning that 
using Matson et al’s approach (non-para-
metric t-test), Bifidobacterium was among 
the top significantly (uncorrected p<0.05) 
enriched taxa in R.

The metagenome shotgun sequencing 
data, on the other hand, did not show 
any significant differences in microbial 
community structure between R and 
NR in all three studies whether analysed 
separately or combined. LEfSe analysis 
using MetaPhlAn2 species level profiles 
confirmed only Routy et al’s results. 
Interestingly, after combining all three 
data sets, LEfSe detected the enrichment 
of A. muciniphila and Ruminococcus 
champanellensis in R.

Given the above results and the lack of 
16S data from all three studies, the metag-
enome shotgun sequencing data were 
used to generate QIIME closed-reference 
operational taxonomic units (OTUs) at 
97% similarity to the greengenes refer-
ence data set.19 20 We did not include data 

from patients with renal cell carcinoma 
because these clustered differently than 
metastatic melanoma and non-small cell 
lung cancer (data not shown). A difference 
between R and NR was detected only in 
Gopalakrishnan et al’s data at the beta 
diversity level, however, this difference 
is lost when data from the three data sets 
are combined. When taxa enriched in R 
were examined, the same taxa reported by 
the three groups to be associated with R 
were found to be present only when each 
data set was analysed separately (figure 1). 
When all three data sets were combined, 
the gut microbiota of R showed enrich-
ment of A. muciniphila and R. bromii but 
not Faecalibacterium or Bifidobacterium. 
Therefore, processing all data through the 
same pipeline confirmed the existence of a 

Figure 2 Principle coordinate analysis (PCoA) using Bray-Curtis dissimilarity generated from KEGG orthologue profiles. (A) Gopalakrishnan et al13 
(PERMANOVA p=0.04, PCoA 2 p=0.02). (B) Matson et al14 (PERMANOVA p=0.04, PCoA 1 p=0.04). (C) Routy et al 12 (PERMANOVA, PCoA 1 and 2: 
not significant). NR, non-responding; PERMANOVA, permutational multivariate analysis of variance; R, responding. 

Figure 3 KEGG orthologue relative abundances for the top 10 differentially detected orthologues between responding (R) and non-responding (NR) 
in (A) Gopalakrishnan et al,13 (B) Matson et al14 and (C) Routy et al.12
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unique microbial 16S rDNA signal associ-
ated with each study.

Despite the divergence in 16S rDNA 
signals between studies, PD-1 responsive-
ness may be related to a common function-
ality from these disparate microorganisms. 
Therefore, the functional content of those 
samples was examined by aligning metag-
enome shotgun sequencing reads using 
Diamond aligner 21  to a local copy of 
KEGG bacterial orthologues22 Interest-
ingly, using this approach a significant 
(p<0.05) difference was detected at the 
beta diversity (Bray-Curtis dissimilarity) 
level between R and NR in both Gopal-
akrishnan et al and Matson et al’s data but 
not in Routy et al’s data (figure 2A–C). 
This separation between R and NR is 
lost when all data from different data sets 
are combined. When KEGG orthologue 
differential abundances (p<0.05) between 
R and NR were examined, Matson et al’s 
data set produced the highest number 
(869 orthologues), followed by Gopal-
akrishnan et al’s (653 orthologues) 
data set and last by Routy et al’s (108 
orthologues) data set. A representative set 
of those orthologues is shown in figure 3, 
where the top 10 differentially abundant 

orthologues between R and NR from each 
data set are plotted (figure 3A–C).

Importantly, no common orthologues 
were observed in all three data sets but 
pairwise intersections showed that Gopal-
akrishnan et al and Matson et al share 
the highest number of orthologues (23 
orthologues), followed by Matson et 
al and Routy et al (11 orthologues) and 
last, Gopalakrishnan et al and Routy et al 
(three orthologues).

Finally, three machine learning classi-
fiers (least absolute shrinkage and selec-
tion operator,23 random forest (RF)24 and 
support vector machine (SVM)25) were 
employed to test whether microbial signals 
(species or KEGG orthologues) could 
predict PD-1 responses using MetAML.26 
The use of species-level metagenomic 
profiles as an input to MetAML resulted in 
poor performance for the three classifiers 
(figure 4A–C). The best performing classi-
fier was SVM on Routy et al’s data gener-
ating an area under the curve (AUC) of 
0.62 (figure 4C). Interestingly, classifiers’ 
performance was enhanced when KEGG 
orthologues were used (figure 4D–F) with 
RF on Gopalakrishnan et al’s data gener-
ating the highest AUC, 0.71 (figure 4D). 

Combining data sets did not enhance 
classifiers’ performance regardless of the 
profile used.

Our analysis demonstrates that analyt-
ical pipelines are not responsible for the 
observed taxa disparity in PD-1 response 
between the three studies. This finding is 
in line with a previous report showing that 
analytical pipeline is not driving signal 
difference in microbiota analysis.27 Impor-
tantly, microbial gene content has better 
predictive power and overlapping signal 
than microbial communities’ composition. 
Clearly, the search for microbial signal as 
predictors of therapeutic response, at least 
from the standpoint of immune check-
point blockade, would require deeper 
functional investigation, as profiling 
microbial composition is unlikely to bring 
sufficient information to untangled signal 
from noise. Is there a direct link between 
microbial functional profiling and patients’ 
response to immune checkpoint blockade? 
A deeper look at these microbial functions 
would necessitate analysis of microbial 
gene expression using RNA sequencing 
or metabolomics to identify potential 
pathways associated with treatment effi-
cacy. However, one could not discount 

Figure 4 Average receiver operating characteristic (ROC) curves (over 10 cross-validation folds) for (A) Gopalakrishnan et al,13 (B) Matson et al14 
and (C) Routy et al’s12 species-level MetaPhlAn2 profiles and (D) Gopalakrishnan et al,13 (E) Matson et al14 and (F) Routy et al’s [12] KEGG orthologue 
profiles. Solid line: correct labelling for phenotype (R, NR); dotted coloured lines: shuffled labels; diagonal dotted black line: random guess. LASSO, 
least absolute shrinkage and selection operator; NR, non-responding; R, responding; RF, random forest; SVM, support vector machine. 
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the possibility that microbial structures 
(cell surface antigens, nucleic acids, and so 
on)28 and not microbial metabolic activ-
ities are responsible for the synergistic 
interaction between bacteria, immune 
cells and therapeutic efficacy.

The continuous expansion of new 
clinical trials targeting various cancer 
forms would likely contribute to a better 
understanding of the role of microbiota in 
mediating efficacy of immune checkpoint 
inhibitors,29 pending that microbiota 
sampling is incorporated into these trials. 
Similarly, larger cohorts may be necessary 
in order to identify potential microbial 
markers defining responsiveness.

In addition, one would need to inves-
tigate microbiota relationship with cancer 
management beyond T cell target therapy 
and immune checkpoint inhibitors. For 
example, understanding the role of 
microbiota in other immuno-oncology 
treatment modalities such as cancer 
vaccine, oncolytic virus and cell-medi-
ated therapy (chimeric antigen receptor 
T cell therapy) may help identify either 
microbiota component associated with a 
specific class of treatment or overlapping 
signal applicable to a wide spectrum of 
immunotherapy. Another important point 
regarding the link between microbiota 
and immune checkpoint response is the 
source of the signal. So far, all efforts have 
been directed at linking drug efficacy to 
bacteria, but the complexity of the micro-
biota may hide additional signals. As stated 
above, fungi and viruses are an intrinsic 
part of the microbiota and have been 
shown to impact immune response,30 31 an 
essential component of immunotherapy. It 
would be important to investigate the role 
of these other microorganisms in defining 
the interaction between microbiota and 
cancer therapy. In conclusion, the search 
for microbial signals defining the extent of 
cancer therapeutic response is an ongoing 
quest, and the next years promise to 
deliver exciting new paradigm for the field 
of cancer research.
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