organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

2-Benzylsulfanyl-N-(1,3-dimethylimidazolidin-2-ylidene)aniline

Ulrich Flörke,* Adam Neuba and Gerald Henkel

Universität Paderborn, Fakultät für Naturwissenschaften, Department Chemie, Warburger Strasse 100, 33098 Paderborn, Germany Correspondence e-mail: ulrich.floerke@upb.de

Received 8 March 2013; accepted 14 March 2013

Key indicators: single-crystal X-ray study; T = 120 K; mean σ (C–C) = 0.002 Å; R factor = 0.035; wR factor = 0.095; data-to-parameter ratio = 19.7.

The molecular structure of the title compound, $C_{18}H_{21}N_3S$, shows a twisted conformation with a dihedral angle of 67.45 (4)° between the aromatic ring planes and an N-C-C-S torsion angle of $-5.01 (13)^\circ$. The imidazolidine ring and the aniline moiety make a dihedral angle of 56.03 (4) $^{\circ}$ and the associated C–N–C angle is 125.71 $(10)^{\circ}$. The guanidine-like C=N double bond is clearly localized, with a bond length of 1.2879 (14) Å. The C-S-C angle is 102.12 (5)° and the S-C(aromatic) and S-C bond lengths are 1.7643 (11) and 1.8159 (12) Å.

Related literature

For a related structure, see: Neuba et al. (2007). For the synthesis, see: Herres-Pawlis et al. (2005); Lindoy & Livingstone (1968).

Experimental

Crystal data

$C_{18}H_{21}N_3S$	$\gamma = 107.915 \ (1)^{\circ}$
$M_r = 311.44$	$V = 819.89 (9) \text{ Å}^3$
Triclinic, P1	Z = 2
a = 7.9814 (5) Å	Mo $K\alpha$ radiation
b = 8.1158 (5) Å	$\mu = 0.20 \text{ mm}^{-1}$
c = 13.9440 (9) Å	$T = 120 { m K}$
$\alpha = 97.232 \ (1)^{\circ}$	$0.47 \times 0.36 \times 0.31 \text{ mm}$
$\beta = 102.721 \ (1)^{\circ}$	

Data collection

Bruker SMART APEX diffractometer Absorption correction: multi-scan (SADABS: Sheldrick, 2004) $T_{\min} = 0.913, T_{\max} = 0.941$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.035$ $wR(F^2) = 0.095$ S = 1.043959 reflections

3959 independent reflections 3652 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.016$

7869 measured reflections

201 parameters H-atom parameters constrained $\Delta \rho_{\rm max} = 0.30 \ {\rm e} \ {\rm \AA}^ \Delta \rho_{\rm min} = -0.21$ e Å⁻³

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and local programs.

We thank the German research council (DFG) and the Federal Ministry of education and research (BMBF) for continued support of our work.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NK2203).

References

Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

- Herres-Pawlis, S., Neuba, A., Seewald, O., Seshadri, T., Egold, H., Flörke, U. & Henkel, G. (2005). Eur. J. Org. Chem. pp. 4879-4890.
- Lindoy, L. F. & Livingstone, S. E. (1968). Inorg. Chem. 7, 1149-1154.
- Neuba, A., Flörke, U. & Henkel, G. (2007). Acta Cryst. E63, 03476-03477.
- Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany. Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supplementary materials

Acta Cryst. (2013). E69, o554 [doi:10.1107/S1600536813007101]

2-Benzylsulfanyl-N-(1,3-dimethylimidazolidin-2-ylidene)aniline

Ulrich Flörke, Adam Neuba and Gerald Henkel

Experimental

The title compound was prepared as follows: a solution of N, N, N', N'-dimethylethylenechlorformamidinium chloride (5.07 g, 30 mmol) in dry MeCN was added dropwise to an ice-cooled solution of 2-(benzylthio)aniline (6.45 g, 30 mmol) and triethylamine (4.18 ml, 3.03 g, 30 mmol) in dry MeCN. After 3 h under reflux, a solution of NaOH (1.2 g, 30 mmol) in water was added. The solvents and NEt₃ were then evaporated under vacuum. In order to deprotonate the mono-hydrochloride, 50 wt% KOH (aqueous, 15 ml) was added and the free base was extracted into the MeCN phase (3 *x* 80 ml). The organic phase was dried with Na₂SO₄. After filtration, the solvent was evaporated under reduced pressure. The title compound was obtained as white powder (yield 60%, 5.6 g). Colourless crystals suitable for X-ray diffraction were obtained by slow cooling of a hot saturated MeCN solution.

Spectroscopic data: ¹H-NMR (500 MHz, CDCl₃, 25°C, δ [p.p.m.]): 2.63 (s, 6H, CH₃), 3.25 (s, 4H, CH₂), 4.11 (s, 2H, CH₂), 6.80 (m, 2H, CH), 7.01 (t, 1H, CH), 7.14 (d, 1H, CH), 7.21 (t, 1H, CH), 7.28 (t, 2H, CH), 7.38 (d, 2H, CH). ¹³C-NMR (125 MHz, CDCl₃, 25°C, δ [p.p.m.]): 34.8 (CH₃), 36.6 (CH₂),48.5 (CH₂) 120.5 (CH), 125.7 (CH), 126.8 (CH), 127.2 (CH), 128.3 (CH), 129.1 (CH), 129.1 (C_{quat}), 137.9 (C_{quat}), 148.6 (C_{quat}), 155.2 (C_{gua}). IR (KBr, v [cm⁻¹]): 3053 (w), 3030 (w),3003 (vw), 2933 (m), 2920 (m), 2868 (m), 2839 (m), 1954 (vw), 1973 (vw), 1635 (versus) (v (C=N)), 1572 (s) (v (C=N)), 1493 (m), 1469 (m), 1437 (s), 1410 (m), 1394 (m), 1309 (w), 1281 (m), 1236 (m), 1192 (m), 1155 (vw), 1140 (w), 1126 (m),1070 (m), 1032 (s), 1003 (w), 991 (w), 970 (m), 920 (w), 858(w), 845(w), 816 (vw), 783 (m), 764 (m), 735 (s), 717 (s), 698 (m), 648 (m), 596 (w), 586 (w), 571 (w), 545 (w). EI—MS (m/z (%)): 311.2 (100) [*M*⁺], 278.2 (89), 220.2 (62) [*M*⁺—CH₂Ph], 202.2 (43), 187.2 (96), 177.2 (40), 165.1 (83), 150.1 (29), 136.0 (52), 126.2 (47), 109.1 (33), 91.1 (55) [CH₂Ph⁺], 70.1 (28), 56.1 (95).

Refinement

Hydrogen atoms were clearly identified in difference syntheses, refined at idealized positions riding on the carbon atoms with isotropic displacement parameters $U_{iso}(H) = 1.2U(C_{eq})$ or $1.5U(-CH_3)$ and C–H 0.95–0.99 Å. The hydrogen atoms of C(2) methyl group are disordered over two positions with half occupation each and refined with AFIX 123 command. All CH₃ hydrogen atoms were allowed to rotate but not to tip.

Computing details

Data collection: *SMART* (Bruker, 2002); cell refinement: *SAINT* (Bruker, 2002); data reduction: *SAINT* (Bruker, 2002); program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008) and local programs.

Figure 1

Molecular structure of the title compound with anisotropic displacement ellipsoids drawn at the 50% probability level.

Z = 2

F(000) = 332

 $\theta = 2.7 - 28.3^{\circ}$ $\mu = 0.20 \text{ mm}^{-1}$

Block, colourless

 $0.47 \times 0.36 \times 0.31 \text{ mm}$

T = 120 K

 $D_{\rm x} = 1.262 \text{ Mg m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 5075 reflections

2-Benzylsulfanyl-N-(1,3-dimethylimidazolidin-2-ylidene)aniline

Crystal data $C_{18}H_{21}N_3S$ $M_r = 311.44$ Triclinic, $P\overline{1}$ Hall symbol: -P 1 a = 7.9814 (5) Å b = 8.1158 (5) Å c = 13.9440 (9) Å a = 97.232 (1)° $\beta = 102.721$ (1)° $\gamma = 107.915$ (1)° V = 819.89 (9) Å³

Data collection

Bruker SMART APEX	7869 measured reflections
diffractometer	3959 independent reflections
Radiation source: sealed tube	3652 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.016$
φ and ω scans	$\theta_{\rm max} = 28.1^{\circ}, \theta_{\rm min} = 1.5^{\circ}$
Absorption correction: multi-scan	$h = -10 \rightarrow 10$
(SADABS; Sheldrick, 2004)	$k = -10 \rightarrow 9$
$T_{\min} = 0.913, \ T_{\max} = 0.941$	$l = -17 \rightarrow 18$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.035$	Hydrogen site location: difference Fourier map
$wR(F^2) = 0.095$	H-atom parameters constrained
S = 1.04	$w = 1/[\sigma^2(F_o^2) + (0.0478P)^2 + 0.2615P]$
3959 reflections	where $P = (F_o^2 + 2F_c^2)/3$
201 parameters	$(\Delta/\sigma)_{\rm max} < 0.001$
0 restraints	$\Delta \rho_{\rm max} = 0.30 \text{ e} \text{ Å}^{-3}$
Primary atom site location: structure-invariant	$\Delta \rho_{\min} = -0.21 \text{ e} \text{ Å}^{-3}$
direct methods	Extinction correction: SHELXTL (Sheldrick,
	2008), $Fc^* = kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
	Extinction coefficient: 0.019 (3)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
S1	0.91501 (4)	0.15915 (4)	0.28380 (2)	0.02459 (10)	
N1	0.69447 (13)	0.30383 (13)	0.15949 (7)	0.0238 (2)	
N2	0.37320 (13)	0.20615 (13)	0.06598 (7)	0.0244 (2)	
N3	0.59367 (13)	0.25970 (14)	-0.01322 (7)	0.0264 (2)	
C1	0.55992 (15)	0.25990 (14)	0.07961 (8)	0.0215 (2)	
C2	0.28581 (18)	0.10816 (18)	0.13298 (10)	0.0338 (3)	
H2A	0.2394	-0.0189	0.1035	0.051*	0.50
H2B	0.1839	0.1458	0.1423	0.051*	0.50
H2C	0.3754	0.1317	0.1982	0.051*	0.50
H2D	0.2931	0.1913	0.1925	0.051*	0.50
H2E	0.3485	0.0266	0.1537	0.051*	0.50
H2F	0.1571	0.0407	0.0978	0.051*	0.50
C3	0.28106 (17)	0.14313 (18)	-0.04173 (9)	0.0303 (3)	
H3A	0.1700	0.1753	-0.0604	0.036*	
H3B	0.2470	0.0132	-0.0619	0.036*	
C4	0.42680 (17)	0.24024 (18)	-0.08879 (9)	0.0312 (3)	
H4A	0.4179	0.1694	-0.1541	0.037*	
H4B	0.4188	0.3567	-0.0983	0.037*	
C5	0.76742 (18)	0.37378 (19)	-0.02149 (10)	0.0347 (3)	
H5A	0.7645	0.4936	-0.0215	0.052*	
H5B	0.7892	0.3277	-0.0843	0.052*	
H5C	0.8661	0.3772	0.0357	0.052*	
C6	0.68392 (14)	0.34089 (15)	0.25800 (8)	0.0211 (2)	
C7	0.59065 (15)	0.44700 (16)	0.29025 (9)	0.0246 (2)	

				0.0001
H7A	0.5150	0.4853	0.2420	0.030*
C8	0.60638 (16)	0.49779 (16)	0.39171 (9)	0.0258 (2)
H8A	0.5436	0.5720	0.4124	0.031*
C9	0.71362 (15)	0.44019 (16)	0.46273 (9)	0.0253 (2)
H9A	0.7237	0.4742	0.5321	0.030*
C10	0.80626 (15)	0.33282 (15)	0.43240 (8)	0.0234 (2)
H10A	0.8782	0.2920	0.4811	0.028*
C11	0.79447 (14)	0.28455 (14)	0.33127 (8)	0.0204 (2)
C12	1.00985 (17)	0.08482 (16)	0.39394 (9)	0.0264 (2)
H12A	1.0961	0.1877	0.4467	0.032*
H12B	0.9106	0.0198	0.4214	0.032*
C13	1.10834 (15)	-0.03469 (15)	0.36236 (8)	0.0227 (2)
C14	1.29817 (16)	0.02421 (17)	0.38585 (10)	0.0290 (3)
H14A	1.3675	0.1415	0.4225	0.035*
C15	1.38726 (17)	-0.0870 (2)	0.35612 (11)	0.0347 (3)
H15A	1.5172	-0.0460	0.3728	0.042*
C16	1.28712 (19)	-0.25763 (19)	0.30218 (10)	0.0331 (3)
H16A	1.3484	-0.3334	0.2816	0.040*
C17	1.09805 (19)	-0.31805 (17)	0.27822 (10)	0.0315 (3)
H17A	1.0293	-0.4353	0.2414	0.038*
C18	1.00906 (16)	-0.20683 (16)	0.30818 (9)	0.0273 (2)
H18A	0.8791	-0.2485	0.2916	0.033*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
S1	0.03082 (16)	0.02960 (16)	0.01770 (15)	0.01758 (12)	0.00528 (11)	0.00466 (11)
N1	0.0250 (4)	0.0320 (5)	0.0178 (4)	0.0139 (4)	0.0066 (4)	0.0058 (4)
N2	0.0231 (4)	0.0286 (5)	0.0197 (5)	0.0075 (4)	0.0046 (4)	0.0047 (4)
N3	0.0270 (5)	0.0335 (5)	0.0170 (5)	0.0081 (4)	0.0063 (4)	0.0050 (4)
C1	0.0250 (5)	0.0222 (5)	0.0200 (5)	0.0106 (4)	0.0072 (4)	0.0056 (4)
C2	0.0318 (6)	0.0367 (7)	0.0299 (6)	0.0042 (5)	0.0132 (5)	0.0075 (5)
C3	0.0280 (6)	0.0348 (6)	0.0222 (6)	0.0078 (5)	0.0011 (5)	0.0032 (5)
C4	0.0342 (6)	0.0365 (7)	0.0188 (5)	0.0094 (5)	0.0026 (5)	0.0067 (5)
C5	0.0334 (6)	0.0424 (7)	0.0253 (6)	0.0057 (5)	0.0134 (5)	0.0056 (5)
C6	0.0208 (5)	0.0242 (5)	0.0179 (5)	0.0076 (4)	0.0049 (4)	0.0046 (4)
C7	0.0246 (5)	0.0303 (6)	0.0225 (5)	0.0133 (4)	0.0071 (4)	0.0076 (4)
C8	0.0257 (5)	0.0295 (6)	0.0253 (6)	0.0124 (4)	0.0101 (4)	0.0043 (5)
C9	0.0260 (5)	0.0302 (6)	0.0182 (5)	0.0080 (4)	0.0073 (4)	0.0020 (4)
C10	0.0238 (5)	0.0262 (5)	0.0181 (5)	0.0080 (4)	0.0029 (4)	0.0042 (4)
C11	0.0199 (5)	0.0212 (5)	0.0196 (5)	0.0072 (4)	0.0049 (4)	0.0034 (4)
C12	0.0329 (6)	0.0291 (6)	0.0194 (5)	0.0166 (5)	0.0031 (4)	0.0051 (4)
C13	0.0264 (5)	0.0236 (5)	0.0189 (5)	0.0105 (4)	0.0041 (4)	0.0069 (4)
C14	0.0260 (6)	0.0280 (6)	0.0282 (6)	0.0061 (4)	0.0016 (5)	0.0075 (5)
C15	0.0248 (6)	0.0479 (8)	0.0356 (7)	0.0162 (5)	0.0076 (5)	0.0158 (6)
C16	0.0433 (7)	0.0430 (7)	0.0282 (6)	0.0290 (6)	0.0150 (5)	0.0153 (5)
C17	0.0413 (7)	0.0253 (6)	0.0290 (6)	0.0133 (5)	0.0096 (5)	0.0049 (5)
C18	0.0244 (5)	0.0259 (6)	0.0290 (6)	0.0071 (4)	0.0055 (4)	0.0041 (5)

Geometric parameters (Å, °)

S1—C11	1.7643 (11)	C6—C7	1.3937 (15)	
S1—C12	1.8159 (12)	C6—C11	1.4143 (15)	
N1—C1	1.2879 (14)	C7—C8	1.3894 (16)	
N1—C6	1.3953 (14)	C7—H7A	0.9500	
N2—C1	1.3791 (14)	C8—C9	1.3861 (17)	
N2—C2	1.4576 (15)	C8—H8A	0.9500	
N2—C3	1.4652 (15)	C9—C10	1.3879 (16)	
N3—C1	1.3789 (14)	С9—Н9А	0.9500	
N3—C5	1.4495 (15)	C10-C11	1.3896 (15)	
N3—C4	1.4559 (15)	C10—H10A	0.9500	
C2—H2A	0.9800	C12—C13	1.5055 (16)	
C2—H2B	0.9800	C12—H12A	0.9900	
C2—H2C	0.9800	C12—H12B	0.9900	
C2—H2D	0.9800	C13—C14	1.3884 (16)	
C2—H2E	0.9800	C13—C18	1.3928 (16)	
C2—H2F	0.9800	C14—C15	1.3868 (19)	
C3—C4	1.5190 (18)	C14—H14A	0.9500	
С3—НЗА	0.9900	C15—C16	1.383 (2)	
С3—Н3В	0.9900	C15—H15A	0.9500	
C4—H4A	0.9900	C16—C17	1.3823 (19)	
C4—H4B	0.9900	C16—H16A	0.9500	
С5—Н5А	0.9800	C17—C18	1.3870 (17)	
C5—H5B	0.9800	C17—H17A	0.9500	
С5—Н5С	0.9800	C18—H18A	0.9500	
C11—S1—C12	102.12 (5)	C7—C6—C11	118.30 (10)	
C1—N1—C6	125.71 (10)	N1-C6-C11	116.83 (10)	
C1—N2—C2	121.84 (10)	C8—C7—C6	121.15 (10)	
C1—N2—C3	108.85 (9)	С8—С7—Н7А	119.4	
C2—N2—C3	116.19 (10)	С6—С7—Н7А	119.4	
C1—N3—C5	119.96 (10)	C9—C8—C7	120.01 (11)	
C1—N3—C4	109.64 (9)	C9—C8—H8A	120.0	
C5—N3—C4	118.80 (10)	C7—C8—H8A	120.0	
N1-C1-N3	119.85 (10)	C8—C9—C10	119.91 (11)	
N1-C1-N2	131.63 (10)	С8—С9—Н9А	120.0	
N3—C1—N2	108.52 (9)	С10—С9—Н9А	120.0	
N2—C2—H2A	109.5	C9—C10—C11	120.45 (10)	
N2—C2—H2B	109.5	C9—C10—H10A	119.8	
H2A—C2—H2B	109.5	C11—C10—H10A	119.8	
N2—C2—H2C	109.5	C10-C11-C6	120.16 (10)	
H2A—C2—H2C	109.5	C10—C11—S1	124.81 (9)	
H2B—C2—H2C	109.5	C6—C11—S1	115.00 (8)	
N2—C2—H2D	109.5	C13—C12—S1	107.83 (8)	
N2—C2—H2E	109.5	C13—C12—H12A	110.1	
H2D—C2—H2E	109.5	S1—C12—H12A	110.1	
N2—C2—H2F	109.5	C13—C12—H12B	110.1	
H2D—C2—H2F	109.5	S1—C12—H12B	110.1	
H2E—C2—H2F	109.5	H12A—C12—H12B	108.5	

N2—C3—C4	102.28 (9)	C14—C13—C18	118.95 (11)
N2—C3—H3A	111.3	C14—C13—C12	120.99 (11)
С4—С3—НЗА	111.3	C18—C13—C12	120.06 (10)
N2—C3—H3B	111.3	C15—C14—C13	120.43 (11)
С4—С3—Н3В	111.3	C15—C14—H14A	119.8
НЗА—СЗ—НЗВ	109.2	C13—C14—H14A	119.8
N3—C4—C3	101.32 (9)	C16—C15—C14	120.07 (11)
N3—C4—H4A	111.5	C16—C15—H15A	120.0
C3—C4—H4A	111.5	C14—C15—H15A	120.0
N3—C4—H4B	111.5	C17—C16—C15	120.13 (12)
C3—C4—H4B	111.5	C17—C16—H16A	119.9
H4A—C4—H4B	109.3	C15—C16—H16A	119.9
N3—C5—H5A	109.5	C16—C17—C18	119.76 (12)
N3—C5—H5B	109.5	С16—С17—Н17А	120.1
H5A—C5—H5B	109.5	C18—C17—H17A	120.1
N3—C5—H5C	109.5	C17—C18—C13	120.65 (11)
Н5А—С5—Н5С	109.5	C17—C18—H18A	119.7
H5B—C5—H5C	109.5	C13—C18—H18A	119.7
C7—C6—N1	124.38 (10)		
C6—N1—C1—N3	167.61 (10)	C8—C9—C10—C11	0.94 (17)
C6—N1—C1—N2	-13.5 (2)	C9—C10—C11—C6	-1.62 (17)
C5—N3—C1—N1	-26.12 (17)	C9—C10—C11—S1	176.39 (9)
C4—N3—C1—N1	-168.89 (11)	C7—C6—C11—C10	0.90 (16)
C5—N3—C1—N2	154.73 (11)	N1-C6-C11-C10	173.18 (10)
C4—N3—C1—N2	11.97 (13)	C7—C6—C11—S1	-177.30 (8)
C2-N2-C1-N1	-30.72 (19)	N1—C6—C11—S1	-5.01 (13)
C3—N2—C1—N1	-170.28 (12)	C12-S1-C11-C10	10.12 (11)
C2—N2—C1—N3	148.28 (11)	C12—S1—C11—C6	-171.78 (8)
C3—N2—C1—N3	8.73 (13)	C11—S1—C12—C13	176.61 (8)
C1—N2—C3—C4	-24.46 (13)	S1-C12-C13-C14	104.05 (11)
C2—N2—C3—C4	-166.57 (11)	S1-C12-C13-C18	-75.54 (12)
C1—N3—C4—C3	-26.33 (13)	C18—C13—C14—C15	-0.26 (18)
C5—N3—C4—C3	-169.58 (11)	C12—C13—C14—C15	-179.85 (11)
N2-C3-C4-N3	29.57 (12)	C13-C14-C15-C16	0.38 (19)
C1—N1—C6—C7	-45.01 (17)	C14—C15—C16—C17	-0.4 (2)
C1—N1—C6—C11	143.23 (11)	C15—C16—C17—C18	0.22 (19)
N1—C6—C7—C8	-171.15 (11)	C16—C17—C18—C13	-0.10 (19)
C11—C6—C7—C8	0.50 (16)	C14—C13—C18—C17	0.12 (18)
C6—C7—C8—C9	-1.19 (18)	C12—C13—C18—C17	179.71 (11)
C7—C8—C9—C10	0.46 (17)		