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Abstract

Cell-free fetal DNA (cffDNA)-based non-invasive prenatal testing (NIPT) is considered to be a very promising screening
tool for pregnant women with an increased risk of fetal aneuploidy. Already millions of women worldwide underwent NIPT.
However, due to the observed false-positive and false-negative results, this screening approach does not fulfil the criteria of
a diagnostic test. Accordingly, positive results still require risk-carrying invasive prenatal testing, such as amniocentesis or
chorionic villus sampling (CVS), for confirmation. Such hurdles need to be overcome before NIPT could become a diag-
nostic approach widely used in the general population. Here we discuss new evidence that besides the placenta amniotic
fluid stem cells (AFSCs) could also represent an origin of cffDNA in the mother’s blood. A comprehensive picture of the
involved cell source repertoire could pave the way to more reliable interpretations of NIPT results and ameliorate counsel-

ling of advice-seeking patients.
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Over two decades ago, the identification of fetal DNA in the
maternal circulation sparked a revolution in prenatal diag-
nosis [1]. Prenatal genetic testing has witnessed a progres-
sive evolution from the invasive amniocentesis and CVS,
which are still the diagnostic gold standard but carry a risk
of miscarriage, to cffDNA-based NIPT. Since 2011, in many
regions of the world NIPT is routinely offered to pregnant
women with increased risk of fetal aneuploidy as part of
prenatal care programs also including the analyses of e.g.
biochemical and ultrasound markers [2, 3]. Due to its high
sensitivity and specificity screening for the common fetal
trisomies 13, 18 and 21 became a widely adopted clinical
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application of NIPT. At first, NIPT was offered only two
women with high risk for aneuploidy. Meanwhile, the lim-
its have been widened and NIPT is offered more broadly
[4]. However, up until now NIPT is still defined as a non-
diagnostic screening test, because of the associated low but
significant false results. Consequently, upon positive NIPT
results women are counselled to consider confirmation via
amniocentesis or CVS. Accordingly, one needs to take into
account, that as a consequence of this routinely used recom-
mendation a particular number of patients with a false posi-
tive NIPT result could be exposed to the miscarriage risk
associated with these invasive approaches. And obviously,
also false negatives results have specific consequences asso-
ciated with undetected fetal mutations [5-7]. False positive
results originate from a variety of different phenomenons.
On the one hand they can be caused by the death of a twin
in utero or true fetal mosaicism and on the other hand they
may be the consequence of incidental maternal findings of
e.g. specific mosaic trisomies or silent tumors. Furthermore,
it has been discussed that the reliability of NIPT results also
depends on the quality of the DNA in the mother’s blood,
which is affected by specific medical conditions or treat-
ments [7, 8]. False negative NIPT results, which are less
common, are primarily caused by a low fetal fraction of
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cell-free DNA in the maternal circulation. Additionally,
although NIPT is performed via the highly sensitive and
specific approach of massive parallel sequencing of cffDNA,
another source for false results lies within the molecular
diagnostic technology itself that still harbors inherent limi-
tations. And finally, since the placenta is considered a major
source of cffDNA, confined placental mosaicism (CPM) can
also cause discrepant results between NIPT and the fetal
genotype. An aneuploid placenta in case of an euploid fetus
can trigger a false positive result and vice versa a false nega-
tive NIPT result can originate from an euploid placenta in
case of a fetal aneuploidy [3, 7-11]. In this context it is
important to note that, if the placenta would not be the only
major source for cffDNA, this would have implications for
the interpretation of false NIPT results caused by CPM and
the optimal follow-up strategy via invasive confirmation
approaches in cases with positive NIPT results (see also the
discussion below).

Together with cffDNA, both, fully differentiated fetal
cells (including trophoblasts, nucleated erythrocytes and
lymphocytes) and pregnancy-associated progenitor cells
(PAPCs) in the body of pregnant women, constitute the well-
known phenomenon of fetomaternal microchimerism. Due
to their diverse phenotypes and plasticity, PAPCs are consid-
ered to be fetal stem cells, with characteristics and potentials
between those of pluripotent stem cells and fully differenti-
ated cells. The stemness of PAPCs is further supported by
the fact that they integrate into various maternal tissues, such
as e.g. blood, lung, skin, heart, spleen, liver, brain and even
maternal hair follicles [12—14]. It has been demonstrated that
upon maternal injury fetal microchimeric cell populations
can migrate to affected maternal sites and can support tissue
repair. Such a beneficial hypothesis draws a picture of pro-
tective and healing PAPCs, which might even contribute to
the mother’s defense against e.g. infections or tumor devel-
opment. However, it is also discussed that PAPCs could be
of disadvantageous consequences being involved in maternal
pregnancy conditions, such as e.g. preeclampsia [15-20].
Importantly, whereas pregnancy-associated fetomaternal
microchimerism is a well-established and already intensively
studied phenomenon, the origins of cffDNA and PAPCs are
still a matter of debate.

Our demonstration of highly proliferative cells in human
amniotic fluid expressing the stem cell marker Oct4 provided
first evidence for the existence of a stem cell type nowadays
known as amniotic fluid stem cells (AFSCs) [21]. AFSCs
are genomically stable, mobilized fetal stem cells carrying
no inherent risk of malignant transformation. They survive
and persist for long time, harbor the potential to form embry-
oid bodies and can differentiate into cell types of all three
embryonic germ layers. Upon injection into animals, AFSCs
have been demonstrated to be able to integrate into differ-
ent tissues and beneficially contribute to tissue regeneration

[22-26]. These characteristics perfectly match and fulfill the
features of PAPCs described above [12, 27]. And finally,
cffDNA could be released upon apoptosis of defective or
excess AFSCs, which are known to immediately undergo
programmed cell death upon deregulation of their fine-tuned
and strictly balanced survival control [12, 28].

Since the discovery of fetal DNA in the mother, many
different sources have been discussed as primary origins:
e.g. fetal DNA transferring through the amniotic membrane,
the migration of free fetal DNA from fetal plasma into the
maternal circulation, fetal hematopoietic cells or the libera-
tion of fetal DNA upon destruction of fetal cells in the blood
of pregnant women. In addition, besides some in vitro evi-
dence mainly different particular in vivo observations sug-
gest that cffDNA can derive from the placenta. Case reports
on anembryonic gestations, in which only placental tissue
is present, or the finding of an increase of cffDNA associ-
ated with the invasive phenotype in case reports on invasive
placenta, as well as reports on pregnancies with CPM, in
which the placenta has a different genotype than the fetus,
indirectly support this notion [7, 8, 29-33]. Although the
sum of these reports clearly underpins the widely accepted
model, in which the placenta releases cffDNA into the
mother’s blood as a consequence of cytotrophoblast and
syncytiotrophoblast cells undergoing physiological cycles
of fusion and apoptosis [3, 7], these reported findings in no
way exclude the possibility that other sources also contribute
to the pool of cffDNA.

Until know, the question whether other cell types can also
basically function as a source of fetal DNA in the maternal
circulation is not fully elucidated. We know provide evi-
dence that human DNA can be detected in the peripheral
blood of pregnant mice upon intra-amniotic injection of
human AFSCs. Approximately 1% of cells in human amni-
otic fluid are stem cells expressing CD117 (c-Kit), the recep-
tor for stem cell factor. Upon immunoselection through mag-
netic cell sorting, these human AFSCs can be isolated from
native human amniotic fluid obtained via amniocentesis for
routine genetic prenatal diagnosis. Human AFSCs can stably
be expanded in culture in an undifferentiated status without
the need for feeder layers. The used protocol and the ethical
approval is described in [26]. Human AFSCs were injected
into the amniotic fluid of E12.5 embryos of pregnant NOD
scid gamma (NSG™) mice. The animal work was approved
by the local ethics committee for animal care (BMBWF-
68.205/0061-V/3b/2018) and was carried out in accordance
with international guidelines. 24 hours after intra-amniotic
injection genomic and mitochondrial DNA from the pooled
injected amniotic fluids and the corresponding peripheral
blood of the same mouse was isolated. Human DNA was
detected via standard PCR using species-specific primers for
human mitochondrially encoded cytochrome b (MT-CYB)
described in [34]. In 9 peripheral blood samples of 39 mice
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with post-injection human DNA-positive amniotic fluid
(23,1%) human MT-CYB could be detected (Fig. 1A and B).
These results demonstrate that cffDNA in the maternal cir-
culation can originate from stem cells in the amniotic fluid.
In the context of this experimental approach it is important
to keep in mind that the uterine structure and placentation
of mice is different from humans. However, negative blood
sample results could also be due to the here chosen PCR
approach, that is obviously less sensitive than massive par-
allel sequencing routinely used for cffDNA-based NIPT in
patients. However, this is the very first proof-of-principle
demonstration that human AFSCs fulfill the criteria to serve
as a source of fetal DNA in the mother’s blood. Whereas
cell-free placental DNA in the maternal circulation is sup-
posed to be released at the place of origin upon apoptosis
of placenta cells, AFSCs, harboring many characteristics of
PAPCs, could be the source of both, free fetal DNA migrat-
ing from the amniotic fluid into the maternal circulation or
the liberation of fetal DNA from apoptotic AFSCs in the
mother’s blood (Fig. 1C).

In the coming years, the general awareness of NIPT as
well as the clinical experience with this screening proce-
dure will rapidly grow [4]. Cost reduction together with the
endeavor to avoid risk-carrying invasive testing procedures
will trigger a continuing increase of the application of this
non-invasive genetic testing approach. In this context it
must be the aim of scientists, clinicians and patients alike
to overcome the still existing hurdle of false NIPT results.
In order to achieve this a more comprehensive picture of
the cell source repertoire for NIPT will be just as indispen-
sable as more detailed insights into the release procedures
and the quantitative and qualitative composition of cffDNA.
Although several independent evidences constitute the basis
for the widely accepted hypothesis that placenta-derived
DNA forms a relevant proportion of cffDNA analysed by
NIPT [3, 7, 8, 29-33], these data do not exclude the con-
tribution of other sources. We believe, that in the course
of its foreseeable increasing routine application the contin-
ued development of NIPT from a screening approach to a
diagnostic test will largely depend on the elucidation of the
question whether cffDNA is exclusively of placental and not
also of other fetal origin. With the here presented proof-of-
principle that cffDNA could also originate from AFSCs, we
want to draw the attention to this topic and to initiate further
research attempts. Since it was shown that it is possible to
detect an epigenetic signature of the placenta in the plasma
of pregnant women [35], one could design an epigenetic
analysis to investigate the proportions of cffDNA derived
from placenta, AFSCs and other putative sources. Currently,
the existing knowledge on the conditions or treatments
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affecting the quality of circulating DNA, or on the precise
role of fetal conditions, of incidental maternal findings, of
CPM or of low fetal DNA fractions in the maternal circula-
tion with regard to false NIPT results, is still relatively low.
It is perfectly obvious that a more detailed understanding of
the cellular contributors and the putatively variable com-
position of cffDNA during pregnancy is an indispensable
requirement for the elaboration of answers to these and many
other questions. Accordingly, we believe that studies like
the one presented here can contribute to both, the underly-
ing biology of fetomaternal microchimerism and the clinical
application of cffDNA.

And last but not least, guidelines regarding the optimal
clinical management associated with positive NIPT results
could also be affected by a more detailed elucidation of the
cellular origins contributing to the composition of cffDNA.
This could be of relevance to aid clinicians in advising
patients to choose between follow-up testing via CVS or
amniocentesis. Since NIPT is usually performed after the
10th week of gestation stressful long waiting period for par-
ents can be avoided by CVS between 11-13 weeks of gesta-
tion instead of amniocentesis, which is usually performed
between 15-18 weeks. However, if cffDNA would exclu-
sively originate from apoptotic placenta cells, one would
have to assume that due to CPM, 1-2% of NIPT results
would not represent the fetus. Furthermore, NIPT should
then reflect the genotype of uncultured placenta cells and
consequently the analysis of direct or short-term CVS cul-
tures would not allow the clarification of a putative CPM.
Accordingly, only if both layers, the cytotrophoblast (ana-
lysed in direct or short-term cell cultures) and the mesen-
chymal core (investigated upon long-term CVS cultures),
are found to be aneuploid, the positive NIPT result would
likely represent the fetus [3, 5-7, 9]. Amniotic fluid con-
tains AFSCs and other cells of varying origins and lineages
derived e.g. from the fetal skin or the fetal urogenital, res-
piratory and gastrointestinal systems [22, 24]. It is important
to note, that the current routine strategy to perform amnio-
centesis for the ultimate clarification of a putative mosaicism
affecting the NIPT result would have to be reconsidered if
the spectrum of sources of cffDNA would ever turn out to
be more divers.

In summary, with the here addressed rationale we don't
want more but also no less than to emphasize the importance
of further detailed studies. It can be foreseen that more com-
prehensive investigations on the cellular origins of fetoma-
ternal microchimerism will be door-openers of a fascinating
stem cell research field and could pave the way to more reli-
able interpretations of NIPT results.
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Fig. 1 Amniotic fluid stem
cells as a putative source for
fetal DNA in the maternal
circulation. (A) Illustration of
the experimental approach.
Human AFSCs isolated from
native human amniotic fluid
obtained via amniocentesis were
expanded in culture. 24 hours
after injection of these human
AFSCs into the amniotic fluid
of mouse embryos, genomic
and mitochondrial DNA from
the pooled injected amniotic
fluids and the corresponding
peripheral blood of the same
mouse was isolated and human
AFSC DNA was detected via
PCR. (B) Examples #1 and

#2 represent PCR analyses of
human MT-CYB in different
mice upon intra-amniotic injec-
tion of 2x 10* human AFSCs
and 2 x 10° human AFSCs,
respectively. Human AFSCs,
cultivated human amniotic fluid
stem cells (positive control);
MEFs, mouse embryonic fibro-
blasts (negative control). (C)
Tllustration of the contemplated
model of AFSCs contributing
to cffDNA. Cell-free placental
DNA (cfpDNA) is liberated in
the placenta from cytotropho-
blast and syncytiotrophoblast
cells undergoing physiological
cycles of fusion and apoptosis.
Cell-free amniotic fluid stem
cell-derived DNA (cfaDNA)

is liberated from AFSCs in

the amniotic fluid. The fetal
fraction of cell-free DNA in
the maternal circulation is
composed of cfpDNA liberated
in the placenta, cfaDNA liber-
ated in the amniotic fluid, and
cfaDNA liberated from AFSCs,
which crossed the fetal-maternal
interface and migrated into the
maternal blood
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