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This review examined one of the effects of climate change that has only recently received attention, i.e., climate change impacts on
the distribution and toxicity of chemical contaminants in the environment. As ecosystem engineers, earthworms are potentially
threatened by the increasing use of pesticides. Increases in temperature, precipitation regime changes, and related extreme climate
events can potentially affect pesticide toxicity. This review of original research articles, reviews, and governmental and inter-
governmental reports focused on the interactions between toxicants and environmental parameters. The latter included tem-
perature, moisture, acidification, hypoxia, soil carbon cycle, and soil dynamics, as altered by climate change. Dynamic interactions
between climate change and contaminants can be particularly problematic for organisms since organisms have an upper and lower
physiological range, resulting in impacts on their acclimatization capacity. Climate change variables such as temperature and soil
moisture also have an impact on acidification. An increase in temperature will impact precipitation which might impact soil pH.
Also, an increase in precipitation can result in flooding which can reduce the population of earthworms by not giving juvenile
earthworms enough time to develop into reproductive adults. As an independent stressor, hypoxia can affect soil organisms, alter
bioavailability, and increase the toxicity of chemicals in some cases. Climate change variables, especially temperature and soil
moisture, significantly affect the bioavailability of pesticides in the soil and the growth and reproduction of earthworm species.

1. Introduction

Climate change is defined as the alteration in the climate
state, evidenced by changes in the variability of its properties
such as temperature, precipitation, and wind [1]. These
variables persist for an extended period (typically decades or
longer) which coincides with an increased likelihood in the
intensity of extreme climate events, such as drought and
flooding [2, 3]. Soil biodiversity includes many different
types of organisms ranging from microscopic organisms to
large animals and plants. The soil supports a wide range of
ecosystem functions, processes, and services, making it es-
sential to human life [4-7]. At some point, environmental
processes in the air, water, and soil interact with each other,
and this interaction is essential for these processes to
function at an optimal level. Anthropogenic activities

including agricultural and mining activities are primarily
responsible for soil pollution [8-10] which impacts the
biodiversity of soil organisms which are therefore reduced or
lost [11].

Earthworms make up 40-90% of the soil macrofaunal
biomass in many terrestrial ecosystems and thus are vital soil
organisms [3]. There are 23 families and over 700 genera
with more than 7,000 species of earthworms already de-
scribed worldwide, although the number of species is much
more [3, 12]. They play an important role as ecosystem
engineers, thus making them keystone species [3]. The
environment is modified physically and chemically by
earthworms; they create, transform, and maintain the
habitat for soil organisms and plant communities [5]. These
modifications are done by processes such as litter frag-
mentation, burrowing, and casting activities. These activities


mailto:mark.maboeta@nwu.ac.za
https://orcid.org/0000-0002-1225-9111
https://orcid.org/0000-0003-3324-0206
https://orcid.org/0000-0002-6263-6552
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/8527991

drive soil processes such as nutrient cycling, soil aggregate
stability, water infiltration, plant growth, and soil carbon
storage [13]. They have many roles in the ecosystem, making
them very useful as bioindicators in soil ecotoxicological
studies [14-16]. The diversity of earthworm species is
studied worldwide, and Phillips et al. [17] highlighted cli-
mate change drivers such as increasing air temperature and
changing mean annual rainfall as key factors affecting its
global distribution. Climate change alters soil properties
such as moisture, temperature, pH, and texture, affecting not
only earthworm communities but also all life interacting
with the soil environment [3].

2. Predicted Global Change Scenarios

Climate change is a global problem. Generally, when models
are used to predict future changes in climate, it usually
suggests an increase in more extreme and severe events in
the coming decades [1]. The main drivers of climate change
affecting the soil ecosystem are greenhouse gases, air and soil
temperature increases, extreme precipitation, and erosion
[18, 19]. According to the Intergovernmental Panel on
Climate Change [20], global warming for 2006-2015 was
0.87°C, which is higher than the average between 1850 and
1900. The estimated global warming caused by anthropo-
genic activity is currently increasing at 0.2°C per decade due
to the past and ongoing impact of pollutants [20]. Activities
by humans have caused global warming to increase by 1°C
above preindustrial levels, and this is likely to reach 1.5°C
between 2030 and 2052 if it continues to increase at this
current rate [20]. When comparing regional changes of the
preindustrial levels to the 1.5°C increase in global warming,
it estimates extreme increased temperatures, increased heavy
precipitation, and an increase in drought in many regions,
for example, the projected increase in precipitation in West
Africa, the increase in temperature in the Indian Ocean
resulting in increased rain in East Africa, and the increased
global surface temperature [20]. These predicted climate
change events may have significant effects on the bio-
availability of pollutants in the soil.

The ability of greenhouse gases such as carbon dioxide,
methane, nitrous oxide, and fluorinated gases to capture heat
from the sun’s energy causes the greenhouse effect [21]. The
primary sources of air pollution are the combustion of fossil
fuels, as well as industrial and agricultural activities. As a
result of these events, more of the sun’s radiation is trapped
in the atmosphere, causing global warming (Figure 1).
According to Olivier and Peters [22], since the year 2012, the
global annual increase in CO, emissions has slowed down to
about 1.5%, and in 2015-2016, it has remained flat. In 2017,
2018, and 2019, the global CO, emissions increased by 1.4,
2.4, and 0.9%, respectively. The increase was a result of
increased consumption in coal. The annual global carbon
sequestration potential is about 0.4-0.7Pg C y~', which
means that if these rates remain constant until the year 2100,
the soil carbon sequestration would only contribute to a
maximum of 1-3% towards reducing the carbon emissions
[23]. This scenario suggests that carbon sequestration into
the soil will play a minimal role in reducing carbon dioxide
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emissions. The study conducted by Marhan et al. [24] in-
dicated a higher loss of nitrogen in the form of N,O from the
soil with high earthworm population and a warmer climate.

As shown in Figure 2, greenhouse gases are increasing at
an alarming rate, and the increase has been exponential over
the last +60 years. If left unchecked, this extreme increase
will keep on having a massive effect on environments
worldwide. Human activity is responsible for the rapid rise
in greenhouse gases such as carbon dioxide, methane, and
nitrous oxide [25]. Most of the gas emitted is carbon dioxide,
although gases such as methane and nitrous oxide are much
better at absorbing infrared radiation and contributing to
global warming [25]. Over 100 years, 1 kg of methane has a
warming potential 23 times greater than 1kg of carbon
dioxide, and 1 kg of nitrous oxide has a warming potential of
nearly 300 times that of carbon dioxide [25]. Approximately
two-thirds of the nitrous oxide emissions and one-third of
the atmosphere’s methane emissions come from soils [25]. If
global warming continues unabated, it can have many
devastating effects such as rising sea levels, ocean acidifi-
cation, and severe weather events. However, there have been
international initiatives such as the Kyoto Protocol, the
signing of the Paris Agreement on climate change, and other
initiatives set up to combat this effect globally [21].
According to Olivier et al. [26], the record for the warmest
year in 140 years was 2016 with an increase of +0.99°C, and
in 2019, it was the second warmest year with the global land
and ocean surface temperatures increasing by +0.95°C above
the average. They further stated that, since 1880, 9 out of the
10 warmest years have occurred since 2005.

Anthropogenic activity has had an influence on the
global water cycle and in turn affected the global precipi-
tation regime by globally increasing the amount of atmo-
spheric moisture and the precipitation patterns over the land
[1]. Singh et al. [3] stated that precipitation regime changes
might show significant heterogeneity and thus be difficult to
predict. However, climate models project an increase in the
frequency of extreme precipitation events. Also, an increase
in rainfall due to climate change can result in soil loss and
soil erosion by increasing sedimentation in streams and
reservoirs [19]. This soil loss will have detrimental effects on
soil organisms as well as soil functions in an ecosystem. Once
these functions are disrupted, changes in the environment
can occur. Most of water which supplies soil moisture comes
in the form of precipitation and is evaporated from the ocean
and transported to the land by the atmosphere, and this
movement of water in a climate system is an essential part of
life on land.

Ultraviolet radiation is one of the components of solar
radiation, and it is separated into UV-A, UV-B, and UV-C
[27]. Stratospheric ozone usually reflects UV-C and UV-B;
thus, only UV-A and very little UV-B reach the Earth, al-
though due to the depletion of atmospheric ozone, there is
an increase in UV-B reaching the Earth [27, 28]. Higher UV-
B radiation modifies soil microbial communities and de-
creases populations of soil meso- and macrofauna [28].
According to Formanek et al. [28], UV-B is known to in-
crease degradation of some pollutants such as phenylurea
herbicides, p,p’-DDT, 2,4-dichlorophenoxyacetic acid,
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FIGUre 1: Simple representation of the greenhouse effect. The main drivers of air pollution: burning of fossil fuels and industrial and
agricultural activities. These events trap more of the sun’s radiation in the atmosphere resulting in global warming.

biphenol, and PAHs, although it can also inhibit rhizor-
emediation of organic pollutants. In arid and semiarid re-
gions, ultraviolet radiation is one of the main drivers of
increasing litter decay through photodegradation [29].
Abiotic photodegradation can mineralize the decomposition
of litter into gases such as CO,, CO, and CH, and, at the
same time, alter the chemistry of organic materials [29].
Complex carbon structures can be broken down by ultra-
violet radiation into smaller molecular compounds, in-
creasing dissolved organic carbon concentration in the litter
[29].

3. Consequences of Climate Change for the
Structure and Function of Soil Ecosystems

According to Bellard et al. [30], in fifty years from now, we
are likely to see an increase in the rate of species loss due to
climate change, although the evidence that this will happen
is still inconclusive. The aboveground and belowground
ecosystems have many interactions, and they rely on one
another for specific functions [31]. However, the above-
ground biodiversity is usually observed and acts as a basis for
predicting environmental changes [32]. The need to study
the biodiversity of aboveground and belowground ecosys-
tems simultaneously is essential because we might not find
the differences found in one ecosystem in the other [33].
Anthropogenic activities contribute to the loss of biodi-
versity and ecosystem services in soil. Mining and agri-
culture, for example, exploit the soil ecosystem in an
unsustainable manner, potentially resulting in a 60% de-
pletion of ecosystem services [7, 34]. Soils and soil processes
will primarily be affected by climate change through changes
in rainfall patterns and temperature. Earthworm pop-
ulations will be affected by climate change variables such as
drought, irregular precipitation, and increasing tempera-
tures [35-37]. Additional research is required on climate
change effects on soil organisms to develop and improve
models [38]. Irrespective of the fact that earthworms and

other soil organisms play a vital role in soil ecosystems and
functions and the noticeable danger of climate change, there
is still no conclusive overview of climate change effects on
soil organisms, particularly earthworms, given the in-
creasing pesticide pollution in the environment.

3.1. Rise in Soil Temperature. Temperature is one of the most
important climate change drivers, and it is influential in
determining soil biological activity and the decomposition
process [3]. The increase in temperature has shown to be the
cause of various alterations to many plant and animal
species, with it being massively influenced by biotic inter-
actions [39, 40]. Earthworms are a poikilothermic species,
which means that their body temperatures fluctuate with
their respective environments; therefore, the activity, den-
sity, growth, metabolism, respiration, and reproduction of
earthworms are all affected by temperature variations. They
tend to gather in areas where conditions are ideal for their
metabolism, suggesting that both high and low temperatures
produce a direct response; these effects include reduced
growth rate, feeding activity, cocoon production, and juv-
enile development both at the individual and community
level [3]. Although more is known about the higher lethal
temperatures than the lower lethal temperatures, the re-
sponse of earthworms to temperature fluctuations is also
dependent on the species involved because every species has
its specific tolerance range for different variables. The in-
crease in temperature can also affect the bioavailability of the
soil’s metal pollutants. Besides the fact that temperature will
influence soil organisms in the natural world, many other
variables, such as the soil moisture content, will also affect
the ecosystem at the same time.

A study conducted by Eggleton et al. [41] showed
earthworm diversity over six years and took into account
temperature and soil moisture as climate change variables.
They reported a decrease in earthworm numbers in the dry
winter months, and during the moist summer months, there
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was an increase in earthworm numbers; dry summer months
negatively affected epigeic species such as Dendrobaena
octaedra, Dendrobaena attemsi, and Satchellius mammalis,
and in wetter months, the earthworm numbers increased.
Species such as Aporrectodea caliginosa and Lumbricus
rubellus had a high tolerance to temperature changes. Also,
the study conducted by Berman and Meshcheryakova [42]
indicated a similar result: in higher temperatures with higher
soil moisture, earthworm numbers increased rapidly. The
study conducted by Hughes et al. [43] showed that higher air
temperatures with lower soil moisture could reduce the
earthworm population. The abundance of earthworms
usually increases when climatic conditions are favourable,
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such as when the temperature is moderate and the soil
moisture content is higher [17]. This abundance tends to
decrease in colder climates, where the soil moisture content
is lower [44].

3.2. Change in the Soil Moisture Content. The soil environ-
ment is affected directly and indirectly by drought [45]. The
deficiency of precipitation or drought does not immediately
affect the deeper soil layers but will reduce the water content
of the upper soil layer relatively quickly [46]. The movement
of soil organisms is inhibited by reduced soil water content,
which hardens the soil [47] and diminishes the extent of the
water film [13]. The reduction of vegetation cover by drought
can cause increased temperatures, an altered microclimate
on the soil surface, and reduced resource availability [48].
The biological activity and earthworm diversity of soils are
reduced through increased soil temperature both directly
and indirectly. The frequency and significance of droughts
are increasing around the world [49], and there are only a
few studies on the effects of drought on earthworms [50-54].
An increase in temperature is associated with the volatili-
zation and degradation of organic and inorganic pollutants
in the soil [18]. Thus, an increase in soil temperature in-
creases contaminants’ transportation in the ground [18].

Earthworms are only active if free water is available in
the soil. They are morphologically and physiologically
limited in their use of the cuticle to maintain body moisture
[3]. When soils become too dry, earthworms usually lose
weight, decrease their burrowing activity, and may also enter
diapause or become dormant [52]. The cocoons produced by
epigeic species are drought resistant although it represents
an essential strategy for the survival of the species in
drought-stricken areas [53] and may rapidly recover after
the drought conditions end [41]. Anecic earthworms can
form permanent vertical burrows in the soil, during the dry
periods, can enter a diapause, and stay dormant for several
months [3]. Some endogeic species such as Aporrectodea
caliginosa can form nonpermanent horizontal burrows in
the topsoil and form aestivation chambers covered with
mucus and gut content and protect themselves against water
loss [3]. The composition of earthworm community’s re-
sponse to droughts can likely change due to different eco-
logical strategies these species use. Plum and Filser [54]
suggested that soil’s organic matter and water-holding ca-
pacity were critical factors in modifying earthworms’ re-
sponses to drought conditions.

Floods, on the contrary, can cause massive changes to the
soil [55] by oversaturation, and this can result in a lack of
oxygen in the soil resulting in hypoxia, although the
floodplains contain sediment which is very nutrient-rich
making them some of the most productive ecosystems
around the world [56]. The diffusion and oxygen availability
of the soil are reduced during flooding, resulting in reduced
soil nutrient availability since decomposition processes are
halted [3]. Anaerobic conditions occur in flooded soils,
which will significantly affect the composition of soil food
webs, microbial biomass, and soil microbial community
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structure [57, 58]. Plum [57] stated that flooding reduced the
abundance, biomass, and diversity of all groups of soil or-
ganisms in grasslands, and an increase in temperature and
flood duration increased its effects. The ability of soil in-
vertebrates to survive depends on their behavioural, mor-
phological, and physiological traits [57]. Singh et al. [3]
reported that the abundance of earthworms was reduced in
floodplain areas and that periodical flooding had species-
specific effects on earthworm populations. Another study
conducted by Bullinger-Weber et al. [59] also indicated that
the absence of anecic earthworms would suggest that more
erosion and sedimentation processes have taken place, and
an increase in epigeic earthworms may have positive effects
on the texture of the topsoil and the organic matter quality.
Many earthworms can survive long periods submerged in
water [3], and some earthworm species can survive in
flooded soils [60]. A critical factor to consider is the period
between two flooding events. The study conducted by Klok
et al. [61] suggested that earthworms from a frequently
flooded area mature much quicker than earthworms from a
nonflooding site. Floods can also reduce earthworm pop-
ulations by not giving juvenile earthworms enough time to
develop into reproductive adults. Short flooding periods
followed by long recovery periods can be beneficial to certain
earthworm species, e.g., Lumbricus rubellus and Allolobo-
phora chlorotica. Schiitz et al. [62] and Bullinger-Weber et al.
[59] suggested that they could favour epigeic earthworm
species. A study conducted by Plum and Filser [54] indicated
that controlled flooding should be kept short in winters and
natural summer flooding should follow and that a recovery
period of six months should be sufficient for the reestab-
lishment of earthworm populations.

3.3. Soil Acidification. The soil acidification process is a
gradual and continuous natural process that occurs during
pedogenesis and is aided by water leaching basic cations to
lower subsoil [63]. The acidification is accelerated by an
increase in nitrogen and sulphur deposition which is as-
sociated with human activity [64]. Soil pH has a fundamental
effect on the solubility and availability of potentially toxic
ions, and while low pH (acidic) benefits free metal cations
and protonated anions, higher pH (alkaline) will favour
carbonates and hydroxyl complexes [63]. Acidification can
be enhanced by high precipitation which will allow leaching
of soil cations. However, the soil itself is a buffer for external
H ions [64], and only once it exceeds its maximum capacity
will the soil become acidic.

One of the main drivers of soil acidification in terrestrial
environments is the accumulated nitrogen deposition, and
according to Tian and Niu [65], during 2000-2010, more
than 50kg-ha™" of nitrogen was accumulated in terrestrial
environments. This nitrogen-induced acidification has
posed a significant threat to terrestrial ecosystem func-
tioning and species diversity. Using nitrogen fertilizers can
have a variety of effects on soil acidification. The NH," ions
can displace base cations such as Ca**, Mg®", and Na* by
binding them and making them more easily leached out of
the soils, thus reducing their buffering against acidification,

and therefore, when plant roots absorb the NH," ions, the
H™ ion is released into the soil solution, and this can cause
soil acidification [65]. Climate change variables such as
temperature and soil moisture affect the acidification pro-
cess. Higher soil moisture will allow leaching to occur more
easily promoting soil acidification. Reducing the nitrogen
cycles by lowered temperatures will reduce the ecosystems’
ability to sequester nitrogen resulting in more acidification
[63]. When precipitation is higher, it accelerates the leaching
of cations, further aggravating acidification [64].

3.4. Soil Organic Carbon (SOC) Cycling and SOC Dynamics.
The carbon cycle involves the soil, plants, and all animal life,
including humans; thus, the disruption of the carbon cycle
would mean disaster for all living organisms. Soil organic
matter is expressed as soil organic carbon, which plays a vital
role in the sorption of soil pollutants [18]. The basic pro-
cesses involved in the global carbon cycle start when plants
take up carbon dioxide from the atmosphere. Through
photosynthesis, sunlight energy is trapped in the carbon-to-
carbon bonds of organic molecules. Some of these organic
molecules are used as energy sources, while carbon is
returned to the atmosphere as carbon dioxide. The
remaining organic materials are temporarily stored as
constituents of the standing vegetation, which eventually
add to the soil as plant litter or root deposition.

The productivity of the vegetation growing on the soil is
related to the soil’s carbon input rate, measured by the net
primary production (NPP) [23]. The NPP varies with cli-
mate, land cover, species composition, and soil type and also
shows seasonal variations due to its dependence on light and
temperature. Smith [23] explained that, over long periods,
an amount of NPP enters the soil as organic matter (de-
composition of plant matter) and is converted into carbon
dioxide and methane via soil heterotrophic respiration
processes. Remaining carbon is referred to as net ecosystem
production (NEP). Although harvesting, fires, and insect
damage can also remove carbon, when combined with
heterotrophic processes, they can counterbalance the ter-
restrial carbon dioxide input from global primary produc-
tion, and residual carbon is known as net biome production
(NBP), which can be positive or negative depending on
whether the ecosystem is a carbon source or sink [23].

Human impact disrupts the carbon cycle balance be-
cause carbon enters the atmosphere from burning of fossil,
cement production, the ocean, land use, animals, plants, and
geological reservoirs through mining. The emission rate of
carbon in the atmosphere remains unbalanced, and the
speed at which carbon is used makes it nonrenewable, which
disrupts the global carbon cycle. Climate, vegetation, parent
material, topography, and time are all important factors
influencing soil carbon. Soil carbon reservoir has been
suggested as both a sink and a source of atmospheric carbon
dioxide. It is considered a source when net decomposition
exceeds carbon inputs into the soil, which could be due to
human activities or global warming, and it is considered a
sink when the difference between net ecosystem carbon
uptake and tree growth rates exceeds the net ecosystem



carbon uptake [66]. The degree and timing of response are
determined by the amount of carbon available to respond
rapidly to climate and vegetation changes, as well as the time
lag between carbon fixation in plants and subsequent release
to the atmosphere during decomposition.

4. Toxicity of Pesticides towards
Earthworms under Climate Change Scenarios

4.1. The Fate of Pesticides. Climate change has left indelible
imprints on the ecosystem, including extreme temperature
and rainfall events, as well as an increase in atmospheric
carbon dioxide (CO,) concentrations, which may signifi-
cantly affect the usage, distribution, and degradation pat-
terns of pollutants such as pesticides [67]. Weather variables
such as rainfall, temperature, and wind extremes influence
pesticide fate and behaviour in the environment. It is es-
sential to understand the environmental fate of pesticides
because they are biologically active and designed to interfere
with metabolic processes. The potential health risks that
pesticides can have on human and environmental health
need to be evaluated, after which one must take precautions
to mitigate their effects. Applying pesticides to targeted areas
predictably allows these chemicals to affect organisms and
the environment. It is in the understanding of pesticides’
physical, chemical, and biological processes that one can
realize their impact on target and nontarget species. This
understanding is crucial for improving pest management
strategies that must have minimal adverse effects on human
and environmental health. One of the most critical factors in
the transport of pesticides in the soil is the sorption-de-
sorption process because it controls the volume of pesticides
available for distribution [68].

In terms of pesticide efficacy, it was widely assumed
that some pesticides are more hazardous to insect pests at
higher temperatures [69]. However, recent reports such as
[70] discovered that chlorpyrifos decomposed more at
higher temperatures, resulting in decreased mortality and
oxidative damage to insect pests. This is attributable to the
fact that organophosphate insecticides hydrolyze at a
faster rate at higher temperatures [71]. Pesticides that
undergo aqueous-phase hydrolysis, such as organo-
phosphates, carbamates, synthetic pyrethroids, and sul-
fonylureas, are generally temperature-sensitive [72].
When exposed to intense sunlight, some insecticides
undergo substantial photodegradation. The loss of pes-
ticides due to volatilization is also favoured by rising
temperatures [73]. Microbial activity in soil will also
increase when temperature and moisture levels rise. As a
result, the rate of pesticide degradation induced by soil
microbes will increase. Thus, with the higher dissipation
of pesticides and the climate adaptation of pests as a result
of global warming, pesticides will most likely be used
more frequently and at a higher application rate [72]. The
uncertainties related to climate predictions make it
challenging to predict the effect of climate change on
pesticides. However, according to Bloomfield et al. [74],
changes in temperature and seasonality and intensity of
rainfall are the main drivers in pesticide fate and
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transport. Also, changes in land use accompanied by
climate change events will substantially affect the fate of
pesticides in the soil environment.

Figure 3 illustrates a simple representation of how cli-
mate change affects soil pesticides and inevitably soil or-
ganisms, specifically earthworms. Climate change is mainly
caused by the greenhouse effect which is a natural effect that
is accelerated by anthropogenic activities such as defores-
tation, burning of fossil fuels, and agricultural practices.
Deforestation and agriculture can go hand in hand because
according to Bennett [75], 25% of the world’s greenhouse gas
emissions comes from deforestation through practices such
as logging and burning of biomass, thus making agriculture
one of the most important causes of deforestation. As stated
above, climate change does have a great effect on the soil
ecosystem, and as a result, it will influence soil organisms as
well as chemicals in the ground. Several studies have found
that climate change affects soil dynamics, which in turn
affects pesticide toxicity to earthworms (Table 1).

4.2. Effect of Climate Change Drivers on Pesticide Toxicity to
Earthworms. Chemical pollutants including pesticides can
be altered by climate change when the climate change drivers
alter the physical, chemical, and biological properties of
ecosystems [85]. The impacts of climate change on pesticides
may be both indirect and direct [86]. The indirect effects
include changes in pesticide exposure due to the shifts in
cultivation towards higher latitudes and extension of cul-
tivation periods [74, 87]. Potential enhancement of pesticide
volatility and degradation could affect the effectiveness of
pesticides against pests and thus could increase application
levels for pesticides [88]. This rise in the use of pesticides
may be in both quantity and scope of application [89]. In
terms of direct effects, climate change can affect the de-
composition and toxicity of the pesticides [86], especially in
the expected temperature and precipitation alternations
[88]. Degradation of the pesticide is dependent on soil
moisture and temperature [90]. Soil temperature and soil
moisture are key climate change drivers influencing earth-
worm growth, survival, fecundity, and behaviour [91] and
indirectly influencing the environment of the earthworm
and food availability [92]. Also, soil temperature and
moisture influence most characteristics of the life cycle, such
as weight, cocoon incubation time, sexual maturity initia-
tion, reproduction, and life span. Temperature rise can speed
earthworm growth and reproduction rate [78]. It has also
been shown that, in Aporrectodea caliginosa earthworms,
soil moisture and temperature affect biomarkers [77].
Synergistic responses have been reported in many studies
dealing with the impact of soil moisture on effects of various
chemicals [76, 93-95].

A study done by Gonzalez-Alcaraz et al. [96] assessed
how different combinations of air temperatures and soil
moisture contents (20°C and 25°C; 30% and 50%) affected
the bioaccumulation kinetics of zinc and cadmium in the
earthworm species Eisenia andrei. The results of this study
indicated that the earthworms accumulated zinc rapidly in
contaminated soils. Still, when put in uncontaminated soil,
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FiGure 3: Fate and behaviour of pesticides towards earthworms under the influence of climate change.

they quickly eliminated zinc. The air temperatures of 20 and
25°C and the soil moisture contents of 30% and 50% had no
significant impacts on zinc bioaccumulation in the earth-
worms. However, higher temperatures and moisture allowed
cadmium to be taken up and eliminated at faster rates. The
kinetics of cadmium reduced when the temperatures were
higher, coupled with lower moisture contents. Analysis al-
ready performed in other studies indicates the value of
ecotoxicological studies and the fact that climate change
variables influence the bioavailability of pollutants in vari-
ables of soil climate change must be considered while
performing these experiments. The study on Eisenia fetida
species by Pelosi et al. [97] also reported how climate change
can affect soil organisms as well as contaminants in the soil.
According to their findings, temperature and soil moisture
content influenced soil enzyme behaviour as earthworms
responded to pesticides differently. The toxicity of earth-
worms varied when exposed to the same pesticide con-
centration at different temperatures, decreasing at lower
temperatures and increasing at higher temperatures. This
report shows that temperature variability can modify the
effects of pesticides on earthworm populations. However,
more research is required to better understand the complex
relationship between environmental factors and the toxicity
of chemicals, especially the dynamic interaction between
climate change drivers and pesticide toxicity to earthworms.
Toxicokinetics, bioaccumulation, and detailed life-cycle
traits in earthworm toxicology research can help explain the
exposure pathways taken by soil pollutants in tested species
under current projected climate change scenarios which will
help in better understanding the effects of these pollutants in
soil and soil vertebrates with the aim of taking compre-
hensive mitigation strategies as well as sustainable use of
agricultural pesticides.

5. Discussion and Conclusions

The soil ecosystem is a critical environment that provides
many services. It stores carbon, provides a medium for plant
growth, and serves as a natural environment for organisms.
The soil environment interacts with the atmosphere and
hydrosphere and provides many human civilisation materials
and food to consume. Thus, the soil environment’s health is
crucial for human, plant, and animal life, and protecting this
natural resource is essential for survival. Activities such as
mining and agriculture provide a source of pollution to the
soil environment. Mining disrupts the Earth’s crust and
displaces large volumes of soil, ruining the environment.
Refining mined materials pollutes the soil and water systems.
Also, large-scale agricultural practices alter the natural eco-
system, and the use of pesticides can pollute the soil and water
systems through runoff and leaching. Earthworms are key-
stone species and are generally used in ecotoxicological
studies since they interact with the soil directly and perform
many functions in soil processes [15, 98-100]. The interaction
between earthworms and soil makes them a relevant species
to be used in laboratory tests. There are many different
earthworm species used depending on the region and tests
done. Most soil ecotoxicological studies use earthworms in
their tests, [8, 15, 16, 80, 96, 98, 99] to name a few, and this
gives further evidence that earthworms are a suitable species
to use in these studies. Table 1 shows the results of studies on
the effect of pesticides towards earthworms under climate
change scenarios. Different concentrations of pesticides had
different effects on various life-cycle traits of earthworms and
biomarkers. When climate change variables are introduced,
these same concentrations had different effects on the same
tested parameters, and this will again supply more evidence
for researchers to take these variables into account.
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Global climate change has an impact on ecosystems
worldwide. The focus of this review is on the potential effects
of climate change on pesticides and their implications for
earthworms in the soil ecosystem. Climate change has been
shown to have a significant impact on the toxicity of pol-
lutants in soil by altering weather patterns and natural global
cycles. Previous research has found that varying temperature
and moisture affect the bioavailability of pollutants in the
soil ecosystem. According to many analyses from the In-
tergovernmental Panel on Climate Change (IPCC) report,
the global temperature and other climate change drivers are
becoming more severe and erratic; therefore, current re-
search must consider environmental concerns related to
climate change. Year 2019 was the second warmest year in
140 years with an increase of 0.95°C [22], and the reality is
that global warming is affecting the human and natural
world. This review highlights some of the impacts of climate
change on the soil and the pollutants in the soil. Most
toxicological analyses using earthworms do not take these
climate change variables into account; thus, they use stan-
dard temperatures and soil moisture contents while focusing
mainly on single pollutants and their effects. However, these
variables undoubtedly affect the bioavailability of these
pollutants in the soil. To accurately determine the effects of
these pollutants in natural ecosystems, one must consider
these variables. Studies such as [22, 39, 40, 85, 101], to name
a few, all indicate that climate change can directly affect the
soil temperature and moisture. When air temperatures in-
crease, the temperature of the soil surface increases as well,
and an increase in temperature will also reduce the soil
moisture. An increase in the temperature and a decrease in
the soil moisture will affect the characteristics as well as the
bioavailability of pollutants in the soil. Climate change also
makes rainfall patterns more unpredictable, and this could
lead to flooding and droughts. Both events can cause the soil
moisture to become excess (flooding) or minimal
(droughts). Excess water can cause leaching in the soil which
will promote acidification and runoff from agricultural areas
and mines which can pollute nearby areas. Droughts can
reduce the vegetation cover resulting in increased soil
erosion. These conditions will also affect earthworm pop-
ulations as well as the bioavailability of contaminants in the
soil.

Future studies must consider collecting relevant data as
climate change becomes a more urgent issue. Several studies
such as [68, 85, 96, 101-103] all show that other factors such
as temperature and soil moisture affect the bioavailability of
pesticides in the soil, thus making it essential to be taken into
account and not only using the concentrations of pollutants
as an endpoint.

The soil itself has capabilities to act as a buffer against
pollutants as well as variables such as temperature, moisture,
and acidification. The properties and make-up of the soil
give it these characteristics to act as a buffer. The organic
matter (carbon) in the soil can help reduce the effects of
heavy metals, for instance, in the soil. The variety of mi-
crobial communities in the soil also helps to break down
organic pollutants. The soil surface itself acts as a bufter to
temperature changes for the lower soil levels. Certain soil
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types such as clay can retain water for longer periods helping
with soil moisture. With regard to the acidification process,
it is a slow and natural process although it is hastened by
pollution. Soil is the buffer against acidification because soil
buffers external H* ions, and only when the H" input ex-
ceeds the maximum of soil buffer capacity, it will cause soil
acidification [64]. Soil health can maintain the health of
animals, plants, humans, and the environment [19], making
it a vital system that needs to be monitored and protected.
Soil pollutants such as heavy metals, organic contaminants,
and persistent organic pollutants have been found in soil
ecosystems and pose a threat to animal, human, and plant
health [18]. The possibility of these pollutants affecting
human and animal life is increasing with increasing pol-
lution. Climate change effects are becoming more and more
evident. The impact they have on soil pollutants is seen in
ecosystems worldwide, making it a critical variable when
performing ecotoxicological research. More research is
needed to obtain adequate data on the interaction of en-
vironmental factors such as the temperature and moisture
and other extreme climate change drivers. This has become
more relevant with the acceleration of global climate and to
enable relevant key climate regulatory authorities to im-
plement laws to mitigate and manage the effects of the soil
pollution on ecosystem health.
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