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ABSTRACT This study describes the phylogenomic analysis and metabolic insights of
metagenome-assembled genomes (MAGs) retrieved from hot spring sediment samples.
The metagenome-assembled sequences recovered three near-complete genomes belonging
to the archaeal phylum. Analysis of genome-wide core genes and 16S rRNA-based phylogeny
placed the ILS200 and ILS300 genomes within the uncultivated and largely understudied
bathyarchaeal phylum, whereas ILS100 represented the phylum Thaumarchaeota. The average
nucleotide identity (ANI) of the bin ILS100 was 76% with Nitrososphaeria_archaeon_
isolate_SpSt-1069. However, the bins ILS200 and ILS300 showed ANI values of 75% and
70% with Candidatus_Bathyarchaeota_archaeon_isolate_DRTY-6_2_bin_115 and Candidatus_
Bathyarchaeota_archaeon_BA1_ba1_01, respectively. The genomic potential of Bathyarchaeota
bins ILS200 and ILS300 showed genes necessary for the Wood-Ljungdahl pathway, and the
gene encoding the methyl coenzyme M reductase (mcr) complex essential for methanogene-
sis was absent. The metabolic potential of the assembled genomes included genes involved
in nitrogen assimilation, including nitrogenase and the genes necessary for the urea cycle.
The presence of these genes suggested the metabolic potential of Bathyarchaeota to fix
nitrogen under extreme environments. In addition, the ILS200 and ILS300 genomes carried
genes involved in the tricarboxylic acid (TCA) cycle, glycolysis, and degradation of organic car-
bons. Finally, we conclude that the reconstructed Bathyarchaeota bins are autotrophic aceto-
gens and organo-heterotrophs.

IMPORTANCE We describe the Bathyarchaeota bins that are likely to be acetogens
with a wide range of metabolic potential. These bins did not exhibit methanogenic
machinery, suggesting methane production may not occur by all subgroup lineages of
Bathyarchaeota. Phylogenetic analysis support that both ILS200 and ILS300 belonged
to the Bathyarchaeota. The discovery of new bathyarchaeotal MAGs provides additional
knowledge for understanding global carbon and nitrogen metabolism under extreme
conditions.
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Despite being a significant and essential part of the microbial ecosystem in almost all
environments, resources for archaeal research are limited (1). Several studies illustrated

the abundance of archaea in the environmental samples (2–4). With the advent of next-gener-
ation sequencing and metagenomics approaches, a diverse group of novel Candidatus organ-
isms of the domain Archaea and their genomes has been reconstructed and assembled.
Moreover, the 16S rRNA gene sequence-based phylogenetic analysis is an essential tool for
understanding the archaeal population dynamics in environmental samples (5). The archaeal
research has successfully contributed a few novel archaeal genomes primarily to integrate
the genomic information of a single organism (6, 7). Presently, the phyla Thaumarchaeota,
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Aigarchaeota, Crenarchaeota, Korarchaeota, and Bathyarchaeota have been proposed to
constitute a superphylum, referred to as TACK (8, 9).

Several studies have demonstrated the distribution of Thaumarchaeota in marine and ter-
restrial environments and their importance in nitrification and carbon fixation (10). Members
of the Thaumarchaeota are mostly uncultivated. As a result, metagenome-assembled genomes
(MAG) provide an opportunity for understanding their metabolic adaptation in the process of
evolution and niche expansion. Recent studies demonstrated that the assembled genome of
Thaumarchaeota from marine water is distantly related to its affiliated members isolated from
thermal habitats (11). In contrast, members of Bathyarchaeota are mostly reported from hot
springs. These archaea are widespread in anoxic sediments and appeared as one of the most
dominant phyla (12). Furthermore, genomic evidence suggested that members of the phylum
Bathyarchaeota are involved in methane metabolism, a property found only in the phylum
Euryarchaeota (6). In addition, acetogenesis, primarily restricted to the domain Bacteria, was
also found in some lineages of Bathyarchaeota (13).

The energy source in the metabolic process suggests that hydrogen (H2) is the first
electron donor leading to ATP synthesis in microbial cells by the enzyme hydrogenase.
Till date, hydrogenase enzymes are found in the genomes of aquatic and terrestrial
organisms and play a crucial role in carbon fixation (14). Acetyl-CoA produced during
this process is essential for archaea’s acetogenesis, methanogenesis, and carbon fixation
(12, 15). Apart from this, other electron donors such as NAD(P)H and ferredoxin have
been reported in the energy-yielding process in hyperthermophilic methanogenic arch-
aea (16). Furthermore, heterodisulfide reductase (Hdr-F420), an electron bifurcating com-
plex that acts as an electron donor, is crucial for energy metabolism in methanogenic
archaea. It is also essential to cycling coenzyme M and coenzyme B (CoM-CoB) associated
with methanogenesis (17, 18).

Archaeal studies of the tropical hot springs located in the Indian subcontinent have
received little attention. However, cultivation-based studies have shown the identifica-
tion of several new species of bacteria from these hot springs (19). This study describes
three metagenome-assembled genomes (MAGs) and identifies their phylogenetic affili-
ation. In addition, we report the metabolic potential of Bathyarchaeota bins.

RESULTS AND DISCUSSION
Genome characteristics. The shotgun sequencing of the metagenome generated

50,483,993, 48,110,695, and 41,417,706 high-quality Illumina sequence reads for sample-1
(Surajkund, main source), sample-2 (Surajkund, surrounding area), and sample-3 (Bakreshwar),
respectively. At the time of assembly of data, 46,004 contigs from Surajkund (main source),
22,119 contigs from Surajkund (surrounding area), and 23,777 contigs from Bakreshwar were
available for analysis. De novo assembly and binning by tetranucleotide signatures identified
Bathyarchaeota bins (ILS200 and ILS300) and a Thaumarchaeota bin (ILS100). The assembled
genomes ILS100 and ILS200 were obtained from the metagenome of sample-2, whereas
ILS300 was from sample-3. ILS100 represents a “Candidatus Thaumarchaeota” genome (2.22
Mbp) estimated to be ;98.06% complete. However, “Ca. Bathyarchaeota” genomes ILS200
(2.35 Mb) and ILS300 (1.75 Mb) were estimated to be ;98.88% and ;98.13% complete, as
determined by the presence of single-copy marker genes (Table 1).

ANI and phylogenetic analysis. The genome of ILS100 showed an ANI of 76% with
Nitrososphaeria_archaeon_isolate_SpSt-1069 (7) (see Fig. S1 at https://figshare.com/s/d8c03fb
25988b07c9479). Similarly, the genomes of ILS200 and ILS300 revealed 75% and 70% ANI
with Candidatus_Bathyarchaeota_archaeon_isolate_DRTY-6_2_bin_115 and Candidatus_
Bathyarchaeota_archaeon_BA1_ba1_01, respectively (6) (Fig. S2 at the URL mentioned
above). The ANI value of all three assembled genomes was less than 90%, so the similarity
was at the level of different genera or even families. The phylogenetic affiliations of the
assembled genomes of ILS100, ILS200, and ILS300 were compared with the those of refer-
ence genomes considering the 16S rRNA gene sequences and core genes. In the 16S rRNA
phylogenetic tree, ILS100 clustered with the uncultured and largely understudied marine
thaumarchaea. In comparison, ILS200 and ILS300 clustered with the uncultured archaeon of
Bathyarchaeota (Fig. 1). Moreover, in phylogenetic tree based on core genes, ILS100 clustered
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within the phylum Thaumarchaeota lineage, while ILS200 and ILS300 clustered with the
Bathyarchaeota phylum (Fig. 2). These results suggested that ILS100 belongs to the phylum
Thaumarchaeota, and ILS200 and ILS300 represent the phylum Bathyarchaeota.

Prediction of metabolic pathways in Bathyarchaeota assembled genomes. The
MAGs (ILS200 and ILS300) carried genes for carbon metabolism, nitrogen assimilation,
oxidative phosphorylation, and degradation or assimilation of sugar, protein, and amino
acids. In addition, the genomic potential of the assembled genomes corresponding to their
metabolic pathways has been described.

Carbon metabolism. The Bathyarchaeota bins analyzed here encode genes in the
Wood-Ljungdahl (WL) pathway, glycolysis, gluconeogenesis, the tricarboxylic acid (TCA)
cycle, and the pentose phosphate pathway (Table S1 at https://figshare.com/s/d8c03fb25988b
07c9479). In general, acetyl-CoA produced by sugar or protein degradation enters other meta-
bolic pathways mainly through the bidirectional reductive acetyl-CoA or WL pathway. The WL
pathway is crucial for archaea’s acetogenesis, methanogenesis, and carbon fixation (15, 17).
The reconstructed genomes ILS200 and ILS300 identified the genes involved in the WL path-
way. However, phosphotransacetylase (pta) and acetate kinase (ack) were not detected. It indi-
cates the genomic potential for converting acetyl phosphate to acetyl-CoA by the enzyme
phosphotransacetylase; eventually, acetate production by the catalytic activity of acetate ki-
nase may not occur in these MAGs (6). Moreover, the genomic potential of ILS200 includes
the acetyl-CoA synthetase gene (acd), which produces ATP and acetate, a trait commonly
found in peptide-degrading archaeon Pyrococcus (20). Interestingly, both the bins carries
genes for alcohol dehydrogenase and aldehyde ferredoxin oxidoreductase. These enzymes
perhaps convert acetate to ethanol as an archaeal fermentation end product. Further, genes
encoding the mcr complex were not detected in any of the bins, suggesting that these are
incapable of producing methane. One of the reasons not to detect the coenzyme M reduc-
tase (MCR) complex in the draft genomes could be the result of reconstructing a fragmented
genome from the metagenomic DNA. The fragmented assembly may predict a relatively
higher number of short genes (fewer than 100 amino acids [aa]) than an isolated genome.
Generally, the annotation pipeline missed short genes to assign the probable function (21).
Instead, acetyl-CoA synthase (arCOG01340), carbon monoxide dehydrogenase/acetyl-CoA
synthase complex (arCOG04408), and carbon monoxide methylating acetyl-CoA synthase
complex beta subunit (arCOG04360) specific for acetate-forming archaea were present (22).
It suggests the bins ILS200 and ILS300 that represent the phylum Bathyarchaeota solely
depend on the WL pathway for synthesizing acetyl-CoA. Furthermore, the genomic poten-
tial of ILS200 and ILS300 showed the presence of tetrahydromethanopterin, which acts as a
C1-carrier in nonmethanogenic archaea for carbon fixation (23) (Fig. 3). A conserved essential
gene (mcrA) responsible for reducing the cofactor-bound methyl group to methane is
absent. These MAGs might utilize sugars and amino acids for a heterotrophic lifestyle.
Additionally, genes encoding the formate dehydrogenase were detected, suggesting the
formation of acetyl-CoA through reductive acetyl-CoA pathways. The genomic potential

TABLE 1 Statistics for reconstructed archaeal genomes

Genomic characteristic Data for MAGs
Bin identity “Ca. Thaumarchaeota” (ILS100) “‘Ca. Bathyarchaeota” (ILS200) “Ca. Bathyarchaeota” ILS300
BioSample ID SAMN13381922 SAMN13565975 SAMN13381783
GenBank accession no. WUQR00000000 WUQU00000000 WUQV00000000
Genome size (bp) 2,112,757 2,351,990 1,754,230
Completeness (%) 98.06 98.88 98.13
Contamination (%) 1.34 3.19 2.18
N50 (bp) 1,262,376 8,235 8,586
GC content (%) 52.29 42.24 47.44
tRNA genes 35 35 20
rRNA genes 3 4 4
Protein-coding genes 2,213 2,611 2,012
Hypothetical proteins 897 1,106 828
Genes annotated by COGa 1,516 1,982 1,360
aCOG, clusters of orthologous genes.
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FIG 1 Maximum-likelihood phylogenetic tree computed using MAG-derived 16S rRNA gene sequences with the reference sequences
from the database.
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FIG 2 Phylogeny of reconstructed MAGs with respective archaeal clades. Maximum-likelihood tree of 1,265 archaea with
concatenated amino acid sequences of 77 conserved single-copy marker proteins. The scale bar represents amino acid
substitutions per sequence position.
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of both the MAGs did not show the mtr ABCDEFGH operon, indicating that these are
hydrogen-dependent methylotrophs. Thus, we predicted that the ILS200 and ILS300 genomes
possess noncyclic carbonic fixation routes and produce acetyl-CoA from CO2 by the reductive
acetyl-CoA pathway, finally utilized by the TCA cycle as a carbon or energy source.

Like other archaea, genes encoding phosphoenolpyruvate carboxylase (arCOG04435),
phosphoenolpyruvate carboxykinase (arCOG06073), and phosphoenolpyruvate synthase
(arCOG01111) were present. These enzymes could be involved in glucose metabolism
(24). In addition, the genomic potential of both ILS200 and ILS300 showed genes encod-
ing pyruvate formate-lyase, which indicates the formation of acetyl-CoA during anaero-
bic glycolysis (25). Surprisingly, pyruvate kinase was not found in any of the bins. Instead,
a gene encoding L-alanine dehydrogenase was present, suggesting the possible role of
this enzyme in the formation of pyruvate from alanine. Further, like ILS300, ILS200 carries
ATP synthase, phosphoglycerate kinase, and several pyruvate ferredoxin oxidoreductase
(porD) subunits, suggesting that ILS200 derives energy using both oxidative and substrate-
level phosphorylation (26, 27). In addition, the genomic potential of both the MAGs showed
genes encoding ribose 5-phosphate isomerase and orotidine 59-phosphate decarboxylase.
It suggests these genes are essential to the de novo biosynthesis of the nucleotides (28).
Additionally, genes encoding cellulase/endoglucanase were also detected, indicating their
ability to degrade polymeric carbohydrates.

Nitrogen metabolism. Ammonium is essential in microorganisms synthesizing nitro-
gen-containing metabolites such as amino acids. Like the hyperthermophile euryarchaeon
Archaeoglobus fulgidus, genes encoding the ammonia transporter AmtB-like domain and
nitrogen regulatory protein GlnK were detected in the genome of ILS200, indicating its ability
to import NH4

1 from the environment (29). In addition, genes encoding nitrogenase
(arCOG00594), Mo-nitrogenase iron protein (arCOG00590), dinitrogenase iron-molybdenum

FIG 3 Key metabolic pathways in the MAGs of ILS200 and ILS300. ---, Genes absent in both the bins (purple color); genes found in both ILS200 and ILS300
(black), genes only absent in ILS200 (red), genes only absent in ILS300 (blue). Genes associated with the pathways highlighted in this figure are presented
in Table S1 at https://figshare.com/s/d8c03fb25988b07c9479.
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cofactor biosynthesis (arCOG02734), and oxidoreductase/nitrogenase (arCOG00598) were
detected in ILS200. It indicates that these enzymes play an active role in reducing N2 to am-
monia (NH3), an essential step in nitrogen fixation (30, 31). Also detected were many genes
involved in nitrogen metabolism, such as glutamine synthetase, glutamate synthase, aspara-
gine synthetase A, and NADPH-dependent glutamate synthase subunit (GltB2, GltB3) (Fig. 3,
Table S1 at https://figshare.com/s/d8c03fb25988b07c9479). These results suggested that
both ILS200 and ILS300 carry out nitrogen metabolism by an assimilatory pathway, in con-
trast to their bathyarchaeotal homologs (32). Although nitrogen metabolism in archaea is
less well known than that in bacteria, the availability of the complete genome sequences of
a diverse group of archaea could help our future understanding of the physiology and bio-
chemistry, including metabolic reactions involved in nitrogen compound utilization. Moreover,
the genomic potential of ILS200 exhibited genes involved in the urea cycle, indicating its abil-
ity to eliminate the excess nitrogen or ammonia from the organism. Additionally, the genome
predicted the enzymes in the biosynthesis of all 20 essential amino acids.

Metal oxidation. Archaea are capable of transforming the oxidation state of metals
for bio-mineralization. Metal ions are required as a cofactor or used as the terminal electron
acceptor in different biological processes. Several metal ion transportation genes, phosphate
ABC transporter ATPase, phosphate ABC transporter permease, cobalt/nickel ABC transporter
permease, cobalt transport protein, cobalt transport protein CbiM, cobalt ABC trans-
porter inner membrane subunit CbiQ, copper-transporting P-type ATPase, Mn/Zn ABC
transporter ATPase, magnesium-translocating P-type ATPase, K1 transporter Trk, Trk potas-
sium uptake system protein, the ferrous iron transport protein B and iron ABC transporter
permease, were identified in the genomes of ILS200 and ILS300. It indicated that these MAGs
derived energy from reducing metals and metal ions, similar to other archaea (33) (Fig. 3).

Other metabolic processes. Metabolic predictions indicated that ILS200 showed
flagellin genes for flagellar biosynthesis, which were absent in ILS300. Hence, both flagellated
and nonflagellated “Ca. Bathyarchaeota” are present in the tropical hot springs. Loss of motility
genes in ILS300 may be due to energy limitation or the changing oligotrophic environment of
the hot spring ecosystem (34).

Fatty acid oxidation in archaea remains obscure. The genomic potential of the assembled
genomes of ILS200 and ILS300 showed genes encoding acyl-CoA dehydrogenase, acetyl-CoA
acetyltransferase, and enoyl-CoA hydratase of b-oxidation of fatty acids (Fig. 3). It suggests
their ability to synthesize long-chain fatty acids to sustain themselves in an extreme envi-
ronment (35).

ILS200 detected genes encoding beta-subunit of iron-sulfur flavoenzyme sulfide de-
hydrogenase (SudB). It suggests the ability to reduce elemental sulfur or polysulfide to
hydrogen sulfide (36). These MAGs also encoded other structural genes and subunits
of the assimilatory sulfate reduction pathway: sulfate permease (SulP), adenylylsulfate
kinase (CysC), phosphoadenosine phosphosulfate reductase (CysH), sulfite reductase
(CysJI) and thiosulfate sulfurtransferase rhodanese (Table S1 at https://figshare.com/s/
d8c03fb25988b07c9479), and thioredoxin reductases (TrxR), suggesting that this enzyme is
essential for regulating cellular redox balance and reducing the damage caused by reactive
oxygen species generated via oxidative phosphorylation in the mitochondria (37).
Additionally, thioredoxin reductases (TrxR) could be crucial in forming disulfide bridges
to stabilize proteins, as found in hyperthermophilic organisms (38). Moreover, the genomic
potential of both the MAGs encode enzymes involved in the benzoyl-CoA reductase com-
plex, suggesting their ability to degrade aromatic hydrocarbon (39).

Conclusion. The presence of the WL pathway suggests that Bathyarchaeota bins
(ILS200 and ILS300) could retain the capability to assimilate C1 compounds and generate ac-
etate, ultimately contributing to the TCA cycle. However, a significant portion of the genes
with a hypothetical nature is due to the incompatibility in the similarity search for novel
functions. Nevertheless, most signature genes identified in archaeal genomes are ambigu-
ous, or there are no homologs outside the archaea (40). Therefore, more genome sequences
in the database may help to analyze the phylogenetically related but physiologically and
functionally different archaea.
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MATERIALS ANDMETHODS
Study site and sample description. Samples collected from hot springs were geographically widely

separated: Surajkund (24°09901.90N 85°38945.20E) main source (sample-1), Surajkund surrounding area (sam-
ple-2) located in the district Hazaribag, Jharkhand, India, and Bakreshwar (23°52951.50N 87°22930.40E) main
source (sample-3) located in the district Birbhum, West Bengal, India. The temperature and pH of the three hot
springs were recorded in the range of 67 to 83°C and 7.8 to 8.0, respectively. The highest temperature was
recorded at Surajkund (main source) at 83°C, followed by Surajkund (surrounding area) at 72°C and
Bakreshwar (67°C). The distance between Surajkund main source (sample-1) and Surajkund surrounding area
(sample-2) was 6 m, and the distance between Surajkund and Bakreshwar was 221 kilometers (138 miles).
Water temperature in the main source and surrounding areas was recorded using an Enviro-Safe thermometer
(Sigma, USA). The pH was measured using a portable pH meter (Hanna Instrument, Sigma, USA). For DNA
extraction, sediment samples (50 g) and water (50 mL) were collected in a sterile container from five locations
in each spring. After collection, samples were pooled by mixing in equal proportions in sterile bottles.

DNA extraction, sequencing, and data generation. Purification of metagenomic DNA from pooled
mixes of water and sediment samples were performed using a FastDNA spin kit for soil (BIO 101, California, USA)
following the manufacturer’s instructions with minor modification. Briefly, silica beads were transferred from the
Lysing MatrixE of the kit to a 15-mL sterile Falcon tube; 2.0 g of wet sediment, and 2 mL of lysis buffer (0.12 M so-
dium phosphate buffer, pH 8.0, 0.5% SDS) were added separately to the 20 sets of the tube for each sample for
the extraction of DNA. Each tube was vortexed for 3 min and incubated at 65°C for 1 h. After lysis, the tubes
were centrifuged at 2,300 � g for 20 min, and then the supernatant was transferred to a 2.0-mL sterile
Eppendorf tube. This was then centrifuged at 14,000 � g for 10 min, and DNA in the supernatant was purified
following the manufacturer’s instructions. DNA was eluted in 50 mL of DNA elution solution (DES) supplied with
the kit. DNA extracts were pooled, and the concentration and purity were determined by measuring the absorb-
ance ratios using a NanoDrop 8000 spectrophotometer (Thermo Scientific). The extracted DNA with a 260/280 ra-
tio between 1.8 and 2.0 and a 260/230 ratio between 2.0 and 2.2 was considered pure. For high-throughput
sequencing, a TG TruSeq Nano DNA HT library preparation kit (Illumina) was used to construct the paired-end
sequencing library of metagenomic DNA. The metagenome sequencing was done using the Illumina HiSeq 4000
next-generation sequencing platform to produce paired-end sequence reads. The sequence quality was eval-
uated using the FastQC program (https://www.bioinformatics.babraham.ac.uk/projects/fastqc/) (41). De novo as-
sembly of the sequences was performed using the MEGAHIT version 1.1.4 metagenome assembler (42).

A total of 7.5 GB, 7.2 GB, and 6.2 GB of sequence data from sample-1 (Surajkund, main source), sample-2
(Surajkund, surrounding area), and sample-3 (Bakreshwar) was obtained, respectively. Raw read sequence sta-
tistics such as read length and GC content of the processed reads were calculated using BBMap version 38.44
(43). The metagenomic sequences of each sample were filtered based on the following parameters: (i) quality
filtration (phred quality, $Q15) and (ii) unique molecular identifier (UMI)-based elimination of duplicate data
generated during Illumina sequencing; error correction was done using fastp tools version 0.20.0 (https://
github.com/OpenGene/fastp) (44).

Taxonomic and functional analysis of metagenome-assembled genomes. Assembled contigs lon-
ger than 1 kb were binned to produce metagenome-assembled genomes (MAGs) using the MaxBin version 2.2.7
program (45). We examined the genome completeness by identifying the single-copy phylogenetic marker gene
repertoire in the assembled genome (46). Further, we removed spurious genomes from the downstream analysis
(47), and the quality and completeness of the genomes were estimated using CheckM version 1.0.7 with default
parameters (48). The statistical elements, such as the number of scaffolds and the length of the assembled MAGs,
were calculated using Perl script (https://github.com/tomdeman-bio/Sequence-scripts/blob/master/calc_N50_GC
_genomesize.pl). The protein-coding genes (CDS) of the assembled genome (MAG) were identified by using the
Prokka version 1.14.0 and the NCBI PGAP pipeline (release 2019-11-25.build4172), respectively (49, 50). We used
the Barrnap version 0.9 program (https://github.com/tseemann/barrnap) with the parameter arch in the domain
flag to predict the 16S rRNA gene sequence from the assembled archaeal genomic bin. Predicted protein-coding
sequences were assigned to the archaeal clusters of orthologous genes (arCOGs) using the arCOG database
(https://ftp.ncbi.nih.gov/pub/wolf/COGs/arCOG/) and the RPSBLAST algorithm implemented in the CDD2COG
program (https://github.com/aleimba/bac-genomics-scripts/tree/master/cdd2cog) (51). The metabolic pathway
was drawn using BioRender (https://help.biorender.com/en/articles/3619405-how-do-i-cite-biorender).

Assessment of the ANI and the phylogenetic position of the MAGs. ANI was calculated using the
method described in Richter et al. (51) and implemented in the Python module PYANI version 0.1.2
(https://github.com/widdowquinn/pyani/releases/tag/v0.1.2). The 16S rRNA sequences were aligned using
the SINA version 1.2.11 program (52) against the SILVA version 138.1 database (53), and the phylogenetic
tree was generated using the ARB Parsimony (quick add marked) tool in the ARB software package (54).
Further, the phylogenetic position of the three MAGs was determined using the 77 conserved marker pro-
teins of archaea retrieved from 1,265 reference genomes from the database (www.ncbi.nlm.nih.gov/
assembly/). First, the marker genes were extracted from the reference genomes using the AMPHORA2 pipe-
line (55), and the protein sequences were aligned using the MAFFT algorithm version 7.48 (56). Then, the
aligned protein-coding sequences were concatenated, and the phylogenetic tree was built using IQ-Tree ver-
sion 2.0.7 with the mixture model of LG 1 C60 1 F 1 G and with ultrafast bootstrapping (-bb 1000, -alrt
1000) (57, 58). Finally, a phylogenetic tree was visualized with the ETE 3 tree viewer toolkit (59).

Data availability. The raw shotgun sequence reads are available in the NCBI-SRA database under
the following accession numbers: SRR8368399 (Surajkund, main source), SRR8369092 (Surajkund, sur-
rounding area), and SRR8369165 (Bakreshwar). All three metagenome-assembled genomes are available in
NCBI GenBank under the following accession numbers: WUQR00000000 (ILS100), WUQU00000000 (ILS200),
and WUQV00000000 (ILS300).
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