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Platelets are essential components in the tumor microenvironment. For decades, clinical
data have demonstrated that cancer patients have a high risk of thrombosis that is
associated with adverse prognosis and decreased survival, indicating the involvement of
platelets in cancer progression. Increasing evidence confirms that cancer cells are able to
induce production and activation of platelets. Once activated, platelets serve as allies of
cancer cells in tumor growth and metastasis. They can protect circulating tumor cells
(CTCs) against the immune system and detachment-induced apoptosis while facilitating
angiogenesis and tumor cell adhesion and invasion. Therefore, antiplatelet agents and
platelet-based therapies should be developed for cancer treatment. Here, we discuss the
mechanisms underlying the bidirectional cancer-platelet crosstalk and platelet-based
therapeutic approaches.
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1 INTRODUCTION

Platelets are small anucleate blood cells (2–4 µm) released from bone marrow megakaryocytes with
a normal number ranging from 150×109/L to 350×109/L in the bloodstream. They not only play a
crucial role in hemostasis and thrombosis formation but also modulate inflammatory response
through interacting with granulocytes and pathogens (1). It is generally accepted that tumors behave
like chronic or non-healing wounds and trigger inflammation (2, 3). As the first responder during
chronic inflammation and cancer progression, platelets have such advantages as small size, the large
numbers in the bloodstream and versatile biophysical properties including adhesion, aggregation,
and streamline migration (4). Activated platelets can change their shape and release a granules,
dense granules or lysosomal granules in response to different stimuli. These granules contain
various cytokines or molecules with distinct functions (5).

Ever since Armand Trousseau described the relationship between cancer and abnormal blood
coagulation in 1865, numerous studies have showed that platelets contribute to cancer-associated
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thrombosis and influence the outcomes of cancer treatment.
Cancer cells can activate platelets and cause their aggregation in
the circulation, while platelets help to maintain the integrity of
tumor vasculature and participate in multiple steps of metastasis
(6). Hence, platelets are excellent biomarkers for liquid biopsy to
improve diagnostic and prognostic accuracies (6). Furthermore,
antiplatelet agents have a great potential in anti-cancer therapies
(7, 8).

This review addresses the bidirectional interaction between
platelets and cancer by highlighting facts that elevated platelet
counts in patients with malignancy predict adverse prognosis
and short survival and that cancer cells induce platelet
production, activate platelets and alter their functions.
Potential strategies for platelet-based cancer therapies are
also discussed.
2 CORRELATION BETWEEN INCREASED
PLATELET COUNTS AND CANCER
PROGNOSIS

From clinical data, many cancer patients were reported to have
high platelet counts. Generally, thrombocytosis is defined as
more than 400×109/L of platelet counts. The frequencies of
pretreatment thrombocytosis varied according to cancer types,
4.0% to 21% in gastric cancer patients (9, 10), 9.8% to 13.2% in
colorectal cancer patients (11, 12), and 3.7% to 18.2% in breast
cancer patients (13, 14). Increased platelet counts usually
indicate worse prognosis and shorter survival in patients with
malignant diseases (15–18). For example, Zhou et al. investigated
6754 ovarian cancer patients and found that elevated
pretreatment platelet counts denoted poor survival outcome
and unfavorable clinicopathological parameters (16). In gastric
cancer, patients with thrombocytosis had worse overall survival
(HR 1.57, 95% CI 1.36–1.81) and higher likelihood of recurrence
(OR, 2.28; 95% CI, 1.55–3.35) (19). Although only 2.4% patients
with oesophageal adenocarcinoma had paraneoplastic
thrombocytosis, such patients had a higher rate of mortality
(86%) and lymph node metastasis (69%) than patients with
normal platelet counts (50% and 31%, respectively). The
former patients died with a median survival time of 23.2
months while the latter died with a median survival time of
76.9 months (20). These data demonstrate that platelets are likely
to take an important part in progression. Interestingly, a new
finding denoted that upper tract urothelial carcinoma patients
with both high platelet counts and programmed cell death
ligand-1 (PD-L1) positivity had shorter metastasis-free survival
and overall survival, demonstrating PD-L1 expression might
synergize with platelet count in modulating cancer
development (21).

Thrombocytosis is significantly associated with cancer
metastasis. For ovarian patients with thrombosis before
surgery, anticoagulant drugs was used to inhibit the
thrombosis formation and cancer metastasis (22). Latest data
from patients who had undergone radical hysterectomy and
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pelvic lymphadenectomy showed that thrombocytosis could be
one predictor of pelvic lymphatic metastasis in the early
squamous cervical cancer (23). In addition, platelet counts
correlated with tumor invasion and distant metastasis in
gastric cancer (24), colorectal cancer (17, 25) and pulmonary
malignancy (26). Thus, platelets seem to actively participate in
cancer dissemination, which may be a main reason for adverse
prognosis in cancer patients with thrombocytosis.

Different researchers set the cutoff values of thrombocytosis
varying from 270 to 450×109/L in their studies. This discordance
may lead to between-study heterogeneity and affect the
significance of results (16). For example, Shimada (27) and
Ling (28) defined thrombocytosis as platelet count over
293×109/L in esophagus tumor. They found thrombocytosis
appeared in approximately 20% patients, whereas Aminian
(29) and Dutta (30) reported a 3.4–4.46% incidence based on
the 400×109/L cutoff. In fact, it may be useful to adopt specific
cut-off values according to the features of tumors. For instance,
lower cutoff for platelet counts (300×109/L) was more
informative to predict prognostics of inflammatory breast
cancer (31). Moreover, a cohort study demonstrated that the
risk of cancer in men with a platelet count over 325×109/L
exceeded 3% while the risk in women with a platelet count over
375×109/L exceeded 2.8%. This finding could be a cue for earlier
diagnosis of cancer in patients with platelet counts above these
values (32). Since platelet counts were also affected by age and sex
(33, 34), age/sex-specific ranges of platelet counts were
introduced to better predict the risk of total mortality (35).
More data will help to define a clear relationship between the
platelet counts and the cancer incidence. Furthermore, using
platelet counts as indicators for diagnosis and prognosis should
take account of patient conditions.

Altogether, elevated platelet counts can be recognized as a risk
marker in certain types of cancers (16, 17, 36). However, it was
found that platelet count was not statistically significantly
associated with colorectal cancer patient survival though higher
platelet counts were observed in higher tumor stage (37).
Ishibashi et al. also suggested that platelet count was non-
independent prognostic factors for overall survival in
esophageal squamous cell carcinoma (38). Studies showed
that a combination of platelet counts and other factors often
has higher prediction value than a single index, such as platelet-
to-lymphocyte ratio (PLR) (39–41) and hemoglobin/albumin/
lymphocyte/platelet (HALP) levels (42). Aside from neutrophil–
lymphocyte ratio (NLR) and lymphocyte–monocyte ratio
(LMR), patients with high PLR were at higher risk of distant
metastases and worse prognoses in renal cell cancer (43), cervical
cancer (44), bladder cancer (45), colorectal adenocarcinoma (46),
head and neck squamous cell carcinoma (47), and gastric cancer
(48). Recently, a novel parameter neutrophil/platelet/
lymphocyte/differentiation score (NPLDS) has been introduced
to accurately predict the prognosis of chemotherapeutic response
in advanced gastric cancer (49). Collectively, the detection of
PLR, HALP, and NPLDS is valuable in the evaluation of cancer
patient outcomes while the underlining mechanisms need
further investigation.
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3 IMPACTS OF CANCER ON PLATELETS

Clinical data demonstrated that cancer patients had a higher risk
of venous thrombosis than the healthy individuals do (50).
Thrombosis has been reported to be the second leading cause
of malignancy-associated death (51). Recently, the relationship
between thrombosis and cancer reviewed by Plantureux et al.
indicated that cancer cell-induced platelet production, activation
and function alteration might be the major reasons of
thrombosis (5). Zhang et al. have found that activated platelets
from patients with colorectal cancer could stimulate the
formation of neutrophil extracellular traps (NETs) and
ultimately enhance procoagulant activity (52). Cancer cell-
platelet interaction incited platelet-derived extracellular vesicles
(EVs) release and fibrin formation, thus inducing thrombus
formation under shear flow (53).

3.1 Platelet Production
Cancer cells can induce platelet production. Early studies showed
that overexpression of interleukin-1b (IL-1b) (54) and
interleukin-6 (IL-6) in malignant diseases (55, 56) was related
to thrombocytosis. In subsequent studies, thrombocytosis was
found to be caused by IL-6 in Granulocyte-Colony-Stimulating
Factor (G-CSF)-producing tumors and by both granulocyte-CSF
and IL-6 in Granulocyte Macrophage-Colony-Stimulating Factor
(GM-CSF)-producing tumors (57). Studies have shown that
tumors are able to produce thrombopoietin (TPO) (58) and
IL-6 (59). TPO is the primary regulator of megakaryocyte
progenitor differentiation and platelet production (60), while
IL-6-induced thrombopoiesis was dependent on TPO (61). In
tumor-bearing mice, treatment with IL-6 antibody abrogated
thrombocytosis and augmented the therapeutic efficacy of
paclitaxel (59). Knock out of IL-6 decreased the platelet counts
and reduced tumor burden in a colitis-associated cancer model
(62). It was noteworthy that the demand for platelets modulated
murine TPO mRNA levels at least in part (63). Recently, Hill
et al. suggested that tumor-derived soluble factors potentially
deregulated autophagy in hematopoietic progenitors and
megakaryocytes and subsequently promoted megakaryopoiesis
and thrombopoiesis (64). Nonetheless, the precise molecular
pathway of cancer cell-induced platelet production is yet to
be defined.

3.2 Platelet Transcriptome and Proteome
Alteration
Studies indicated that platelets from cancer patients altered their
growth factor contents (65–67), RNA profile (68–71) and other
parameters including platelet counts, volumes, and protein
contents (72) in early stage.

3.2.1 Transcriptome Alteration
It was reported that 197 platelet-related genes were significantly
down-regulated in metastatic lung cancer, implying that
functions of platelets may alter during cancer metastasis (70).
Later, Best et al. found that mRNA sequencing of tumor-
educated platelets (TEPs) was capable of distinguishing cancer
patients from healthy individuals with 96% accuracy and
Frontiers in Oncology | www.frontiersin.org 3
providing the location information for six major tumors (non-
small cell lung cancer, glioblastoma, colorectal cancer, pancreatic
cancer, breast cancer and hepatobiliary cancer) with 71%
accuracy. Moreover, TEP mRNA profiles could identify MET
orHER2-positive and mutant KRAS, EGFR or PIK3CA tumors as
well (68). Zhang et al. revealed that in non-small cell lung cancer
(NSCLC) patients, expression levels of over 2000 platelet mRNAs
and ncRNAs were changed. Some up-regulated genes including
PPBP, OST4, PF4, GP1BB and CCL5 were related to tumor
progression. Worthy of note, histological types and tumor
stages could influence the gene expression (73). Analogously,
integrated bioinformatical analysis also identified twenty
differentially expressed TEP mRNAs in NSCLC patients, which
were associated with transport process, localization and
catalyticactivity (69). Moreover, TEP mRNAs were found be
associated with chemotherapeutic effects (74). Together, RNA
transcriptome mapping established TEPs as promising
biomarker source in liquid biopsies (75–77). Recently, Best
et al. have provided a protocols to combine platelet RNA
sequencing and swarm intelligence–enhanced classification
algorithm development for disease diagnostics (78).

It is not quite clear how tumor cells changed TEP RNAs. One
scenario is that blood platelets may take up tumor-derived
microvesicles which contain numerous RNA and proteins.
These microvesicles are able to promote tumor growth,
angiogenesis and immune evasion (79–81). This hypothesis is
supported by the fact that Glioma RNA marker EGFRvIII and
prostate cancer RNA marker PCA3 were detected in patient
platelets (82). It will be interesting to know how tumor-derived
RNAs change platelet functions and foster tumor progression.

3.2.2 Proteome Alteration
Platelets contain a wide range of proteins including chemokines,
cytokines, proteases and growth factors, which are synthesized
by megakaryocytes or taken up from the blood by
megakaryocytes and circulating platelets (65, 72, 83, 84).
Protein content in platelets was notably influenced in the
presence of cancer. For example, concentrations of vascular
endothelial growth factor (VEGF), platelet-derived growth
factor (PDGF), platelet factor 4 (PF4) (66), connective tissue-
activating peptide III (CTAPIII) and thrombospondin-1 (TSP-1)
in platelets were altered depending on the types of cancer (67, 72,
85, 86). Sabrkhany et al. analyzed the platelet proteome of
patients with early-stage lung and pancreas cancers. It turned
out that 85 of 4384 unique proteins in platelets significantly
changed their expression in cancer patients. Interestingly, 81 of
these 85 proteins restored their normal level after tumor
resection. Most of the over-expressed proteins were involved in
inflammation, immune response, cytoskeleton organization and
transport while most down-regulated proteins were linked to
antigen presentation/processing and protein proteolysis. On the
whole, platelet proteome was remarkably altered in cancer
patients with malignant disease or early-stage and localized
disease, showing that the proteome could serve as a potential
cancer biomarker (87, 88). By far, a group of platelet protein
biomarkers have been identified for differentiating benign
adnexal lesions and ovarian cancer (FIGO stages III-IV) with
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high sensitivity and specificity (89). Some proteins like ACTN4
(90), WDR1 (91) and TLN1 (92) were increased while other
proteins (such as PHB and SRPB6) were decreased in ovarian
cancer (89). However, how tumor cells modify platelet
proteome still remains unclear so far. It is possible that the
megakaryocytes (93) and circulating platelets (65) both
absorb proteins originated from tumor cells and therefore
increase certain protein content. Some platelet proteins
like ATP6Ap1 are down-regulated presumably due to the
autoantibodies generated in cancer patients (87, 94). In addition,
megakaryocyte functions can also be influenced by cancer cells,
which consequently affect platelet content (59). Taken together,
the platelet transcriptome and proteome in cancer patients are
both profoundly altered. These alterations may provide valuable
clues for early diagnosis of cancer. Meanwhile, the role of
TEP RNAs and proteins in platelet functions also warrant
further studies.

3.3 Platelet Activation
In the bloodstream, cancer cells perturb the surrounding
microenvironment and induce abnormal platelet responses
through direct cell contact or by releasing various mediators.
Such mediators include ADP (95, 96), thromboxane A2 (TXA2)
(97), tissue factor (TF) (98), thrombin (99) and matrix
metalloproteinases (MMPs) (100–102). Moreover, cancer cells
could directly facilitate platelet secretion of dense-granules,
which was required for cancer cell–induced platelet
aggregation (103). Of note, inflammatory cytokines such as
TNFa, IL-6, and IL-8 and platelet agonists such as thrombin
and ADP in the tumor microenvironment could promote
platelet autophagy and then activate platelets, leading to
thrombosis and cancer metastasis (64).

The expression level of TF was raised in many types of
cancers, which was strongly associated with high incidence of
thrombotic events (104–106). TF on the cancer cell surface and
tumor-derived microparticles could trigger extrinsic coagulation
cascade and platelet activation (53, 98). Apart from the TF-
dependent mechanism, breast cancer cell-secreted extracellular
vesicles could foster platelet activation, aggregation and plasma
coagulation in a TF-independent manner (107). Experimental
data showed that platelets could in turn facilitate TF expression
and coagulating function in ovarian cancer (108).

High-mobility group box1 (HMGB1) released from tumor
cells is an endogenous ligand of platelet toll-like receptor 4
(TLR4). The interplay between HMGB1 and TLR4 contributed
to platelet activation and tumor spreading in mice bearing with
melanoma and Lewis lung carcinoma (109).

CD97, a common tumor-associated antigen predominantly
expressed in hematopoietic cells (110) and several primary and
metastatic tumors (110–112), was found to be able to activate
platelets and foster tumor cell invasion and metastasis via the
LPA-mediated signal pathway (113). Ward et al. demonstrated
that CD97-platelet interaction promoted platelet granule
secretion, disrupted endothelial cell tight junction and further
facilitated transendothelial migration (113).

Interestingly, cancer cells are capable of producing
immunoglobulin G (IgG) that is quite different from B
Frontiers in Oncology | www.frontiersin.org 4
lymphocyte-derived IgG (114–116) and is reported to promote
tumor growth and metastasis (117, 118). Of late, Miao et al.
demonstrated that cancer cell-derived IgG could bind to platelet
FcgRIIa, initiate FcgRIIa-signaling pathway and mediate
platelet activation and that knocking down of IgG significantly
reduced CD62P expression, aggregation, and ATP release of
platelets (119).

In addition, cancer cells could induce platelet aggregation and
thrombus by directly binding via their cell surface podoplanin
(PDPN) to C-type lectin receptor type 2 (CLEC-2) on the
platelets (120–122). In breast cancer and melanoma, direct
interaction between cancer cells and platelets induced platelet
activation, modulated the VEGF release, and regulated CXCL5
and CXCL7 discharge from platelet granules (123), which were
required for granulocytes recruitment and “early metastatic
niches” formation (124).

Cancer cells can indirectly activate platelets in tumor
microenvironment (125). Recent studies have highlighted the
involvement of neutrophil extracellular traps (NETs) in cancer-
associated thrombosis (126). NETs are composed of DNA,
histones, and antimicrobial proteins. Tumor-derived G-CSF
promoted the blood neutrophil production and NETs
formation, which led to platelet activation and thrombosis
(127). Pancreatic cancer cells were reported to stimulate the
generation of NETs via soluble protein mediators and induce
platelet adhesion and active status (128). Extracellular histones
could accelerate procoagulant phenotype of platelets
(phosphatidylserine exposure, FV expression, P-selectin
translocation) and facilitate thrombin generation via activating
platelets (129). In addition to neutrophils, monocytes/
macrophages can also generate extracellular traps in response
to several stimuli (130) while whether cancer cells modulate
monocytes/macrophages for platelet activation still remains
unclear. NET-associated histones can promote the von
Willebrand factor (a glycoprotein important for platelet
adhesion and aggregation) release of endothelial cells (131).
Moreover, cancer cell-derived pro-inflammatory factors
upregulated TF expression of endothelial cells and monocytes
(125, 132, 133), which could be attributed to platelet activation
and thrombosis.

Collectively, overwhelming data suggest that cancer cells are
capable of initiating platelet hyperactivation directly or indirectly
thereby facilitating their development and metastasis.
4 PLATELET–SUPPORTED CANCER
PROGRESSION

Tumor-educated platelets (TEPs) can serve as good allies of
cancer cells in tumor growth and metastasis through
various ways.

4.1 Tumor Growth
Platelets secreted a number of growth factors including
transforming growth factor b (TGFb) and PDGF to foster
tumor growth (134). In murine models of orthotopic ovarian
October 2021 | Volume 11 | Article 764119
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cancer, platelet depletion resulted in increased tumor cell
apoptosis and decreased tumor weight and microvessel density
(59). After coincubation with platelets, human and murine
ovarian cancer cells displayed a remarkable increase in
proliferation rate in a manner dependent on the interplay
between platelet released TGF1b and tumor cell receptor
TGFbR1 (135). Deficiency of the TGFb1 or TGFbR1 reduced
half of the tumor size of orthotopic ovarian cancer (136).
Additionally, P-selectin on activated platelets mediated platelet
accumulation within solid tumors such as insulinoma and
malignant melanoma, and consequently, aggregated platelets
released VEGF and other growth factors to accelerate tumor
growth and angiogenesis (137). In vivo, VEGF was found to
stimulate breast cancer cell proliferation through cooperation
between VEGFR-2 and integrin signaling (138). These results
have confirmed the positive impacts of platelet-produced growth
factors in tumor growth.

In addition to growth factors, platelet factor 4 (PF4) was
found to regulate tumor microenvironment and expedite lung
cancer growth (139). In addition, CLEC-2-podoplanin
interaction could also modulate the proliferation of lung
squamous cell carcinoma (140). Moreover, interaction between
ADP and its receptor P2Y12 on platelets played a significant role
in ovarian cancer cell proliferation. Use of P2Y12 antagonist
could suppress primary tumor growth in the presence of platelets
(141, 142). Taken together, highly activated platelets can greatly
promote tumor growth via multiple pathways.
4.2 Cancer Metastasis
Studies have showed that about 90% of human cancer-related
death is due to cancer metastasis (143). Cancer metastasis
consists of an invasion-metastasis cascade, namely, tumor cells
firstly exit their primary growth sites, survive in the circulation,
extravasate at distant organ site, and lastly proliferate in the
foreign microenvironments (144). Tumor cell-educated platelet
(TEPs) participated in multiple steps of metastasis, helping the
“villain” to do evil (134, 145). Blocking platelet activation (146)
or in the absence of platelets (147), cancer metastasis was
markedly repressed.

4.2.1 Invasion and EMT
Platelet surface molecules (e.g. P-selectin, GPIba, aIIbb3) and
secreted factors from a-granules (e.g. TGFb, LPA, MMPs) and
dense granules (e.g. serotonin, ADP, histamine) all support
cancer dissemination (148). It was reported that platelet-
derived exosomes and exosomal HMGB1 appeared to facilitate
cancer malignancy (149). Recently, Vismara et al. showed that
platelet-derived extracellular vesicles could be internalized by
breast cancer cell line MDA-MB-231 and strongly potentiated
cell migration and invasiveness which was associated with
p38MAPK and myosin light chain (150). Intriguingly, prostate
cancer stem cells (PCSCs) preferentially induced platelet
aggregation, which could be attributed to increased
prothrombin expression. In turn, activated platelets released
stromal derived growth factor-1a (SDF-1a) to preferentially
enhance PCSC invasion (151, 152).
Frontiers in Oncology | www.frontiersin.org 5
Epithelial–mesenchymal transition (EMT) process helps
cancer cells to acquire malignant cell traits including cell
motility, invasiveness, and resistance to apoptosis (153).
Platelets had the ability to accelerate EMT through the TGFb
signal pathway (154, 155). Labelle et al. showed that platelet-
derived TGFb and direct platelet-tumor cell contact synergized
to activate TGFb/Smad and NF-kB pathways in cancer cells,
consequently enhancing lung metastasis (156). A latest report
denoted that tumor necrosis factor receptor-associated factor
(TRAF) family member-associated NF-kB activator (TANK)-
binding kinase 1 (TBK1) acted as a mediator of platelet-induced
NF-kB activation and EMT in mammary carcinoma cells (157).
Podoplanin on tumor cells could mediate platelet aggregation via
binding to CLEC2 on platelets (158) and induce TGFb release
from platelets, facilitating EMT and extravasation of tumor cells
(159). Knockdown of podoplanin suppressed tumor growth and
metastasis of lung squamous cell carcinoma (140). In addition to
Podoplanin-CLEC2 interaction, integrin a2b1 contacting could
induce TGF-b1/pSmad3 pathways as well (160). These findings
confirm the importance of platelet-derived TGFb in tumor
cell aggressiveness.

Other components of platelets are also involved in the EMT
process. For instance, platelet TSP1 and clusterin were able to
mediate cancer cell invasiveness by regulating MMP-9 via the
p38MAPK pathway (161). Additionally, through the cooperation
with platelets, tumor cell integrin avb3 had the capacity to
promote tumor cell extravasation and colonization in a second
organ (162). Recently, researchers discovered that chemokine
CCL5 and epidermal growth factor (EGF) released by platelets
could increase the IL-8 secretion of tumor cells via initiating Akt
signaling (163), while platelet-secreted CCL3 engaged its
receptor CCR5 on tumor cells to upregulate MMP-1 possibly
via the NF-kB pathway. Subsequently, tumor cells elevated their
invasive and migratory abilities (164).

Lysophosphatidic acid (LPA), a crucial mediator in the tumor
environment, could inhibit immune response (165) and promote
cancer cell invasion and metastasis (166). Platelets are the highest
producer of LPA. When platelets were activated by cancer cells,
Autotaxin (ATX) with lysophospholipase D activity was released
from a-granules and catalyzed the LPA generation (167).
Platelet-derived LPA stimulated the secretion of IL-6 and IL-8
(168) and enhanced osteolytic bone metastasis in breast cancer
(169). Further evidence indicated that ATX/LPA-signaling axis
not only facilitated tumor cell motility, survival, and proliferation
(170), but also induced chemoresistance by stabilizing nuclear
factor-like 2 (Nrf-2) and upregulating those genes involved in
drug resistance and oxidative stress response (171). These results
show that the ATX/LPA-signaling axis may be highly active
during tumor progression. One may postulate that blocking this
signaling axis may be therapeutically important.

4.2.2 Adhesion
A great number of adhesive molecules are expressed on the
platelet membrane.These include integrins (e.g. aIIbb3, a6b1,
avb3), P-selectin, glycoprotein (GP) Ib-IX-V, and the
immunoglobulin superfamily (e.g. GPVI, FcgRIIa, PECAM-1)
(134, 172, 173). These molecules make platelets adhere to CTCs
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as well as endothelial cells and facilitate intravasation and
extravasation of CTCs (134, 174). Recently, Schlesinger gave a
comprehensive illustration about the role of platelet receptors in
tumor cell-platelet interaction (175). For example, on platelet
activation, P-selectin was translocated to the platelet surface,
which contributed to platelets’ binding to endothelial cells,
leukocytes and cancer cells (176). Then P-selectin mediated
cancer cell metastasis (177), tumor growth and angiogenesis
(137, 178). Platelet integrin a6b1 directly interacted with tumor
cell ADAM9, initiating platelet activation, granule secretion and
mediating tumor cell dissemination (179). Glycoprotein (GP)-VI
on platelets, a key receptor for collagen, supported platelet
adhesion and cancer cell arrest in the vasculature (180). It
could also bind to tumor cell–expressed galectin-3. GPVI
blockade in vivo prevented lung metastasis of colon and breast
cancer cells (181). Platelet microparticles (PMPs) delivered
platelet-derived receptors like CD41 to tumor cells and
increased tumor cell adhesiveness to endothelium and
fibrinogen. Transendothelial migration of tumor cells was
consequently enhanced (182).

In summary, platelets enhance adhesion of CTCs via adhesive
proteins thereby promoting their dissemination.

4.2.3 Angiogenesis
Active proliferation and metastasis of tumor cells required new
blood vessels that supplied adequate nutrients, oxygen and
growth factors (183), while platelets induced early and
advanced stages of angiogenesis and stabilized the newly
formed vessels in tumor microenvirenment (184, 185). Upon
activation, platelets released distinct a-granules containing
angiogenic regulators such as VEGF, PDGF, PF4 and
endostatin (134, 186). Stimulation of receptor PAR1 on
platelets led to the secretion of pro-angiogenic molecules such
as VEGF, whereas PAR4 stimulation contributed to the release of
anti-angiogenic molecules (187). Of interest, it was found that
PAR1- and PAR4-activated platelets both enhanced endothelial
progenitor cells migration and tube formation, but PAR1 was
more potent than PAR4 (188). Thrombin was thought to have a
central role in angiogenesis (189). Thrombin/PAR1 activation
could not only contribute to the upregulation of angiogenic
factors, but also increase endothelial cells barrier permeability
to induce angiogenesis and tumor seeding (190). VEGF, the most
potent proangiogenic molecule, was significantly discharged
from platelets after thrombin or TF stimulation in early breast
cancer patients (191). Anticoagulants reduced VEGF release and
thus weakened angiogenic potential (192). ADP-induced platelet
activation resulted in increased VEGF and minimal endostatin
production, suggesting that ADP release had proangiogenic
effects in the tumor microenvironment (193).

Additionally, glycoprotein (GP) VI on the platelet surface
contributed to vascular integrity within tumors. An antibody
against platelet GPVI could cause tumor hemorrhage and
augmented the effects of chemotherapeutic agents without
systemic bleeding complications in vivo (194). PMPs that
contain abundant RNA and proteins play a significant part in
angiogenesis. It was reported that PMPs promoted proliferation,
migration and tube formation of human umbilical vein
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endothelial cells, leading to angiogenesis (195). Signaling
pathways of PMP-induced sprouting were involved with PI3-
kinase, Src kinase and ERK (196). In lung cancer, PMPs
stimulated the generation of MMPs, VEGF, IL-8 and
hepatocyte growth factor (HGF), which were common
angiogenic regulators for metastasis (182). All above findings
highlight the importance of platelets in supporting cancer-
associated angiogenesis and hence enhancing cancer metastasis.

To defend against tumor angiogenesis in the early stage, host-
expressed thrombospondin 1 (TSP1) and endostatin act as
negative regulators. Human platelet-derived TSP1 was acquired
from megakaryocytes and stored in a-granules (83). It was
thought to be a sensitive and stable marker to monitor platelet
activation in vitro (197). In platelets of tumor-bearing mice,
TSP1 was increased and thus reduced tumor growth by
angiogenesis inhibition (83). However, it is unclear whether
selective release of angiogenic regulators in platelets can be
controlled or not. This may be a promising strategy for
repressing tumor angiogenesis via inhibiting VEGF release or
accelerating the release of endostatin and TSP1.

4.2.4 TCIPA
Platelet aggregation in response to tumor cell stimulation is
known as tumor cell-induced platelet aggregation (TCIPA) (198,
199). TCIPA is able to prevent circulating tumor cells (CTCs)
from high shear forces and immune surveillance. Several
molecules participate in TCIPA formation, including ADP,
TXA2, MMPs and TF (199, 200). Previous studies indicated
that cancer cells with different metastatic potentials had varying
abilities to induce TCIPA (201). Zarà et al. explored the
molecular pathways of TCIPA formation in breast cancer cells
and colorectal cancer cells (202). They made the following
discoveries: (1) Plasma was the indispensable environment for
the interaction between cancer cells and platelets. (2) Cancer cells
interacted with platelets and thus induced thrombin generation,
leading to platelet aggregation. (3) Cancer cells regulated TCIPA
mainly through binding of fibrinogen to integrin aIIbb3 on
activated platelets. Integrin aIIbb3 outside-in signaling
stimulated phospholipase C (PLC) and Rap1b-GTP and
subsequently expedited platelet activation. (4) TCIPA was
supported by ADP and its P2Y12 receptor on platelet surface.
(5) Different breast and colorectal cancer cell lines triggered
platelet aggregation in the same manner, suggesting that the type
and metastatic phenotype of cancer cells didn’t make a striking
difference in the formation of TCIPA. However, whether other
types of cancer adopt the similar ways to induce TCIPA still
needs to be studied.

4.3 Immune Suppression
CTCs surrounded by activated platelets can escape from
innate immune surveillance and cause distant hematogenous
metastasis (203). It is known that natural killer (NK) cells play
a key role in antitumor immunity (204) while platelets are able
to impair NK cell antitumor reactivity in different ways. First
of all, platelets could help CTCs evade immune recognition
through transferring platelet-derived MHC class I to CTCs
(205). Secondly, platelets released TGFb to downregulate
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immunoreceptor NKG2D on NK cells (206). Thirdly, ectosomes
released from platelets were reported to cause NK cell
disfunction by suppressing the expression of NK cell surface
receptors (NKG2D, NKp30, DNAM-1) in a TGFb1-dependent
way (207). TGFb1 in the ectosomes increased miR-183 and thus
decreased DNAX activating protein 12 kDa (DAP12), leading to
the disturbance of NK functions and downstream signal
transduction (208). Fourthly, platelet-derived TGFb1 induced
Foxp3 expression in conventional CD4+ T cells and converted
them into regulatory T cells that were capable of killing activated
T cells (209). Of note, constitutive expression of TGFb-docking
receptor Glycoprotein A Repetitions Predominant (GARP) in
platelets activated TGFb and augmented the immunosuppressive
effects on cancer cells. Thus, platelet inhibition can potentially
reinforce adoptive T cell therapy (210). In headneck squamous
cell carcinoma, platelets inhibited T cell proliferation, cytokine
production (IFN-g, TNF-a) of CD4+ T Cells and decreased PD-1
expression on CD4+ and CD8+ T cells (211). Platelet-derived
PD-L1 disturbed T cell functions and promoted PD-L1 negative
tumor growth (212).

A more recent study demonstrated that platelets also
facilitated the release of NKG2D ligands MICA and MICB
from tumor cells and modulated NKG2D expression on NK
cells (213), in a process that platelet-derived ADAM10 (a
member of the disintegrin and metalloproteinase family of
proteins) may be involved (214). Similarly, platelets could also
decrease expression of CD112 and CD155 on tumor cells as well
as their associated receptors CD226 and CD96 on NK cells. As a
result, tumor cells were protected from NK cell recognition and
cytotoxicity (213). Immunomodulatory TNF family members,
such as glucocorticoid-induced TNF receptor-related ligand
(GITRL) (215), receptor activator of NF-kB ligand (RANKL)
and Oxford 40 ligand(OX40L) were upregulated in activated
platelets from cancer patients, indicating that they were possibly
involved in tumor pathophysiology (216). Platelet-derived
GITRL (217) and RANKL (216) both induced NK cell
inhibition via interacting with their specific receptors on NK
cells (GITR, RANK, respectively). Recently, Zhou et al. showed
that GITRL overexpression of platelets was substantially
associated with tumor-derived soluble factors such as TGFb
(215). These studies prove that platelets boost CTCs’ survival
in the process of hematogenous metastasis by suppressing innate
and adaptive immunity.

4.4 Apoptosis Resistance
CTCs have to overcome detachment-induced apoptosis (namely
anoikis) for survival in the circulation. Haemmerle et al. recently
elucidated that platelets induced anoikis resistance and
metastasis by activating Yes-associated protein 1 (YAP1) via
the RhoA-MYPT1-PP1 axis (218). Moreover, PDGF could
mediate anti-apoptotic properties of fibroblasts via the Ras/PI
(3)K/Akt/IKK/NF-kB pathway (219). In pancreatic cancer, it was
found that platelet-derived growth factor-BB enhanced anoikis
resistance and cell migration through YAP signaling (220).
Apoptosis signal-regulating kinase 1 (Ask1) is an upstream
kinase of the stress-induced mitogen activated protein kinase
(MAPKs) pathway. Deficiency of Ask1 impaired platelet granule
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secretion and TXA2 generation and protected mice from
thrombosis (221). Furthermore, the Ask1-JNK/p38 axis also
activated ADP receptor P2Y12 on platelets to augment tumor
metastasis to the lung (222). Intriguingly, binding of platelet
TSP1 to the calreticulin/LRP1 complex protected mouse embryo
fibroblasts (MEFs) from anoikis via the PI3K/Akt signaling
pathway (223). Nevertheless, it remains unknown whether
platelet-produced TSP1 is involved in anoikis resistance of CTCs.

4.5 Platelet–Related Chemoresistance
Increasing evidence indicates that human platelets are associated
with chemoresistance of cancer cells. Advanced gastric cancer
patients with platelet aggregation have a higher rate of
chemoresistance (58.3%) than those without platelet
aggregation (20.0%) (224). Primary tumor cells surrounded by
platelets exhibited EMT-like morphological changes and resisted
some common anticancer drugs (225). It has been established
that platelets promote the EMT process of cancer cells, which
plays an important role in drug-resistance (226, 227). EMT-
related transcription factors such as Snail (228, 229) and Slug
(229, 230) are involved in chemotherapy resistance. A recent
study has suggested that platelet-derived ADP and ATP
increased the expression level of Slug and subsequently
modulate human equilibrative nucleoside transporter 1 and
cytidine deaminase. As a consequence, they enhanced
proliferation and survival of pancreatic ductal adenocarcinoma
cells in the presence of gemcitabine (231). In NSCLC, incubation
with platelets could prominently relieve the cisplatin-induced
inhibition of cancer cell proliferation and angiogenesis. Platelets
prevented caspase-3 activation and reduced cancer cell apoptosis
through Akt/Bad/Bcl-2 signaling (232). In addition, platelet-
derived chemokine RANTES and TSP1 (233) both increased
the survival of paclitaxel-treated cancer cells (234). Casagrande
et al. suggested that platelet-secreted factors ((EGF, PDGF, TGF-
b, IGF and CCL5) protected cancer stem cells from paclitaxel,
cisplatin and carboplatin (235). All above data prove the
involvement of platelets in cancer chemoresistance.
Understanding the mechanisms underlying the platelet–related
chemoresistance will help to solve a major problem in anticancer
drug therapy.

Radziwon-Balicka et al. tried to explain the possible reasons
why platelets increase the survival of colonic and ovarian
adenocarcinoma cells in the presence of 5-fluorouracil and
paclitaxel (234). According to their experimental data, they
surmised that platelets were capable of protecting cancer cells
from anticancer drug-induced apoptosis and cell cycle inhibition.
Platelets facilitated DNA repair processes and the expression of
p38 and JNK-p54 MAPKs (234) that mediated proliferation,
differentiation, survival and migration (236).
5 PLATELETS IN CANCER THERAPY

In view of the close relationship between platelets and cancer
development, there are two major strategies for platelet-targeted
cancer therapies. One is to develop antiplatelet drugs while the
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other is to transform the platelets themselves into drug
delivery vehicles.

5.1 Antiplatelet Agents
Considering the important role of platelets in cancer
development and dissemination, antiplatelet agents seem to be
a promising adjuvant strategy for cancer treatment. At present,
the most studied drug is aspirin, a cyclooxygenase 1 (COX)
inhibitor. As a nonsteroidal anti-inflammatory drug (NSAID),
aspirin can inhibit COX-1 in platelets to reduce PGE2 and TXA2,
subsequently attenuating the tumor metastasis (237). Long-term
clinical trials showed that taking aspirin daily (>75mg) for years
brought down incidence and mortality of colorectal cancer,
especially the proximal colon cancer (238). Aside from
colorectal cancer, aspirin use is capable of decreasing the risk
of gastric cancer (239), pancreatic cancer (240) and
cholangiocarcinoma (241) and increasing the survival of
advanced-stage prostate cancer (242), breast cancer (243) and
endometrial cancer (244). However, some other clinical studies
showed that aspirin had no effects on cancer risk (245) or cancer-
specific death (246, 247). Therefore, more randomized clinical
trials are needed to validate the preventive and therapeutic effects
of aspirin on cancer treatment.

Other antiplatelet drugs including antagonists of ADP
receptor P2Y12, integrins (aIIbb3, a2b1), P-selectin, CLEC-2
(7) are all being investigated. Of note, there are some natural
materials acting as antiplatelet agents. Irfan et al. recently
identified Eisenia bicyclis as a potential anti-thrombotic agent
for cardiovascular disease (CVD) and possibly cancer with fewer
side effects. Eisenia bicyclis inhibited ADP-induced platelet
aggregation by suppressing PI3K/Akt signaling and MAPK
activation in a dose-dependent manner (248). Norcantharidin
(NCTD), a demethylated analogue of cantharidin, is clinically
utilized for cancer chemotherapy in China for years (249). It was
found to have powerful antiplatelet effects through suppression
of integrin aIIbb3 mediated outside-in signaling in human
platelets (250).

However, most of these antiplatelet agents are still in the early
stages and lack statistical power for wide clinical application.
Moreover, use of antiplatelet agents likely leads to
thrombocytopenia and bleeding complication (8, 251). Some
studies even suggested that long-term inhibition of platelet
function could pose a hazard in return (252, 253). In fact, it
was found that 4T1 metastatic breast cancer-bearing mice had
reduced survival when treated with dual platelet inhibitors
clopidogrel and aspirin (254).

Fortunately, some novel platelet inhibitors have appeared
with a more favorable safety profile. Investigators have found
that ruthenium complexes with antiplatelet properties (255)
exerted higher efficacy and lower side effects in cancer therapy
(256, 257), in comparison with standard cisplatin and
carboplatin therapies (258, 259). Thanasekaran et al. have
reviewed the molecular mechanisms of ruthenium compounds
in repressing platelet activation (255). Ruthenium complexes
TQ3 (260), TQ5 (261) and TQ6 (262) could reduce granule
secretion and hinder platelet activation and aggregation. More
importantly, ruthenium compounds exhibited higher
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cytotoxicity in cancer cells than normal cells (263) and showed
improved safety without increased LDH activity in platelets
(260–262). As is known, human platelet-expressed NADPH
oxidases (NOX) accelerate reactive oxygen species (ROS)
generation and activate platelets (264). Recently, NOX2
inhibitor Phox-I was observed to disrupt platelet activation
without altering the hemostatic response to injury. It was
capable of reducing platelet ATP secretion, calcium level and
restricting PI3K signaling and p38-MAPK in thrombin-
stimulated platelets (265).

The above data demonstrate that antiplatelet drugs have great
potentialities for clinical application. In consideration of
physiological functions of platelets, how to reduce the side
effects of antiplatelet agents will be a pivotal issue in the future.

5.2 Platelet-Based Drug Delivery System
Recently, Lu et al. provided a comprehensive description of
platelet-mediated drug delivery systems that include platelet
hitchhiking, membrane coating, platelet engineering, synthetic
platelet fabrication and platelet-triggered drug release (266). By
binding to platelets through targeting platelet adhesion
molecules (e.g. GPIIb/IIIa, P-selectin, phosphatidylserine),
nanoparticles with anti-thrombosis drugs (267) or anticancer
drugs (268) could become powerful targeted drugs (266).
However, Chen et al. revealed that the platelet targeting effects
of magnetic nanoparticles (MNPs) varied due to distinct tumoral
microenvironment. MNPs were effective in breast cancer with
adequate blood supply and low extracellular matrix (ECM)
expression, but not in ischemic pancreatic cancer (268).

Synthetic silica particles with platelet membrane (PM) can
also be used to deliver anti-cancer drugs to CTCs. Tumor
necrosis factor–related apoptosis inducing ligand (TRAIL) on
the particle surface was shown to specifically induce apoptosis of
cancer cells (269). Hu et al. designed a PM-coated core-shell
nano-vehicle with TRAIL and Dox (TRAIL-Dox-PM-NV).
Through the interaction between P-selectin on PM and CD44
receptors on the cancer cells, TRAIL-Dox-PM-NV aggregated at
the surface of CTCs and suppressed their survival and spreading
(270). Similarly, a newly PM-decorated nanoparticle that
incorporated both DOX and a photothermal agent,
indocyanine green (ICG), had the capability to track CTCs in
lymph nodes and blood through P-selectin-CD44 interplay and
eliminate CTCs by releasing DOX and ICG. It exhibited strong
inhibitory effects on orthotopic tumor growth and metastasis in
breast cancer (271).

In platelet engineering, platelets could load drugs via platelet
surface modification, platelet phagocytosis, or genetic
manipulation of megakaryocytes (266). DOX loaded-platelets
could augment therapeutic effects of lymphoma with less
cardiotoxicity (272), while interferon-g induced protein 10
(IP10)-loaded platelets could inhibit tumor growth and
increase anti-tumor immunity by reducing regulatory T cells in
melanoma model (273). Zhang et al. constructed engineered
platelets expressing the programmed cell death protein 1 (PD-1)
to prevent tumor relapse after surgical resection. These
recombinant platelets could aggregate at the surgical wound
sites and eradicate residual tumor cells by reverting CD8+ T
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cells. Moreover, cyclophosphamide carried by such platelets
could exhaust regulatory T cells and promote the anticancer
effects of CD8+ T cells (274). Intriguingly, investigators found
that the conjugate of hematopoietic stem cells (HSCs) and
platelets decorated with anti-PD-1 antibodies (aPD-1) could
enter the bone marrow due to the homing capability of HSCs.
Then platelets were activated in leukemia microenvironment and
released aPD-1 to enhance immune response in mice with acute
myeloid leukaemia (275). They further genetically modified
mouse MK progenitor cells that produced PD-1-presenting
platelets under stimulation. These platelets could effectively
gather at tumor resection site via thrombosis and PD-1/PD-L1
interaction and thus inhibit the tumor recurrence. The
therapeutic potency was enhanced when PD-1-presenting
platelets were loaded with cyclophosphamide (276). In
addition, Li et al. developed a strategy that combined
Vadimezan and aPDL1-loaded platelets to inhibit tumor
metastases. Vadimezan disrupted tumor blood vessels and then
recruited aPDL1-conjugated platelets at the tumor site, leading to
immune activation and enhanced antitumor effects (277).
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Recently, Papa et al. developed detergent-extracted human
modified platelets (platelet decoys) that retained binding capacity
but couldn’t aggregate in response to platelet agonists.
Importantly, decoys inhibited aggregation and adhesion of
natural platelets and then halted blood clot formation and
cancer spread, which could be reversed immediately by
transfusing functional platelets. Papa’s team believed that
decoys had the potential to be loaded with drugs and
specifically target thrombosis, tumors or CTCs (278).

These studies support the notion that modified platelets or
particles that mimic platelets are able to deliver antineoplastic
drugs or antitumor proteins to CTCs with prolonged circulation
time, achieving potent antitumor effects. Since platelets also play
an important part in thrombosis formation, this method may
also be useful for cardiovascular disease. Nonetheless, since
platelets can be attracted to damaged vasculature and carry out
their physiological functions, platelet-based drug delivery system
may cause off-target effects. In this regards, it should be noted
that there are reports demonstrating that platelets were innate
immune cells and exhibited some anti-cancer properties (279),
FIGURE 1 | The bidirectional interaction between cancer cells and platelets. Cancer cells promote platelet production and activation, while activated platelets release
a number of mediators to facilitate tumor growth and cancer cell metastasis. Activated platelets prevent circulating cancer cells (CTCs) from shear flow, immune
surveillance and apoptosis, thus enhancing CTC survival in circulation. They also facilitate CTC adhesion, angiogenesis and invasion thereby enhancing metastasis.
IL-1b, Interleukin-1b; IL-6, Interleukin-6; TPO, thrombopoietin; G-CSF, Granulocyte- Colony-Stimulating Factor; GM-CSF, Granulocyte-Macrophage-Colony-
Stimulating Factor; TF, Tissue Factor; HGMB1, High-Mobility Group Box1; TXA2, Thromboxane A2; IgG, immunoglobulin G; PDPN, Podoplanin; CLEC2, C-type
lectin receptor type 2; NETs, Neutrophil Extracellular Traps; TGFb, Transforming Growth Factor b; PDGF, Platelet-Derived Growth Factor; VEGF, Vascular Endothelial
Growth Factor; PF4, Platelet Factor 4; TCIPA, Tumor Cell-Induced Platelet Aggregation; MHC I, MHC class I; ADAM10, Disintegrin And Metalloproteinase Domain-
Containing Protein 10; GITRL, Glucocorticoid-Induced TNF Receptor-Related Ligand; RANKL, Receptor Activator of NF-kB Ligand; OX40L, Oxford 40 Ligand;
GARP, Glycoprotein A Repetitions Predominant; PD-L1, Programmed Cell Death-Ligand 1; PMPs, Platelet Microparticles; PECAM-1, Platelet-Endothelial Cell
Adhesion Molecule-1; PSGL-1, P-selectin Glycoprotein Ligand-1.
October 2021 | Volume 11 | Article 764119

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Yu et al. Interaction Between Cancer and Platelets
protected endothelial barrier and decreased cancer cell
intravasation and extravasation (280). Above all, considering
the close interaction between platelets and cancer, platelets can
be converted to anti-cancer drug delivery vehicles. Compared
with other tumor-targeting nanoparticles, platelet-derived
vehicles have some remarkable advantages including prolonged
circulation time and large cargo capacity (281). Large clinical
trials are warranted to confirm the therapeutic values of platelets
and platelet-derived particles.
6 CONCLUDING REMARKS

Overwhelming evidence supports an auxiliary positive role of
platelets in promoting both primary cancer and metastatic
cancer. As illustrated in Figure 1, the interaction between
tumor cells and platelets is bidirectional. On one hand, as a
component of the tumor microenvironment, platelets are
educated by cancer cells to facilitate survival and dissemination
of cancer cells. On the other hand, cancer cells induce platelet
production, activation and aggregation to increase the risk of
thrombosis in cancer patients. Studying the interplay of platelets
with cancer cells has major implications for diagnosis and
treatment of cancers. Platelet counts, RNA profile, proteome
and platelet-derived factors/microparticles in cancer patients can
be used for early cancer detection, prognosis monitoring and
assessment of chemotherapy curative effects. Antiplatelet and
Frontiers in Oncology | www.frontiersin.org 10
anti-thrombosis drugs have promising prospects for cancer
treatment. Moreover, combination of platelet inhibition and
other therapy strategies (such as photothermal therapy) may
achieve synergistic and potent anticancer effects (282). However,
many questions still remain to be answered, such as how to
control the degree of platelet inhibition without disrupting their
physiological functions and what kinds of patients are suitable
for using antiplatelet agents. Platelet-based drug delivery system
is an innovative method for cancer therapy, but how to avoid off-
target effects is the greatest challenge.
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