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Abstract

Autism spectrum disorder (ASD) is a heterogeneous neurodevelopmental condition characterized 

by early-onset repetitive behaviors, restricted interests, sensory and motor difficulties, and 

impaired social interactions. Converging evidence from neuroimaging, lesion and postmortem 

studies, and rodent models suggests cerebellar involvement in ASD and points to promising targets 

for therapeutic interventions for the disorder. This review elucidates understanding of cerebellar 

mechanisms in ASD by integrating and contextualizing recent structural and functional cerebellar 

research.
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INTRODUCTION: CEREBELLUM, CEREBELLAR DEVELOPMENT, AND ASD

Autism spectrum disorder (ASD) is a heterogeneous neurodevelopmental condition 

characterized by early-onset repetitive behaviors, restricted interests, sensory and motor 

difficulties, and impaired social interactions [1]. There is increasing interest in understanding 

cerebellar contributions to ASD, given growing evidence of structural and functional 

anomalies in ASD [2,3]. For example, human postmortem studies report Purkinje cell 

degeneration and loss [4–7] and GABA and reelin abnormalities [8]. Moreover, these 

cerebellar structural abnormalities have been linked to ASD symptom emergence. For 

example, core ASD symptoms such as decreased exploratory behavior and repetitive, 
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stereotyped behavior have been significantly correlated with cerebellar vermis volume 

reduction [9]. In addition, lobular cerebellar gray matter volume is inversely correlated 

with ASD symptom severity, specifically social interaction, communication, and repetitive 

behaviors [10]. Riva and colleagues [11] found that children with ASD had reduced 

cerebellar grey matter volume in Crus II and vermis, which was associated with reduced 

communication and interaction, suggesting cerebellar involvement in social interaction 

deficits seen in ASD. A recent study by Kelly et al. [12] used optogenetic techniques in 

a mouse model of ASD to demonstrate reduced functional connectivity between the right 

cerebellar Crus I and medial prefrontal cortex (PFC), a finding they corroborated with fMRI 

analyses of brain connectivity in individuals with ASD. This finding suggests that abnormal 

development of cerebellar-cortical circuits likely contribute to social cognitive processes 

that are often deficient in ASD. More thorough examination into early development of the 

cerebellum may provide further insight into the processes by which these circuits become 

dysfunctional.

The cerebellum is a complex and late-maturing neural region that is vulnerable to 

early developmental insults that can profoundly disturb intracerebellar development 

[13]. Consequently, cerebellar developmental disturbances are believed to impair proper 

cerebellar-cortical circuit formation, which are robust findings in ASD [14–16].

Inhibitory Purkinje cells and excitatory granule cells are integral to proper pre- and post-

natal development. Disruption of either of these two cell systems can profoundly disrupt 

cerebellar development [17,18]. In recent years, theories have emerged suggesting that the 

etiology and development of ASD is partially caused by widespread mild but cumulative 

disruptions to the Purkinje cell system [19,20].

One significant way cerebellar development may be impaired is through disturbances in 

precisely timed and reciprocal interactions of granule and Purkinje cell, which are critical 

to later prenatal stages of cerebellar brain development [21]. Granule cell neurogenesis 

is promoted by the earlier-born Purkinje cells [18]. Additionally, granule cells are key 

components to the functioning of the cerebellum as they make up most of the synaptic 

input onto Purkinje cell dendrites and are fundamental to the cerebellar cortex’s lamination 

process during development [22]. Thus, early genetic, mechanical, or environmental 

disruptions to this developmental cascade can be amplified, causing damage not only within 

cerebellum, but also disrupting the development of critical cerebellar-cortical circuits.

The above findings collectively suggest cerebellar involvement in ASD and point to 

promising targets for therapeutic interventions. The aim of the current review is to explicate 

understanding of cerebellar mechanisms in ASD by integrating and contextualizing recent 

structural and functional cerebellar research in ASD using evidence from studies in 

neuroimaging, lesions, postmortem, and murine models. There is specific emphasis on the 

mechanisms by which the cerebellum contributes to social-cognitive processes within ASD. 

For other recent reviews on the topic of the cerebellum and ASD, see Mapelli et al. [23].
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EVIDENCE FOR CEREBELLAR INVOLVEMENT IN SOCIAL COGNITION

The internal working models within the cerebellum allow for feedforward predictive motor 

control contributing to coordinated movement [24,25]. During early development and 

throughout the lifespan, the cerebellum helps to make the functioning of the rest of the 

cerebral cortex more efficient through its modulation of other significant cortical areas via 

the feedforward mechanisms it uses to update one’s internal models of the world [26]. 

Just as the cerebellum plays a crucial role in motor control, balance, and coordination via 

the formation of internal models, it also uses similar adaptive feedforward mechanisms 

to modulate non-motor psychological processes [26–28]. Increasing evidence supports the 

cerebellum’s importance beyond basic motor control to include important aspects of non-

motor cognition. When cognitive processes are more effortful, there is a higher degree 

of engagement from the cerebellum, leading to the suggestion that cerebellum moderates 

higher order cognition by facilitating the efficiency of other cortical regions by ways of 

sending adaptive feedback to the cerebral cortex [29]. Further, anatomical tracing has shown 

extensive communication between most of the cerebrum, including areas which are not 

typically implicated in motor processes, and the cerebellum [30,31]. This framework for 

understanding the cerebellum underpins the theory that the cerebellum modulates cognitive 

processes by updating existing knowledge and sending adaptive feedback to other cortical 

regions [26,27]. For a more comprehensive review of the cerebellum’s role in cognitive 

states, see Schmahmann [32].

Considering that core symptoms of ASD often involve impairments in social interaction 

and interpersonal communication, social cognitive processes such as mentalizing abilities 

and social prediction are important areas of study [1,33]. Growing evidence has implicated 

the cerebellum’s contribution to social processes, such as thinking of other’s cognitive 

or emotional states. For example, Van Overwalle and colleagues [29] conducted a meta-

analysis of over 350 fMRI studies which revealed that abstraction processes in social 

cognition (e.g., thinking about oneself in the future and recalling autobiographical past) 

activated various regions within the cerebellum in non-clinical populations. Given the 

cerebellum appears to be integral in social cognitive processes also impaired in ASD, recent 

theories of adaptive social prediction have begun to ascribe cerebellar contributions to the 

anticipation of a social partner’s thoughts and intentions or to make inferences of other’s 

mental states [29,34–36].

Social deficits in autistic individuals may arise due to difficulty in using past information 

to flexibly adjust social behavior and adapt to changing social situations [37], which can be 

interpreted as a failure to update internal models of one’s social world. Fundamental social 

cognitive processes used in many day-to-day social and communicative functions seem to 

be mediated by Crus I and II–PFC circuit connectivity, and this network has been found 

to be particularly affected in ASD as the impairment of this circuit seems to contribute 

to core symptoms of the disorder [35,38,39]. It is important to note that findings in ASD 

consistently point toward a reduction of volume in posterior Crus I/II lobules [34], areas 

which have been implicated in multiple social cognitive processes [29,40,41].
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Important processes for successful social interactions involve theory of mind (understanding 

how another person is thinking and/or feeling based on one’s understanding of the self and 

other external individuals), body reading (understanding bodily gestures to help in inference 

of social interactions), and emotion recognition (construing another’s emotional expression) 

which are all commonly affected in ASD. In ASD, reduced cerebellar activation has been 

shown during mirroring actions or mental states of others [42]. In non-autistic individuals, 

theory of mind/mentalizing tasks reliably engage the Crus I and Crus II lobules, with these 

cerebellar regions also showing strong connectivity with key regions of mentalizing such as 

the medial prefrontal cortex and the tempo-parietal junction [9,43].

Exploration of the perception of biological motion of the human body in ASD has revealed 

decreased connectivity between several areas within the cerebrum and posterior cerebellum 

during body reading—specifically, negative associations between level of social interaction 

impairment and Crus I/II activation have been demonstrated in this population [44]. In 

non-clinical populations, activations of Crus I, lobule VIIB, lobule VI, and Crus II seem 

to be present during body reading tasks [29,45]. Sokolov and colleagues [45] further found 

functional connectivity between the superior temporal sulcus and cerebellum, pointing to 

pathways that help facilitate communication between the cerebrum and cerebellum during 

social cognitive processes.

Autistic individuals often present with profound facial emotion recognition deficits [46], and 

how the cerebellum contributes to emotion recognition processes in ASD is not understood. 

However, numerous studies point to cerebellar activation during facial emotion recognition 

in non-clinical populations [41,47], primarily in posterior cerebellar regions such as Crus I/II 

and lobule VI, which suggest that these cerebellar regions should be a focus in future studies 

of emotional recognition in ASD.

These recent empirical findings not only reinforce the notion that the cerebellum is an 

integral brain structure involved in creating feedforward models of our environment, but also 

provide evidence that it plays a distinct role in higher order social cognitive processes that 

are impaired in ASD.

CEREBELLAR INJURY ASSOCIATED WITH ASD

Lesion studies have also contributed to the present understanding of ASD due to the 

sometimes drastic neural, behavioral, and clinical consequences following early damage to 

the cerebellum. Cerebellar injury is a frequent finding in very preterm infants (<32 weeks), 

and up to 40% of all infants who have cerebellar lesions or hemorrhages are diagnosed 

with ASD [21,48]. During weeks 20–40 of gestation, the cerebellum is the most rapidly 

developing brain structure [49,50]. Therefore, cerebellar development is disrupted in preterm 

infants during a critical neurodevelopmental window [21].

Postnatal cerebellar damage can also have adverse developmental consequences. For 

example, Boswinkel et al. [19] found that children with cerebellar hemorrhage have altered 

developmental trajectories, and the severity of abnormal neurodevelopmental outcome is 

associated with the severity of cerebellar hemorrhage. One example of cerebellar injury 
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leading to ASD-like symptoms is that of posterior fossa syndrome. This syndrome includes 

symptoms that mirror ASD such as language deficits, difficulties with spatial cognition, 

disinhibited or inappropriate behavior, and problems with modulating affect [14,51]. 

Many children who have medulloblastoma cerebellar tumor resection surgery go on to 

experience posterior fossa syndrome, with the extent of the resection related to the later 

development of this syndrome [52]. Similarly, positive correlations were found between 

vermal abnormalities and ASD symptomatology in large studies of children with cerebellar 

malformations on cerebellar malformations, supporting a link between ASD and cerebellar 

pathology [53].

Given the considerable overlap of ASD diagnosis and cerebellar lesions, it is also important 

to note that patients with cerebellar injury and/or lesions performed worse on mentalizing 

tasks, providing further evidence of the cerebellum’s role in the social-cognitive process 

of interpretation of other’s mental states [54]. In addition, children with cerebellar lesions 

have shown difficulty in using other’s actions to predict their ultimate social outcomes 

[55]. Because cerebellar lesions are associated with lower performance in social processes 

commonly impacted by a diagnosis of autism, injury to this important neural region should 

not be understated.

Taken together, evidence indicates that the cerebellum follows a complex developmental 

trajectory which is highly sensitive to insult such as premature birth and early cerebellar 

injury and that autistic-like clinical symptoms are associated with cerebellar injury.

MOUSE MODELS SUPPORT CEREBELLAR INVOLVEMENT IN ASD

Supporting the putative role of the cerebellum in ASD, mouse models of autism frequently 

show cerebellar abnormalities [56]. Mouse models of ASD which involve specific deletions 

or mutations of candidate genes shown to be influential in the development of the disorder, 

such as CADPS2 and GABRB3. For a more detailed review on animal models and ASD, see 

Mapelli et al. [23].

For example, rare variants of the gene CADPS2 have been found to be associated with 

ASD [57]. Simiarly, CADPS2-KO (knockout) mice exhibit autistic-like behaviors such 

as impaired sociability and higher anxiety with novelty [58]. GABRB3 has also been 

identified as a gene of interest, as GABRB3 gene expression has been found to be reduced 

within the cerebellum of autistic individuals [59]. GABRB3-KO mice show both cerebellar 

structural abnormalities of cerebellar hypoplasia, but also hyperactivity, poor motor skills, 

and decreased social behavior consistent with what is often found in ASD [60]. One well 

studied mouse model that links cerebellar abnormalities to ASD-like behaviors is tuberous 

sclerosis complex (TSC), a genetic disorder that results from mutation of the TSC1 or 

TSC2 gene and is associated with high rates of comorbid ASD in humans. TSC1 and TSC2 

mutant mice display reduced interest in exploratory social behavior [61], increased rates 

of repetitive self-grooming, and increased cognitive rigidity as demonstrated by impaired 

learning of a new escape platform [62]. Kelly et al. [12] demonstrated that TSC1 mutant 

mice showed hyperactivity of the medial prefrontal cortex, and chemo-genetic inhibition 

of mPFC activity reduced repetitive grooming in the mice as well as improving flexibility 
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in solving a water maze task, which mirror common behavioral patterns found in ASD, 

suggesting that these mPFC-cerebellar circuits mediate these ASD-like behaviors.

In mice, chemo-genetically mediated inhibition of Purkinje cells results in ASD-related 

social and repetitive behaviors, and inhibition of interneurons that directly influence 

firing activity of Purkinje cells in the right Crus I. Interestingly, ASD-like social and 

repetitive behaviors are influenced by this inhibition but not motor and gait behavior, 

suggesting an independent and unique contribution to social and repetitive behaviors by 

the cerebellum beyond motor dysfunction [63]. By manipulating neural activity in the mouse 

cerebellum using reversible chemo-genetic perturbation of molecular layer interneurons, 

Badura et al. [64] demonstrated that Crus I plays a role in the development of reversal 

learning, novelty-seeking, and most prominently, social preference. Increasing rodent model 

evidence clearly suggests that these cerebellar mechanisms may be disturbed in ASD, and 

these disruptions may lead to downstream consequences resulting in ASD-like symptom 

expression and behavior. Likewise, these rodent findings support a key role for cerebellum 

for the emergence of normal social-cognitive development.

CONCLUSION

In summary, cerebellar structural and functional abnormalities are commonly reported in 

ASD, and evidence of cerebellar contributions to social-cognitive deficits in rodent models 

of ASD convincingly converge with these findings. It is important to use the collective 

findings gathered from recent neuroimaging studies, mouse models, meta-analyses, lesion 

studies, and neuropathological studies to add to the field’s growing knowledge of the 

dysfunction of the cerebellum in ASD so that more efficacious and mechanism-based 

treatments for this heterogeneous condition can be identified.
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Figure 1. 
A visual summary of ASD-specific cerebellar differences.
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