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Abstract

Most men diagnosed with prostate cancer will experience indolent disease; hence discovering 

genetic variants that distinguish aggressive from non-aggressive prostate cancer is of critical 

clinical importance for disease prevention and treatment. In a multistage, case-only genome-wide 

association study of 12,518 prostate cancer cases, we identify two loci associated with Gleason 

score, a pathological measure of disease aggressiveness: rs35148638 at 5q14.3 (RASA1, 

P=6.49×10-9) and rs78943174 at 3q26.31 (NAALADL2, P=4.18×10-8). In a stratified case-control 

analysis, the SNP at 5q14.3 appears specific for aggressive prostate cancer (P=8.85×10-5) with no 

association for non-aggressive prostate cancer compared to controls (P=0.57). The proximity of 

these loci to genes involved in vascular disease suggests potential biological mechanisms worthy 

of further investigation.

INTRODUCTION

Prostate cancer is the most common cancer diagnosed in men and second leading cause of 

cancer death among men in the U.S.;1 however, little is known about why the disease 

progresses in some men but not others. Determining which cancers are likely to progress and 

cause death is of critical clinical importance. Prostate cancer aggressiveness is thought to be 

partially determined by genetic factors, as studies have shown an increased risk of death 

from prostate cancer among offspring with a family history of fatal disease.2, 3 The 

definitions of aggressive prostate cancer differ between studies, but one important and 

widely used descriptor is tumor grade at diagnosis, as measured by Gleason score, which 

ranks pathological changes, namely, tumor differentiation, and has been associated with 

disease progression and survival.4 Linkage studies using Gleason score as a measure of 

aggressiveness have implicated several chromosomal regions, including 1p, 5q, 6q, 7q, and 

19q, but no specific genetic mutations have been conclusively identified.5-8 Although 

previous genetic association studies have identified or suggested markers for aggressive 
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prostate cancer;9-11 these SNPs have either also been associated with non-aggressive 

disease, making them non-specific, or have not been convincingly replicated.12

Genome-wide association studies (GWAS) have successfully identified roughly 100 loci 

associated with prostate cancer risk;11-26 however, most loci have minor allele frequencies 

>10%, and so far, none conclusively differentiate aggressive from non-aggressive disease. 

To discover additional loci associated with risk and to identify loci specific for aggressive 

prostate cancer, here we conduct a multistage GWAS for prostate cancer among men of 

European ancestry using the Illumina HumanOmni2.5 Beadchip, which provides greater 

coverage of uncommon SNPs for individuals of European ancestry than microarrays used in 

previous GWAS of prostate cancer.

We identify two novel loci associated with Gleason score, a pathological measure of 

prostate cancer aggressiveness, that are located near genes involved vascular development 

and maintenance.

RESULTS

Case-control association results for prostate cancer

A total of 4,600 cases and 2,941 controls of European ancestry from the Prostate, Lung, 

Colorectal, and Ovarian (PLCO) Cancer Screening Trial were genotyped using the Illumina 

HumanOmni2.5 Beadchip and passed rigorous quality control criteria (see Methods). 

Baseline characteristics of the cases and controls are shown in Supplementary Table 1. 

Based on a linear regression model, men with higher Gleason scores were more likely to be 

diagnosed at an older age (P<0.001). Of the SNPs genotyped, 1,531,807 passed quality 

control filters with a minimum call rate of 94%. Genotypes were analyzed using regression 

models, assuming a log-additive genetic model and adjusting for age and significant 

eigenvectors. A quantile-quantile (Q-Q) plot of the p-values for prostate cancer risk based 

on logistic regression models showed enrichment of small p-values compared to the null 

distribution, even after removing SNPs within 500kb of the previously published loci 

(Supplementary Fig. 1, λ = 1.007). Fifty-six of the previously published loci were nominally 

associated with risk (P<0.05) in stage 1 (Supplementary Table 2), and two previously 

published loci at chromosome 8q24 and 17q12 reached genome-wide significance in stage 1 

(P<5×10-8, Supplementary Fig. 2). Rare variant analysis using SKAT27 for SNPs with minor 

allele frequencies <2% revealed five gene regions with P<5×10-8; however, all appeared to 

be artifacts driven by poorly clustered SNPs.

Sixteen promising SNPs with P < 2 × 10-5 based on the logistic regression models were 

taken forward for Taqman replication in 5,139 cases and 5,591 controls from seven studies 

(see Methods), but none replicated for prostate cancer overall (Supplementary Table 3). A 

more extensive replication was undertaken using a custom Illumina iSelect microarray 

comprised of 51,207 SNPs selected for prostate cancer, 10,458 SNPs for other phenotypes 

(e.g., obesity), and 1,435 candidate SNPs (see Methods). In stage 2, a total of 6,575 cases 

and 6,392 controls from five studies were genotyped with the custom iSelect and passed 

quality control criteria (Supplementary Table 1). In silico data was also available for stage 3 

for 1,204 non-overlapping cases and 1,231 controls from a previous GWAS of advanced 
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(defined as Gleason score ≥ 8 or stage C/D) prostate cancer,12 giving a total of 12,379 cases 

and 10,564 controls. As not all SNPs included on the iSelect were directly genotyped in 

stage 1 or stage 3, both scans were imputed using the 1000 Genomes Project release version 

328 and IMPUTE2.29

In a combined meta-analysis of the primary scan together with the custom SNP microarray 

replication and in silico look-up in a previous GWAS, thirteen loci reached genome-wide 

significance (P < 5 × 10-8); however, each of them confirmed a previously reported 

locus13-20, 23 (Supplementary Table 4). Although not reaching genome-wide significance, 

two new suggestive loci at chromosome 16q22.2 (PKD1L3, rs12597458, P = 9.67 × 10-8) 

and 6p22.3 (CDKAL1, rs12198220, P = 2.13 × 10-7) were also identified (Supplementary 

Table 5, Supplementary Fig. 3). Further studies are needed to confirm these findings.

Case-only results of disease aggressiveness

To evaluate disease aggressiveness, we modeled Gleason score as a quantitative trait among 

the prostate cancer cases (n=4,545) included in stage 1 in a case-only analysis using linear 

regression. We chose to model Gleason score as a quantitative trait as opposed to a 

dichotomous outcome in order to maximize our statistical power to detect variants that 

differentiate aggressive from non-aggressive disease. In stage 1, the Q-Q plot of the 

association p-values revealed a small number of SNPs with p-values less than expected 

under the null distribution (Supplementary Fig. 4, lambda = 0.998). We evaluated the SNPs 

previously reported to be associated with the risk of aggressive disease, but none were 

significantly associated with Gleason score among cases (Supplementary Table 6). As part 

of the custom SNP microarray replication, SNPs with a p-value < 0.001 from the linear 

regression model of Gleason score as a quantitative trait, filtered using r2>0.8, were taken 

forward for the custom SNP microarray replication in 5,355 cases with Gleason score from 

five studies (stage 2). One novel locus at chromosome 5q14.3 (rs35148638) reached 

genome-wide significance in the meta-analysis of stage 1 and 2. Five SNPs, including two 

moderately correlated SNPs at chromosome 5q14.3, with p-values < 2 × 10-6 were taken 

forward for replication in 2,618 cases from the Cancer of the Prostate in Sweden (CAPS) 

study. In the meta-analysis of the Gleason score results for all three stages including a total 

of 12,518 cases, three SNPs reached genome-wide significance: rs35148638 at 5q14.3 (P = 

6.49 × 10-9), rs62113212 at 19q13.33 (P = 5.85 × 10-9) and rs78943174 at 3q26.31 (P = 4.18 

× 10-8) (Table 1). The SNPs at chromosome 5q14.3 and 3q26.31 represent novel loci (Figure 

1), whereas the chromosome 19q13.33 locus has been previously identified to be associated 

with prostate cancer risk overall.18

Stratified case-control association results for novel loci

To evaluate the extent to which these three loci (identified from our case-only study of 

Gleason score) could be associated with aggressive prostate cancer risk, we conducted a 

case-control analysis stratified by overall Gleason score (e.g., 2 to 10), recognizing that our 

power to detect an association at genome-wide significance would be reduced. We did not 

have data on the individual components of Gleason 7 from most studies in order to sub-

classify them as 3+4 or 4+3, and so in order to clearly differentiate between aggressive and 

non-aggressive disease, we stratified our cases by those with Gleason scores ≤ 6 (non-
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aggressive) and those with Gleason ≥ 8 (aggressive). Although it did not reach genome-wide 

significance, rs35148638 at 5q14.3 showed an increased risk with aggressive prostate cancer 

(P = 8.85 × 10-5) (Supplementary Table 7). There was no association for non-aggressive 

disease (P = 0.57) and the p-value for heterogeneity between the two outcomes was 

modestly significant (P=2.89 × 10-4). As rs78943174 at 3q26.31 was not common among 

controls with a minor allele frequency of 1-2%, we had limited power to detect an 

association with aggressive disease; however, we did observe a marginal positive 

association between rs78943174 and aggressive prostate cancer risk (P=0.07) and the p-

value for heterogeneity between aggressive and non-aggressive prostate cancer risk was 

nominally significant (P=0.006). Consistent with previous studies,30 the SNP at 19q13.33 

was strongly associated with non-aggressive prostate cancer (P = 3.51 × 10-13) with a weak 

association in the opposite direction for aggressive prostate cancer (P = 0.01) and highly 

significant p-value for heterogeneity (P=1.44 × 10-10).

As African Americans have an elevated risk of prostate cancer, we evaluated the extent to 

which these three SNPs were associated with aggressive prostate cancer risk in African 

Americans using data from the African American Prostate Cancer (AAPC) GWAS 

Consortium (see Methods). In this smaller study, none of the SNPs were significantly 

associated with the risk of aggressive disease (Supplementary Table 8), and only 

rs62113212 at chromosome 19q13.33 was nominally associated with non-aggressive disease 

(P=0.04). However, the direction of the effects for African Americans for the SNPs at 

3q26.31 and 19q13.33 were consistent with what we observed among Europeans.

Further examination of novel loci

Examination of the three identified loci for Gleason score using data from ENCODE 

revealed significant DNase enrichment in lymphoblastoid and embryonic myoblast cells and 

evidence for altered motifs (Supplementary Table 9). Rs62113212 at 19q13.33 is in strong 

linkage disequilibrium with a missense SNP (rs17632542, r2=1). No significant expression 

quantitative trait locus (eQTL) associations were observed using data from the Genotype-

Tissue Expression (GTEx) Project;31 however, for a proxy of rs35148638 at 5q14.3 

(rs4421140, r2=0.82), we did find nominally significant eqtl associations with RASA1 and 

CCNH expression and meqtl associations with CpG sites in RASA1 and CCNH in adipose 

tissue.32, 33

DISCUSSION

Linkage studies of prostate cancer aggressiveness have reported suggestive evidence of 

linkage to chromosome 5q5-8 and specifically 5q14 in TMPRSS2-ERG fusion positive 

families.34 The 5q14.3 SNP identified in this study (rs35148638), associated with disease 

aggressiveness is intronic to the RAS p21 protein activator 1 (RASA1) gene, which 

suppresses RAS function, helps regulate cellular proliferation and differentiation,35 and 

controls blood vessel growth.36 Rare mutations in RASA1 lead to capillary malformation-

arteriovenous malformation and Parkes-Weber syndrome37 as well as lymphatic 

abnormalities,38 providing an intriguing plausibility for the gene in aggressive prostate 

cancer. The SNP is also approximately 79kb downstream of the cyclin H (CCNH) gene, 

Berndt et al. Page 5

Nat Commun. Author manuscript; available in PMC 2015 November 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



which encodes a regulatory component of a cyclin-dependent (CDK)-activating kinase 

(CAK), necessary for RNA polymerase II transcription, nucleotide excision repair, and p53 

phosphorylation.39 CCNH has been shown to be differentially expressed between androgen-

sensitive and androgen-resistant prostate cancer cell lines,40, 41 suggesting a role in prostate 

cancer progression.

The 3q26.31 SNP (rs78943174) is intronic to the N-acetylated alpha-linked acidic 

dipeptidase-like2 (NAALADL2) gene, which is part of the glutamate carboxypeptidase II 

family. This gene is also related to prostate-specific membrane antigen (PSMA), a well-

characterized diagnostic indicator and potential drug target of prostate cancer.42 

NAALADL2 has been shown to promote a pro-migratory and pro-metastatic 

microenvironment, and higher tumor expression of NAALAD2 is associated with higher 

Gleason score and poor survival following radical prostatectomy.43 Variants in NAALADL2 

have also been identified to be associated with Kawasaki disease,44 a pediatric, autoimmune 

vascular disease. The SNP is also approximately 117kb telomeric of the microRNA, 

MIR4789, which is predicted to target several genes involved in the insulin resistance (e.g., 

IRS1, PIK3R1) among others.45, 46 A previous GWAS of prostate cancer reported a 

suggestive association with a SNP at 3q26.31,47 but this SNP is not in linkage 

disequilibrium with the SNP identified in our study (r2=0.003).

The chromosome 19q13.33 (KLK3) locus has been previously associated with prostate 

cancer risk overall.18 Although several studies have suggested that the risk may differ by 

disease aggressiveness,30, 48-50 this study shows for the first time a genome-wide significant 

difference between aggressive and non-aggressive disease as measured by Gleason score. 

KLK3 encodes the prostate-specific antigen (PSA) protein. The C allele of rs62113212 has 

been shown to be associated with higher PSA levels,48 suggesting the association observed 

with the SNP is related to early prostate cancer detection.

Although one of our goals was to identify uncommon variants for prostate cancer, we did 

not identify any new independent SNPs with a minor allele frequency < 10%. We did, 

however, identify a suggestive locus at chromosome 6p22.3 (rs12198220), which is 98 kb 

downstream of CDKAL1. A pooled linkage study of prostate cancer previously reported 

suggestive evidence of linkage to this region.51 Interestingly, SNPs at this locus have been 

associated with the risk of type 2 diabetes, adding to the list of susceptibility regions shared 

between prostate cancer and type 2 diabetes.52 We also discovered a new suggestive locus at 

16q22.2, which in strong linkage disequilibrium with a missense variant (rs3213422, 

r2=0.74) in dihydro-orotate dehydrogenase (quinone) gene (DHODH), which encodes an 

enzyme necessary for the biosynthesis of pyrimidines and cell proliferation. Further studies 

are needed to confirm these suggestive loci.

In this study, we used Gleason score to differentiate between non-aggressive and aggressive 

prostate cancer. Gleason score is a powerful prognostic factor and predictor of disease 

behavior; however, substantial changes in Gleason scoring have changed since it was first 

proposed over 40 years ago, resulting in shifts toward higher scores.53 In addition, 

differences in scoring between pathologists remain.54 Whether these changes in Gleason 

scoring ultimately result in better outcome prediction and classification of disease from an 

Berndt et al. Page 6

Nat Commun. Author manuscript; available in PMC 2015 November 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



etiologic standpoint remains to be seen. Unlike for breast cancer where classification by 

receptor status has resulted in significant advances in the etiologic understanding of the 

disease, clearly defining aggressive prostate cancer remains difficult. Regardless, Gleason 

score is an important component of prostate cancer risk assessment and is the most 

commonly used tool for assessing prostate cancer aggressiveness.

In conclusion, we identified two new loci associated with prostate cancer aggressiveness as 

measured by Gleason score in a case-only study of prostate cancer. Although additional 

studies are needed to confirm these findings and reveal the underlying biological 

mechanism, the proximity of these SNPs to genes involved in vascular disease, cell 

migration, and metastasis makes them intriguing loci for further study.

Methods

Stage 1. Discovery population and genotyping

A new genome-wide association study was conducted in prostate cancer cases and controls 

of European ancestry from the Prostate, Lung, Colorectal, and Ovarian (PLCO) Cancer 

Screening Trial. PLCO is a randomized trial for the early detection of prostate, lung, 

colorectal and ovarian cancers.55 In brief, 76,693 men were enrolled in the trial from 10 

centers in the United States from 1993 to 2001 and randomized to receive annual screening 

with prostate-specific antigen (PSA) for six years and digital rectal exam for the four years 

or referred to their physician for routine care. Men with positive screening results were 

referred to their primary physician for further evaluation. All prostate cancer cases detected 

during screening or reported during the trial were pathologically confirmed, and information 

on stage and grade was abstracted from medical records. Blood or buccal cells were 

collected from participants in the trial.56 The study was approved by the institutional review 

board at each center and NCI; all study participants provided written consent.

A total of 4,838 prostate cancer cases and 3,053 controls of European ancestry, matched on 

age and year of randomization, were selected for stage 1. The sample size was chosen based 

on statistical power estimates for detecting a modest association in a multistage genome-

wide association study. Including quality control duplicates, 8,222 samples were genotyped 

on the Illumina HumanOmni2.5 Beadchip. Extensive quality control metrics were employed 

to ensure that only high quality genotype data was analyzed using the GLU software 

package. Samples with a missing rate > 6% (n=323) or heterozygosity < 16% or > 21% 

(n=7) were excluded, and 221 samples were removed due to technical issues. Gender 

discordance based on chromosome X heterozygosity was evaluated, but no subjects were 

removed. One unexpected duplicate (>99.9% concordance) and 28 full sibling pairs based 

on an identity-by-descent threshold of 0.70 were detected and one subject from each pair 

was removed (n=29). Ancestry was estimated using a set of population informative 

markers57 and the GLU struct.admix module, which is similar to the method proposed by 

Pritchard et al.58 Five subjects (3 cases and 2 controls) were determined to have <80% 

European ancestry and were removed from analysis (Supplementary Fig. 5). Principal 

components analysis was performed to evaluate population substructure in greater detail 

(Supplementary Fig. 6) and two significant eigenvectors (P<0.05) were include in the 

analytic model. Expected duplicates yielded 99.9% concordance. SNPs without genotype 
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calls, a completion rate <94%, Hardy-Weinberg proportion test p-value < 1 × 10-8, or minor 

allele frequency < 1% were excluded, leaving 1,531,807 SNPs for analysis. After quality 

control exclusions, 4,600 cases and 2,840 controls remained. An additional 101 male 

controls from PLCO Cancer Screening Trial, genotyped previously on the 

HumanOmni2.5,59 were also included, resulting in 4,600 cases and 2,941 controls for the 

primary prostate cancer analysis (Supplementary Table 1 and Supplementary Fig. 7). Of 

those cases, 4,545 men had information on Gleason score available. Regression models were 

fit adjusting for significant principal components and age. Sixteen different models were 

fitted for prostate cancer related outcomes, including overall prostate cancer risk and 

Gleason score.

Stage 2. Follow-up studies and genotyping

Replication was conducted using a set of independent prostate cancer cases and controls 

from five studies: Alpha-Tocopherol, Beta-Carotene Cancer Prevention Study60 (ATBC, 

n=1092 cases, 1099 controls), Cancer Prevention Study II61 (CPSII, n=2,770 cases/2,669 

controls), Health Professional Follow-up Study62 (HPFS, n=963 cases/1,047 controls), 

French Prostate Cancer Case-Control Study (CeRePP, n=1,494 cases/1,546 controls), and 

PLCO55 (n=990 cases/922 controls). Including quality control duplicates, 14,592 samples 

were genotyped using a custom Illumina iSelect microarray comprised of 51,207 SNPs 

selected for prostate cancer, 10,458 SNPs for other phenotypes (e.g., smoking, obesity), and 

1,435 candidate SNPs. The SNPs for prostate cancer were filtered using r2<0.7 and selected 

based on the most significant results from sixteen prostate cancer models with the primary 

models being: an overall prostate cancer risk model assuming a log-additive effect for each 

SNP and case-only Gleason score model, where Gleason was modeled as a quantitative 

linear trait among cases and each SNP was assumed to have an additive effect. SNPs with p-

values <0.05 and <0.001 from each model, respectively, were advanced for possible 

replication.

Similar to stage 1, samples genotyped in stage 2 underwent rigorous quality control 

procedures. Samples with missing rate > 10% (n=1,158) or mean heterozygosity < 20% or > 

26% (n=4) were excluded. In addition, 21 subjects without phenotype information were 

removed. Fifteen unexpected duplicates with concordance rates >99.9% were observed, and 

twenty-five first degree relative pairs were detected assuming an identity-by-descent 

threshold of 0.7. For each unexpected duplicate and relative pair, one subject was removed. 

Using the GLU struct.admix module, ancestry was estimated based on genotyped SNPs with 

a MAF>10% and HapMap data as the fixed reference population. Sixty-six subjects with 

<80% European ancestry were removed from analysis. Principal components analysis was 

conducted using a set of SNPs selected for traits unrelated to prostate cancer (e.g., smoking, 

alcohol intake). After quality control exclusions, a total of 6,575 cases and 6,392 controls 

remained for the primary analysis (Supplementary Table 1), including 5,355 cases with 

Gleason score. SNPs with a minor allele frequency <1% or completion rate <90% were 

excluded from analysis, leaving 55,497 SNPs for analysis (Supplementary Fig. 7). 

Regression models were fit adjusting for age, significant principal components, and study.
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In addition to the custom SNP microarray replication, 16 promising SNPs (P<2×10-5) were 

taken forward for fast-track replication in the five studies listed above (n=2,495 cases/2,532 

controls) as well as three additional studies: Agricultural Health Study63 (AHS, n=579 

cases/1,172 controls), Fred Hutchinson Cancer Research Center (FHCRC, n=1,315 cases/

1,152 controls), and the Multiethnic Cohort64 (MEC, n=750 cases/735 controls). In total, 

5,139 cases and 5,591 controls, all of European ancestry, were genotyped (Supplementary 

Fig. 7). The SNPs were genotyped using individual TaqMan assays (Applied Biosystems, 

Inc) and quality control duplicates yielded >99.9% concordance.

Stage 3a. In silico replication of prostate cancer findings

For replication of the overall prostate cancer results, non-overlapping in silico GWAS data 

was available from 1,204 cases and 1,231 controls of European ancestry from four studies 

from a previous GWAS of advanced prostate cancer12: European Prospective Investigation 

into Cancer and Nutrition (EPIC; 431 cases / 426 controls),65 Multiethnic Cohort (MEC; 

244 cases/ 259 controls),64 Physicians Health Study (PHS; 298 cases / 255 controls), and 

American Cancer Society Cancer Prevention Study II (CPSII; 231 cases / 291 controls not 

included in stage 2)61 (Supplementary Fig. 7). Subjects were genotyped using the Illumina 

HumanHap610K and extensive quality control filters applied as described previously. All 

data was imputed using IMPUTE229 and 1000 Genomes Project release version 328 as the 

reference panel, and data analyzed using SNPTEST assuming a log-additive genetic model 

and adjusting for age, study, and significant principal components. Only SNPs with an 

information score >0.3 were included in the meta-analysis.

Stage 3b. Additional replication for Gleason score findings

For further replication of the results for Gleason score, we genotyped five of the most 

significant SNPs (P<2 × 10-6) in the Cancer of the Prostate in Sweden (CAPS), a 

population-based case-control study of 2,618 cases and 1,728 controls using Sequenom 

(Supplementary Fig. 7). Regression models were fit adjusting for age.

Meta-analysis

Data from all three stages were meta-analyzed using the fixed effects inverse variance 

method based on the beta estimates and standard errors from each stage.

Further follow-up analyses

To evaluate the associations observed in our study of men of European ancestry with those 

observed in African Americans, we obtained association results for three genome-wide 

significant hits from the African American Prostate Cancer (AAPC) GWAS Consortium.22 

Although it was not possible to evaluate Gleason score as a quantitative trait among cases in 

this consortium, we were able to obtain stratified association results for cases with Gleason 

≤ 6 versus controls and cases with Gleason ≥ 8 versus controls.

Using 1000 Genomes Project data, we identified SNPs with r2>0.8 with the lead SNPs 

identified to be associated with Gleason score and evaluated whether they were non-

synonymous coding variants. We utilized HaploReg66 to assess non-coding functional 

markers in the regions containing our lead SNPs and related proxy SNPs (r2>0.8) 
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(Supplementary Table 9). We explored possible cis expression quantitative trait loci (eQTL) 

associations with our lead SNPs and related proxy SNPs (r2>0.8) in adipose tissue, 

lymphoblastoid cell lines, and skin using data from the MuTHER resource32 and all 

available tissues, including whole blood, in the Genotype-Tissue Expression Project 

(GTEx).31 We also examined possible methylation quantitative trait loci (meQTL) 

associations in adipose tissue using the MuTHER resource.33

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
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Regional association plots of the two novel loci associated with Gleason score as a 

quantitative trait among cases: (a) chromosome 5q14.3 (rs35148638) and (b) chromosome 

3q26.31 (rs78943174). Shown are the −log10 association p-values from the linear regression 

model for the 4,545 cases in stage 1 (dots and lower purple diamond) and −log10 p-values 

from the linear regression model for the 12,518 cases in the combined stage 1-3 analysis 

(upper diamond).
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