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Acute lung injury (ALI) which is featured by a strong pulmonary inflammation, is a major
cause of morbidity and mortality in critically ill patients. Magnoflorine, a quaternary
alkaloid isolated from Chinese herb Magnolia or Aristolochia, has been reported to
have potent anti-inflammatory properties. However, the effect of magnoflorine on
lipopolysaccharide (LPS)-induced ALI in mice has not been reported. The purpose
of the present study is to investigate the anti-inflammatory effect of magnoflorine on
LPS-induced ALI and elucidate its possible molecular mechanisms in RAW264.7 cells.
The results of histopathological changes as well as the myeloperoxidase (MPO) activity
indicated that magnoflorine significantly alleviated the lung injury induced by LPS. In
addition, qPCR results showed that magnoflorine dose-dependently decreased the
expression of pro-inflammatory cytokines TNF-α, IL-1β, and IL-6. Immunofluorescence
assay also confirmed that the level of Toll-like receptor 4 (TLR4) induced by LPS
was inhibited by magnoflorine treatment. Further experiments were performed using
Western blotting to detect the expression of related proteins in the NF-κB and MAPK
signaling pathways. The results showed that magnoflorine suppressed the levels of
phosphorylated p65, IκBα, p38, ERK, and JNK. In conclusion, all data indicate that
magnoflorine could protect against LPS-induced inflammation in ALI at least partially by
inhibiting TLR4-mediated NF-κB and MAPK signaling pathways.

Keywords: magnoflorine, anti-inflammation, ALI, LPS, NF-κB, MAPK

INTRODUCTION

Acute lung injury (ALI) is a serious respiratory disease worldwide, often accompanied by
symptoms of sepsis, neutrophilia, and lung inflammation (Beutz and Abraham, 2005; Matthay
and Zimmerman, 2005). It is usually caused by bacteria, trauma, and pneumonia (Treggiari et al.,
2004; Lim et al., 2007). Interestingly, different mechanisms are involved in the pathogenesis of ALI.
Inflammation is one of the major pathogenic factors. Although the knowledge and pharmacological
therapy of ALI have developed in recent decades, the mortality rate remains high (Klugman, 1990).

Lipopolysaccharide, an endotoxin released from dead Gram-negative bacteria (Wang and
Quinn, 2010), could cause leukocytosis, diffuse intravascular coagulation, and endotoxic shock,
which is one of the most widely used groups of stimulants in inducing ALI in mice (Takeuchi and
Akira, 2010; Lu et al., 2016). TLR4 is a transmembrane protein encoded by the TLR4 gene, which is

Frontiers in Pharmacology | www.frontiersin.org 1 August 2018 | Volume 9 | Article 982

https://www.frontiersin.org/journals/pharmacology/
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://doi.org/10.3389/fphar.2018.00982
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fphar.2018.00982
http://crossmark.crossref.org/dialog/?doi=10.3389/fphar.2018.00982&domain=pdf&date_stamp=2018-08-30
https://www.frontiersin.org/articles/10.3389/fphar.2018.00982/full
http://loop.frontiersin.org/people/558932/overview
http://loop.frontiersin.org/people/422572/overview
http://loop.frontiersin.org/people/508423/overview
http://loop.frontiersin.org/people/447508/overview
http://loop.frontiersin.org/people/403323/overview
https://www.frontiersin.org/journals/pharmacology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/pharmacology#articles


fphar-09-00982 August 29, 2018 Time: 10:36 # 2

Guo et al. Magnoflorine Ameliorates Acute Lung Injury

involved in the innate immune response (Takeda and Akira,
2001). There are many data indicating that LPS is the ligand of
TLR4 and stimulates the inflammatory response of the lungs by
binding to TLR4 (Wu et al., 2016c). It is now well established that
a variety of pro-inflammatory cytokines are activated by TLR4-
mediated NF-κB and MAPK signaling pathways (Xu et al., 2014;
Jiang et al., 2017a). Subsequently, TNFα, IL-1β, IL-6, and other
pro-inflammatory cytokines expression levels will be significantly
increased (Yang et al., 2018). Therefore, blockade of TLR4-
mediated NF-κB and MAPK signaling pathways can inhibit the
development of ALI induced by LPS.

Magnoflorine, a quaternary alkaloid isolated from
Chinese herb Magnolia (Nakano, 1954) or Aristolochia

(Li and Wang, 2014), has been reported to have many
biological activities, such as anti-anxiety, anti-cancer, and
anti-inflammation. However, the effect of magnoflorine on
LPS-induced ALI in mice has not been investigated. It has
been reported that the effects of LPS on ALI can be reduced by
blocking various aspects of the inflammatory cascades (Shang
et al., 2010; Gong et al., 2012), indicating that magnoflorine can
be used as a potential drug for the treatment of ALI. In this
current research, we explored whether magnoflorine could exert
its anti-inflammatory action on LPS-induced ALI in mice and in
RAW264.7 cells by inhibiting the NF-κB and MAPK signaling
pathways. Importantly, the results of this study can provide some
reference value for the treatment of ALI in humans.

FIGURE 1 | (A) Chemical structure of magnoflorine. (B) HPLC chromatogram of magnoflorine.

TABLE 1 | Primers Used for qPCR.

Name Primer sequence (5′–3′) GenBank accession number Product size (bp)

TNF-α CTTCTCATTCCTGCTTGTG ACTTGGTGGTTTGCTACG NM_013693.3 198

IL-1β CCTGGGCTGTCCTGATGAGAG TCCACGGGAAAGACACAGGTA NM_008361.4 131

IL-6 GGCGGATCGGATGTTGTGAT GGACCCCAGACAATCGGTTG NM_031168.1 199

GAPDH CAATGTGTCCGTCGTGGATCT GTCCTCAGTGTAGCCCAAGATG NM_001289726.1 124
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FIGURE 2 | Effects of magnoflorine on LPS-induced lung injury. (A) Morphology of the lung. (B) Control group. (C) LPS group. (D–F) Magnoflorine (5, 10, and
20 mg/kg) groups. (G). MPO activity assay. CG is the control group. LPS is the LPS-stimulated group. The values are presented as means ± S.E.M. of three
independent experiments. ANOVA, p < 0.0001, post hoc #p < 0.05 vs. control group, ∗p < 0.05 vs. LPS group.

MATERIALS AND METHODS

Reagents
Magnoflorine (HPLC ≥ 98%) was obtained from Shanghai
Yuanye Biotechnology Co., Ltd. (Shanghai, China) (Figure 1).
LPS (Escherichia coli 055:B5) was purchased from Sigma
(St. Louis, MO, United States). The myeloperoxidase
(MPO) determination kits were provided by the Jiancheng
Bioengineering Institute of Nanjing (Nanjing, China). The qPCR
kit was obtained from Takara Bio Inc., (Otsu, Japan). NF-κB
and MAPK antibodies were purchased from Cell Signaling
Technology (Danvers, MA). All other chemical reagents were
in accordance with the reagent specification level. All other
chemical reagents meet the reagent specification standards.

Animal Treatment and Experimental
Groups
A total of 50 BALB/c male mices (6–8 weeks old, 30–35 g
weight) were purchased from Wuhan Institute of Biological
Products Co., Ltd. (Wuhan, China). All mices are kept in the
special environment of 24◦C ± 1◦C, and 65% humidity, which
maintain 12 h of light for 3 days to adapt to the environment
before starting the experiments. During the trial, all animals were

FIGURE 3 | The effects of magnoflorine on cell viability. RAW 264.7 cells were
cultured with LPS (1 µg/mL) and different concentrations of magnoflorine (25,
50, and 100 µg/mL) for 12 h, and then the cell viability was measured using
the CCK-8 assay. The values are presented as means ± S.E.M. of three
independent experiments.

allowed to drink and feed ad libitum. This study was carried
out in accordance with guidelines provided by the Laboratory
Animal Research Center of Hubei province, and approved
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by the Ethical Committee on Animal Research at Huazhong
Agricultural University (HZAUMO-2015-12).

The mouse were randomly divided into the following five
groups of ten mice in each group for the establishment of
ALI model:blank group, LPS group, Magnoflorine (5, 10, and
20 mg/kg) + LPS groups. Magnoflorine was diluted with
Dulbecco’s modified Eagle’s medium (DMEM) to different
concentrations. LPS was diluted with phosphate buffered saline
(PBS) to a final concentration of 1 mg/ml. The method

for establishing the LPS-induced ALI model was described
previously (Li and Wang, 2014). Briefly, the mice were
intranasally administered 50 µL of LPS to induce ALI. The
blank group was intranasally administered 50 µL of PBS.
After 24 h of instillation, The mice in the magnoflorine group
were intraperitoneally injected with different concentrations
of magnoflorine (5, 10, and 20 mg/kg) three times at 0, 8,
16 h. The blank group received equal volumes of PBS. 8 h
after the last treatment with magnoflorine, the mice were were

FIGURE 4 | Effects of magnoflorine on the production of cytokines. (A) The expression of TNF-α, IL-1β, and IL-6 mRNA in lung tissues were measured by qPCR.
(B) The expression of TNF-α, IL-1β, and IL-6 mRNA in RAW264.7cells were measured by qPCR. GAPDH was used as a control. CG is the control group. LPS is the
LPS-stimulated group. The data are presented as the mean ± S.E.M. of three independent experiments. ANOVA, p < 0.0001, post hoc #p < 0.05 vs. control group,
∗p < 0.05 vs. LPS group.
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euthanized, and the lung tissue were harvested and kept at
−80◦C.

High-Performance Liquid
Chromatography (HPLC)
The purity of magnoflorine was measured by HPLC. The
experiment was carried out using an EChrom2000 DAD data
system (Elite, Dalian, China) as described previously (Wu et al.,
2016d). Briefly, the separation was performed on a Hypersil
ODS2-C18 analytical column (5 µm, 200 mm × 4.6 mm).
Subsequently, the elution was performed using the acetonitrile-
water (2:98, v/v) mobile phase. The flow rate was 1.0 mL/min,
and the detection wavelength was 268 nm.

Histopathologic Evaluation of the Lung
Tissue
Lung tissues were obtained, cut into sections of approximately
0.5 cm2 sizes, and fixed in 10% formalin for subsequent
histopathological analysis. Briefly, lung tissues were dehydrated
with different concentrations of alcohol, infiltrated with xylene,
embedded in paraffin, and sliced into 4 µm sections, and then
stained with hematoxylin-eosin (H&E). Finally, the morphology
changes of lung tissues were observed by optical microscope
(Olympus).

Myeloperoxidase Analysis
The level of MPO activity can be used to predict the early risk of
inflammatory diseases (Li et al., 2015). Lung tissue was collected
and ground into a tissue homogenate with a reaction buffer
(w/v, 1/19), after which MPO activity was detected and analyzed
according to the instructions of manufacturer’s MPO assay kit.

Cell Viability Assay
A Cell Counting Kit-8 (CCK-8) was used for the determination
of cell viability. RAW264.7 cells were grown at a density
of 2 × 104 cells/mL in 96 well plates. After the cells were
adherent (approximately 2 h), the cells were treated with different
concentrations of magnoflorine (25, 50, 100 µg/mL). After 12 h,
10 µL of CCK-8 was added in each well for 4 h at 37◦C. And the
OD value of the cells in each well was measured at 450 nm with
a microplate reader. The cell viability = (Treatment Group OD –
Blank Group OD)/(Control Group OD – Blank Group OD).

Cell Culture and Treatment
RAW264.7 cells were purchased from the American Type Culture
Collection (ATCC TIB-71TM). The cells were cultured in DMEM
medium supplemented with 10% fetal bovine serum at 37◦C with
5% CO2. The cells were pretreated with various concentrations of
magnoflorine (25, 50, and 100 µg/mL) for 1 h and then stimulated
with LPS (1 µg/µL) for 12 h. The cells that were not given any
treatment were used as a control group.

Quantitative PCR Assay
According to the manufacturer’s instructions, total RNA was
extracted from tissues and cells using the Trizol reagent, and then
cDNA was generated using a reverse transcription kit (Takara,

Japan). qPCR was performed using SYBR Green plus reagent
kit (Roche, Basel, Switzerland) with Light- Cycler 96 (Roche)
following the instructions of the manufacturer. The expression
levels of inflammatory genes were normalized to GAPDH with
2−11Ct method as described previously (Livak and Schmittgen,
2001). The primers used for qPCR are listed in Table 1.

Immunofluorescence Staining
RAW264.7 cells (1× 105 cells mL−1) were seeded onto a six-well-
plate and then were pretreated with various concentrations of
magnoflorine (25, 50, and 100 µg/mL) for 1 h and then stimulated
with LPS (1 µg/µL) for 12 h. The cells were fixed with 4%
paraformaldehyde for 10 min, permeabilized with 0.2% Triton
X-100 for 10 min, blocked with 5% BSA for 1 h and followed
by incubation with rabbit anti-p-p65 antibody and anti-TLR4
antibody overnight at 4◦C. Subsequently, the cells were washed
and incubated with FITC-labeled goat anti-rabbit IgG antibody
for 1 h. Nuclei were stained with DAPI for 10 min, and the
p-p65 and TLR4 were observed using a fluorescence microscope
(Olympus, Japan).

Western Blot Analysis
Lung tissues and RAW264.7 cells were lysed with a lysate
containing a phosphatase inhibitor and then centrifuged at
4◦C and 12,000 rpm for 15 min. The obtained protein was
measured for its concentration by a Biosharp protein measuring
kit. Subsequently, sodium dodecyl sulphonate polyacrylamide gel
electrophoresis was performed and 40 µg protein was loaded
per well (at the same concentration). The separated protein was

FIGURE 5 | Effects of magnoflorine on the expression level of TLR4 protein.
Immunofluorescence staining was performed to identify the expression of
TLR4 (×200), scale bar = 100 µm. Blue spots represent cell nuclei, and green
spots indicate TLR4 staining. CG is the control group. LPS is the
LPS-stimulated group.
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FIGURE 6 | The effects of magnoflorine on the NF-κB pathway activation. (A) The expression levels of IκBα and p65 proteins were analyzed using specific
antibodies in lung tissues. (B) The expression levels of IκBα and p65 proteins in RAW264.7 cells. β-actin was used as the control. CG is the control group. LPS is the
LPS-stimulated group. The data represent the mean ± S.E.M. ANOVA, p < 0.0001, post hoc #p < 0.05 vs. control group, ∗p < 0.05 vs. LPS group.

transferred to polyvinylidene difluoride membrane and blocked
in blocking solution for 2 h, and then incubated overnight at
4◦C with primary antibodies (1:1000). Afterward, the membranes
were incubated with secondary antibodies (1:4000) for 1 h
at 25◦C. The protein levels were detected with an enhanced
chemiluminescence reagent, and the intensities were quantified
using Image J gel analysis software.

Statistical Analyses
The SPSS software 16.0 (SPSS Inc.) was used for the
statistical analyses. Statistical data were expressed as the
mean ± SEM of three individual experiments. The data were
analyzed using ANOVA followed by Dunnet’s post hoc test.
P-values less than 0.05 were deemed statistically significant
differences.

RESULTS

Effects of Magnoflorine on LPS-Induced
Lung Injury in Mice
Histopathological analysis and MPO assay were used to
determine lung tissue damage (Figure 2A). There were no
histopathological lesions in the control group (Figure 2B),
whereas pathological changes such as infiltration of inflammatory
cells and alveolar hyperemia were observed in the LPS group
(Figure 2C). Interestingly, compared with the LPS group, the
infiltration of inflammatory cells and the extent of alveolar
congestion were significantly reduced in the magnoflorine groups
(Figures 2C–F). A further MPO test was also used to analyze
the effect of magnoflorine on LPS-induced lung injury. The
results showed that LPS dramatically increased MPO activity,
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which was significantly reduced with magnoflorine treatment
(Figure 2G).

Effects of Magnoflorine on Cell Viability
The potential cytotoxicity of magnoflorine on RAW264.7 cells
was determined using the CCK-8 assay. The results show that
magnoflorine has no effect on cell viability (Figure 3).

Effects of Magnoflorine on the Levels of
Cytokines
The expression levels of inflammatory cytokines in lung tissue
and RAW264.7 cells were examined by qPCR. The results of
the qPCR assay showed that the expression levels of TNF-α,
IL-1β, and IL-6 in the LPS group were significantly higher than
those in the control group. The expression levels of the three
inflammatory factors in the magnoflorine group were dose-
dependently reduced compared to the LPS group (Figures 4A,B).

Magnoflorine Inhibition of the Expression
of TLR4
TLR4 is the first TLR receptor protein to play a role in the LPS
reaction (Jiang et al., 2018), which is of great significance in LPS-
induced ALI. As shown by Immunofluorescence assay, LPS group
significantly increased TLR4 expression. However, the expression
levels of TLR4 protein were decreased by magnoflorine groups
(Figure 5).

Effects of Magnoflorine on the NF-κB
Pathway in LPS-Induced ALI
NF-κB signaling pathway is one of the important signaling
pathways of inflammatory response. In order to further test the
effect of magnoflorine on LPS-induced NF-κB signaling pathway,
the expression of NF-κB p65 and IκBα protein was detected
by Western blot. The results showed that the expression of
phosphorylated p65 and IκBα protein in the lung tissue was
significantly higher than that in the control group. Interestingly,
the expression of magnoflorine groups were relatively reduced
(Figure 6A). Furthermore, in RAW264.7 cells, the expression
levels of phosphorylated p65 and IκBα proteins were significantly
higher than those in the control group, whereas the expression
of the magnoflorine protein decreased in a dose-dependent
manner (Figure 6B). To further confirm these observations,
We examined the nuclear translocation of p65 protein in
RAW264.7 cells. We found that the expression of nuclear p65
was significantly reduced after treatment with magnoflorine
(Figure 7).

Effects of Magnoflorine on the MAPK
Pathway in LPS-Induced ALI
Compared with NF-κB, MAPK is also a very important signaling
pathway. The inhibitory effect of magnoflorine on the MAPK
signaling pathway was evaluated by measuring the expression
levels of p38, ERK and JNK proteins. The results showed
that in the lung tissue, the expression of phosphorylated p38,
ERK, and JNK proteins was significantly increased in the

LPS group compared with the control group. In contrast, the
expression levels of phosphorylated p38, ERK, and JNK proteins
in the magnoflorine groups were dose-dependently lower than
the LPS group (Figure 8A). In addition, in RAW264.7 cells,
LPS phosphorylated p38, ERK, and JNK protein expression
levels were significantly higher than the control group, while
the expression of magnoflorine groups were relatively reduced
(Figure 8B).

DISCUSSION

Although inflammation is considered as a protective mechanism
elicited by the host in answer to various aggressions such
as microbial infections, excessive inflammation often causes
extensive tissue damage and even systemic dysfunction
(Kuriakose et al., 2013; Chen et al., 2015). ALI is characterized
by obvious acute inflammation with elevated pro-inflammatory
cytokines levels, and is a major cause of morbidity and mortality
in critically ill patients (Wu et al., 2016b). Recent studies have
shown that magnoflorine has a certain anti-inflammatory
effect (Li and Wang, 2014). Besides, magnoflorine has also
been shown to possess potent an-tiradical and an-tioxidant
activities (Rackovã et al., 2004), and this feature is typically
related to the secondary metabolites with free phenolic structure
such as resveratrol and apigenin (Chiavaroli et al., 2010;
Menghini et al., 2016b). In addition, magnoflorine also have
many biological activities, such as anti-anxiety, and anti-cancer
(Li and Wang, 2014). Importantly, it can protect the oxidation
of human low density lipoprotein (Hung et al., 2007). However,

FIGURE 7 | Effects of magnoflorine on p65 translocation into the nucleus.
Translocation of the p65 subunit from the cytoplasm into the nucleus was
assessed by immunofluorescence staining (×200), scale bar = 100 µm. Blue
spots represent cell nuclei, and red spots indicate p-p65 staining. CG is the
control group. LPS is the LPS-stimulated group.
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FIGURE 8 | Effects of magnoflorine on the MAPK pathway activation. (A) The expression levels of p38, ERK, and JNK proteins in lung tissues. (B) The expression
levels of p38, ERK, and JNK proteins in RAW264.7 cells. β-actin was used as the control. CG is the control group. LPS is the LPS-stimulated group. The data
represent the mean ± S.E.M. ANOVA, p < 0.0001, post hoc #p < 0.05 vs. control group, ∗p < 0.05 vs. LPS group.

the effect of magnoflorine on LPS-induced ALI in mice has
not been reported. In the present study, we investigated the
anti-inflammatory effect of magnoflorine on LPS-induced ALI
in vivo and in vitro.

It is well-known that inflammation can damage the normal
lung structure and cause exudation of inflammatory products
(Driver, 2012). Through the histopathological observation,
we found that magnoflorine inhibited the infiltration of
inflammatory cells and restrained the alveolar structural damage.
Importantly, evidence has been increasing that oxidative stress
could induce aberrant activation of macrophages and then
results in inflammatory damage (Cachofeiro et al., 2008).

Hence, the radical scavenger property of magnoflorine may
be a possible mechanism of action related to the observed
protective effects. It has been reported that MPO is a biomarker
of neutrophil migration into tissues, which can reflect the
number of neutrophils in inflamed or injured tissues (Jiang
et al., 2017b). Moreover, MPO as an important therapeutic
target in the treatment of inflammatory conditions and its
activity reflects the infiltration of neutrophils into lung tissues
(Odobasic et al., 2014). The results of the MPO assay showed that
magnoflorine markedly reduced MPO activity in LPS-induced
ALI, suggesting that magnoflorine could repress neutrophil
influx into lung tissues. As an important immune cell, RAW
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FIGURE 9 | NF-κB and MAPK pathways in LPS-stimulated ALI.

264.7 murine macrophages have been widely used in the
establishment of mouse inflammation model in ALI in vitro.
Thus, we explored the effects of magnoflorine on LPS-stimulated
RAW264.7 cells. The macrophage is the important sensory and
regulatory cell in immunological system; thus, we also examined
the effect of magnoflorine on LPS-stimulated RAW264.7
macrophages. The CCK-8 assay showed that the different doses of
magnoflorine have no toxicity to cells, consistent with a previous
study.

Proinflammatory cytokines appear in the early stages of
inflammation (Giebelen et al., 2007), which indicate the severity
of ALI in a certain sense. LPS stimulation releases inflammatory
cytokines such as TNF-α, IL-1β, IL-6, and increases their
expression levels (Zhang et al., 2011). TNF-α is an important
cytokine secreted by macrophages that promotes the activation
of neutrophils and the release of other cytokines (Akira et al.,
1990; Wu et al., 2015). Similar to TNF-α, IL-1β is also
secreted by macrophages and, to some extent, regulates the
progress of the inflammatory response (Akira et al., 1990).
IL-6 maintains tissue homeostasis and reflects the extent of
tissue damage, which is critical in the inflammatory response
(Cronin et al., 2016). In addition, IL-6 could also exert a
downregulating effect on pro-inflammatory TNFα (Menghini
et al., 2016a). In our study, the TNF-α, IL-1β, and IL-6
levels in lung tissues and macrophages were evidently lower
in the magnoflorine groups than in the LPS group. These
results revealed that magnoflorine exerted anti-inflammatory
effects, perhaps by reducing the levels of pro-inflammatory
cytokines.

TLR4, a member of the toll-like receptor family,
plays an important role in the innate immune response
(Takeda and Akira, 2004; Mateu et al., 2015). Previous reports
have shown that TLR4 participates in LPS-induced immune

responses by activating the NF-κB and MAPK signaling
pathways (Wu et al., 2016a). To further enlighten the mechanism
by which magnoflorine exerts its potent anti-inflammatory
action, we then explored the TLR4-mediated activation of
the NF-κB and MAPK signaling pathways. We found that
LPS significantly increases the expression of TLR4, while
magnoflorine treatment reduced TLR4 expression to varying
degrees. It has been reported that both NF-κB and MAPK
signaling pathways are involved in LPS-induced mice ALI
(Lin et al., 2018). NF-κB, a critical factor linking inflammation
and tumorigenesis, consists of p50, p52, p65, RelB, and c-Rel,
and among them p65 is one of the most studied protein
(Hayden and Ghosh, 2004; Jiang et al., 2016). The activation
of signaling may reflect the severity of inflammation to some
extent (Liu et al., 2017). Under normal conditions, NF-κB
p65 subunit and its inhibitory protein IκBα are in a resting
state. Under LPS stimulation, IκBα is phosphorylated, and P65
is transferred into the nucleus and induces an inflammatory
response. MAPK signaling pathway has also been reported
to play an essential role in the TLR4-mediated inflammatory
response (Lai et al., 2017), and can activate AP-1 and then
induce the production of pro-inflammatory cytokines (Ding
et al., 2010). Our results showed that magnoflorine remarkably
suppressed the phosphorylation of NF-κB and MAPK in vivo
and in vitro.

In summary, our studies indicate that magnoflorine exerts
its anti-inflammatory effects by reducing the expression
of inflammatory factors in LPS-induced ALI. The possible
mechanisms are associated with the inactivation of TLR4-
mediated NF-κB and MAPK signaling pathways (Figure 9).
Importantly, magnoflorine can pass through connection of
inflammatory factors and NF-κB and MAPK signaling pathways
in vivo and in vitro. Finally, it is hoped that magnoflorine might
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become a potential therapeutic agent for the treatment of
LPS-induced ALI.
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