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ABSTRACT 16S rRNA gene sequencing is a common and cost-effective technique
for characterization of microbial communities. Recent bioinformatics methods enable
high-resolution detection of sequence variants of only one nucleotide difference. In
this study, we utilized a very fast HashMap-based approach to detect sequence var-
iants in six publicly available 16S rRNA gene data sets. We then use the normal dis-
tribution combined with locally estimated scatterplot smoothing (LOESS) regression
to estimate background error rates as a function of sequencing depth for individual
clusters of sequences. This method is computationally efficient and produces infer-
ence that yields sets of variants that are conservative and well supported by refer-
ence databases. We argue that this approach to inference is fast, simple, and scal-
able to large data sets and provides a high-resolution set of sequence variants
which are less likely to be the result of sequencing error.

IMPORTANCE Recent bioinformatics development has enabled the detection of
sequence variants with a high resolution of only one single-nucleotide difference in
16S rRNA gene sequence data. Despite this progress, there are several limitations
that can be associated with variant calling pipelines, such as producing a large num-
ber of low-abundance sequence variants which need to be filtered out with arbitrary
thresholds in downstream analyses or having a slow runtime. In this report, we intro-
duce a fast and scalable algorithm which infers sequence variants based on the esti-
mation of a normally distributed background error as a function of sequencing
depth. Our pipeline has attractive performance characteristics, can be used inde-
pendently or in parallel with other variant callers, and provides explicit P values for
each variant evaluating the hypothesis that a variant is caused by sequencing error.
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Amplicon sequencing is a popular and cost-effective method for investigating mi-
crobial communities. A challenging step in using amplicon sequencing to identify

members of microbial communities is to infer true sequences from artifacts. Sequence
errors commonly occur during both PCR amplification and DNA sequencing. These
errors include single nucleotide substitutions and gap errors due to mismatching bases
and polymerase slippage, respectively (1). For many years, standard practice was to
lump sequences with 97% identity together into operational taxonomic units (OTUs) in
order to reduce noise and cluster closely related taxa (2–4). However, recently devel-
oped bioinformatic tools attempt to infer true biological sequences at 100% identity
by estimating the error profile and correcting point errors in sequences through
denoising processes (1, 5, 6). These pipelines rely on different assumptions and imple-
ment various statistical models. For example, DADA2 models error rate as a function of
quality scores for each possible nucleotide transition and then these error rates are
used in a Poisson-based model to infer true sequences from sequence errors (5).
Deblur compares sequence-to-sequence hamming distances to an upper-bound error
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model combined with a greedy algorithm (6). Unoise2 uses two parameters that are
preset values and are used for filtering low-abundance sequencing and clustering of
sequences based on their abundances (1). All of these algorithms provide a higher re-
solution of taxonomic composition of a microbial community than the traditional OTU
picking approach.

Despite the important progress that they represent, these algorithms all have some
limitations. Deblur depends on construction of a multiple-sequence alignment, which
means that it does not scale to an entire data set but works instead on each sample
individually. This leads to the possibility of dependencies on the sequencing depth of
each sample where variants might be called as real or artifactual differently in different
samples depending on the properties of individual samples. Since Deblur sorts the
abundance of sequences in each sample individually, it is also possible that the relative
abundance of each variant within each sample can impact overall variant calling in
complex ways. Deblur also has a number of free parameters and it is not immediately
obvious how to optimize these parameters for new sequence data sets that might
have different properties from the Illumina MiSeq and HiSeq training sets that were
used for setting Deblur’s default values. Unoise2 is not freely available and also
requires user setting of parameters for which optimal values may not be entirely clear.
As we will show, DADA2 can sometimes in practice yield larger numbers of sequence
variants than can be considered biologically reasonable and often requires additional
filtration of low-abundance variants. Since DADA2 uses the Poisson distribution, it
assumes that processes that control errors have similar rates for high- and low-abun-
dance variants. These sorts of assumptions can be problematic in genomics. For exam-
ple, in RNA sequencing (RNA-seq) analysis, it has long been understood that the rela-
tionship between mean and variance is dependent on sequencing depth (7).

Here, we present HashSeq, a very simple and fast algorithm for inferring sequence
variants. We demonstrate that with enough sequence depth, every possible unique one-
mismatch variant for a sequence will be observed. We propose that the inference of true
variants can therefore be determined relative to this background probability of observ-
ing one-mismatch variants, which can be approximated with a two-parameter normal
distribution. We applied this method to six publicly available data sets and show that
this simple approach is fast and scales well even to large data sets. Our approach pro-
vides a conservative set of variant calls that is well supported by a reference database
and behaves almost identically to DADA2 calls in supervised classification.

RESULTS
With sufficient sequencing depth, all one-mismatch “child” variants for a “parent”

sequence are likely to be observed, and this is well modeled by a simple Poisson
process.We used a HashMap data structure, which identifies every unique sequence in
linear time proportion to the total number of sequences, to identify all sequence var-
iants in six publicly available Illumina data sets. Sequences from these projects were
obtained from three fecal microbiota data sets (the China, autism, and Roux-en-Y gas-
tric bypass [RYGB] data sets), one vaginal microbiota data set, and one soil microbiota
data set as well as one microbial mock community (MMC; see Materials and Methods).
This method of sequence variant detection is very fast (less than 1 h even for the larg-
est data set, with 416,450,026 sequences), but it results in a large number of sequence
variants ranging from 6,166 for the smallest data set (mock community) to 814,494 for
the largest data set (vaginal data set). The majority of these variants are presumably
sequencing errors or other artifacts. In order to detect sequence errors, we clustered
sequences that had only one nucleotide difference (Fig. 1). Under this approach,
sequence variants were sorted according to their abundances. Starting with the most
abundant sequence variant, considered the first “parent sequence,” clusters were
formed by adding all the one-mismatch variants to each cluster (one-mismatch “chil-
dren”). This resulted in 2,002 clusters of parents plus children (when present) for the
smallest data set (MMC data set) and 387,903 clusters for the largest data set (vaginal
data set). We assessed the relationship between the abundance of parents and the
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number of one-mismatch children present in each cluster. Figure 2 shows the fraction
of all possible one-mismatch children as a function of the abundance of each parent
sequence for six data sets. When the abundance of a parent sequence is high enough,
almost all possible unique one-mismatch children for that parent sequence can be
observed (Fig. 2). For example, the read lengths for both the China and vaginal data
sets are 250 bp; therefore, there are 750 possible one-nucleotide differences for a par-
ent sequence in these data sets. For these data sets, the most abundant parent
sequences have more than 10,000 reads and almost all of the possible child variants
were observed (the rightmost points in Fig. 2). For the least abundant parent sequen-
ces (the leftmost points in Fig. 2), almost no one-mismatch variants were observed.

Interestingly, these data were surprisingly well fit with a simple Poisson distribution
with a single parameter across all data sets. The single parameter is the probability (P)
that a single nucleotide will be different between two sequence variants (see Materials
and Methods). Even though this model does not contain any information about differ-
ent error rates for different nucleotides, or any information about the biology of any of
these diverse ecosystems, all the data sets were reasonably well fit, with a P value
of 1024 (Fig. 2, red curves), although for some data sets a slightly better fit could be
obtained with a slightly different value for P (Fig. 2, green curves). The consistency of
this fit across data sets is perhaps surprising given that not all the data sets used the
same primers for PCR amplification as well as the wide biological variability of these
samples extending from the vaginal to the gut and soil microbiomes. This analysis sug-
gests that a common baseline error rate exists across multiple Illumina data sets and
that the probability of seeing a one-mismatch variant is well modeled as a simple func-
tion of the abundance of the parent sequence. Our results demonstrate that with
enough sequencing depth, every possible one-mismatch child is likely to be observed
for all variants and in the absence of any other information, it is possible to predict the
likelihood of seeing a unique child variant given only the abundance of the parent.

The background Poisson distribution underestimates the true abundance of
one-mismatch child variants, while a normal distribution-based model provides a
better fit. Since we have demonstrated that one-mismatch variants accumulate as a sim-
ple function of sequencing depth, the challenge for all algorithms in finding sequence

FIG 1 Cluster formation of parents and their one-mismatch children in the HashSeq algorithm. In this clustering
strategy, sequence variants are sorted according to their abundances. Starting with the most abundant sequence
variant, considered the first parent sequence, clusters are formed by adding all the one-mismatch variants (one-
mismatch children) to each cluster.
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variants is to discriminate true variants from the many stochastically produced artifactual
variants. One possible approach to this problem might be to use the estimated error rate
derived from the presence or absence of one-mismatch variants (as described in the pre-
vious section) to predict the background abundance of sequence errors and consider var-
iants “true” only if the abundance of sequence variants is significantly enhanced over the
expected background noise. However, when we tried to use this background error rate as
a threshold for determining true variants from artifacts using the Poisson test (see
Materials and Methods), we rejected the null hypothesis that the sequence variant was
due to random sequencing error for more than 83% of one-mismatch children even after
correcting for multiple-hypothesis testing (see Fig. S1 in the supplemental material). This
suggests that the distribution of child abundance does not follow the Poisson distribu-
tion. Indeed, the Poisson distribution assumes that the mean equals the variance, and
clearly this assumption does not hold, as the variance of child abundance shows clear
overdispersion, that it is larger than the mean of child abundance for most parent
sequence variants across data sets (Fig. 3). As a result, the Poisson distribution underesti-
mates the true variance and is therefore anticonservative and calls nearly all one-mis-
match variants as true variants.

As we observed that the Poisson distribution appears to be extremely anticonserva-
tive, we next examined whether the distribution of one-mismatch children could be
better explained by a normal distribution since it is more flexible in terms of the rela-
tionship between the mean and variance than the Poisson distribution. For this, the

FIG 2 The presence or absence of unique one-mismatch variants can be well modeled with a simple one-parameter Poisson distribution with an almost
constant error rate across six independent 16S rRNA gene Illumina data sets. Plots show the relationship between the abundance of parent sequences on
the log10 scale and the fraction of all possible unique one-mismatch variants for the parent sequences. These data are well modeled by a simple one-
parameter Poisson distribution. The red line corresponds to an error rate P of 1024. The China, vaginal, and soil data sets were best modeled using slightly
different error rates for each data set (green lines, China and soil P = 1.5 � 1024 and soil P = 5 � 1025, respectively).
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abundances of children were log10 transformed and the distributions of log10-trans-
formed abundances of children were plotted for each parent sequence. The histo-
grams of child abundances (shown for the most abundant parent for each data set in
Fig. 4) suggest that the distribution of one-mismatch children approximates a normal
distribution. Interestingly, we observed that the mean abundance of children for each
cluster can be well fit by a locally estimated scatterplot smoothing (LOESS) function of
the parent abundance, especially for high-abundance parents (.1,000 reads) across all
the six data sets (Fig. 5). The smooth relationship between mean and standard devia-
tion (SD) and sequencing depth across the six data sets suggests that there is a general
error rate across all variants that is dependent on sequencing depth but not depend-
ent on the biology of each particular parent sequence. This further suggests that the
LOESS fit may represent a good model for general inference. However, when parents
have a lower abundance, generally below 1,000 reads across all samples, a smaller
number of one-mismatch variants are present (Fig. 1), and therefore, variance in the
mean abundance of children significantly increases (Fig. 5), presumably due to sparsity
effects.

Normal-based inference of one-mismatch children is fast and conservative and
produces results comparable to those of DADA2 in supervised classification
analyses. The above results suggest that we can assume that the background distribu-
tion of child variants is reasonably normally distributed and is well fit for sequences
with abundance .;1,000 reads by a simple localized regression (LOESS). In this sec-
tion, we explore an inference scheme in which the background mean and standard
deviation are the higher of the mean and the standard deviation found for each parent

FIG 3 The variance of the one-mismatch child abundance in each cluster is not equal to their mean abundance. Plots show the relationship between the
variance and mean abundance of one-mismatch children from each parent cluster across six different 16S rRNA gene data sets. The red line represents the
Poisson assumption of equal mean and variance.
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(black dots in Fig. 5) or the LOESS regression of the mean and standard deviation (red
lines in Fig. 5). In this scheme, we use these estimates of mean and standard deviation
as our background null hypothesis that the abundance of the one-mismatch child vari-
ant is a sequence error and can therefore be explained by the background level of
sequencing error of the parent. From these background mean and standard deviation,
we generate a one-sided P value (using “pnorm” in R) for rejecting the null hypothesis.
A small P value for this null hypothesis indicates that a child variant has an abundance
level above this expected background for its parent (see Materials and Methods).

When using a 5% false-discovery rate (FDR), this method results in a considerably
lower number of sequence variants than for DADA2 with default parameters for the
nonmock biological data sets (Table 1) and for the inference test based on the Poisson
distribution described above (Fig. S1). When we mapped the inferred sequence var-
iants with BLAST to the SILVA132 (8, 9) database, the great majority of sequence var-
iants had a high degree of identity (.99%) to the SILVA database (Table 1 and Fig. 6),
suggesting that many of the variants that we detected had been previously observed.
This supports an assertion that these variants are not sequencing errors. Interestingly,
although HashSeq calls more variants in the MMC data set than DADA2, the parent
sequences include the eight bacterial taxa that are present in the mock (Listeria mono-
cytogenes, Pseudomonas aeruginosa, Bacillus subtilis, Escherichia coli, Salmonella enter-
ica, Lactobacillus fermentum, Enterococcus faecalis, and Staphylococcus aureus), which
further confirms that our clustering strategy is able to find major taxa in a data set.
Overall, these results suggest that our normal distribution-based inference approach is
often more conservative than DADA2 and less prone to infer spurious variants as true

FIG 4 The abundance of one-mismatch children within a cluster is approximately normal on a log10 scale. Histograms show the distribution of abundance
of one-mismatch children for the most abundant parent on a log10 scale across the six different 16S rRNA gene data sets.
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sequences. However, because we do not look for variants in low-abundance regions
where the LOESS regression does not show a consistent relationship to sequencing
depth, our algorithm is less sensitive to low-abundance true sequences.

Next, for each data set we performed a random forest classification to study the
association between the sequence variants with metadata variables of interest in the
five publicly available nonmock data sets. Compared to DADA2, our approach per-
forms nearly identically in terms of association studies between the gut microbiota
and biological variables (Fig. 7).

Finally, we compared runtime and memory usage between our pipeline and
DADA2. On average across data sets, our pipeline is 43 times faster than for DADA2
and the memory usage is 3 times less than for DADA2 (Fig. 8). For the vaginal data set,
the largest data set, HashSeq was 6.5 times faster than DADA2; however, it was compa-
rable to DADA2 in terms of memory usage.

DISCUSSION

In this study, we utilized a very simple HashMap-based algorithm to detect all sequence
variants in a data set. This resulted unsurprisingly in a large number of one-mismatch
sequence variants. We assume that nearly all these spurious sequences were caused by
sequencing error. We provide two lines of evidence to support this assertion. First, the
number of distinct one-mismatch children for each parent sequence can be well modeled
by a simple Poisson process, suggesting that when sequence depth is high enough, every
possible one-mismatch variant of a parent sequence can be observed. This seems unlikely

FIG 5 Mean and standard deviation of one-mismatch children in each cluster is a smooth function of their parent abundance on a log10 scale for the most
abundant parent sequences. Plots show the relationship between the mean and standard deviation of one-mismatch child abundance in each cluster and
their parent abundance on a log10 scale. The mean and standard deviation of abundance of one-mismatch children for each cluster can be well fit by a
smooth LOESS function of the parent abundance especially for high-abundance parents (.1,000 reads) across six different 16S rRNA gene data sets (red line).
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to be explained by biological variance. A second line of support for the assertion that
most variants are related to sequencing error is the excellent fit to a smooth LOESS curve
with sequencing depth over 1,000 sequences (Fig. 5), suggesting that sequencing depth
and not the biology of a particular cluster controls the abundances of observed variants.

TABLE 1 Results of mapping of sequence variants inferred by HashSeq and DADA2 to the SILVA132 database using BLASTa

Data
set Pipeline

No. of
SVs

Parents-
children

Parents Children

Identity =
100%

100%>
identity
‡ 99%

99%>
identity
‡ 97%

97%>
identity

Identity =
100%

100%>
identity
‡ 99%

99%>
identity
‡ 97%

97%>
identity

China HashSeq 451 255-196 194 34 21 6 67 102 23 4
DADA2 4,97 1,050 540 400 2,984

RYGB HashSeq 718 402-316 373 21 5 3 147 169 0 0
DADA2 3,385 1,648 966 191 580

Autism HashSeq 422 229-193 214 8 6 1 82 101 9 1
DADA2 2,398 1,295 493 230 385

Vaginal HashSeq 1,305 530-775 222 191 72 45 68 400 195 112
DADA2 12,106 3,284 4,335 1,562 2,925

Soil HashSeq 49 39-10 37 1 1 0 9 1 0 0
DADA2 5,761 1,256 1,387 1,466 1,652

MMC HashSeq 35 9-26 9 0 0 0 5 21 0 0
DADA2 26 14 8 1 3

aShown are the numbers of sequence variants (SVs) inferred by DADA2 and HashSeq as well as the percent identity of the sequence variants to the SILVA132 database.

FIG 6 Sequence variants generated by the HashSeq pipeline have a high degree of identity to the SILVA132 database. For each data set, the cumulative
fraction of inferred sequence variants for a range of 90 to 100% identity to the SILVA132 database is plotted for both the HashSeq and DADA2 pipelines.
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Given a postulate that nearly all sequence variants are the result of error, a natural
approach is to use the background error rate for inference to detect the relatively rare
occurrence of a variant that cannot be explained by background sequencing error.
This approach of using a background rate to generate P values for an event that is rea-
sonably uncommon has long been an approach to inference in genomics (10). A natu-
ral question is how to parametrize the expected background rate. Since we know that

FIG 7 HashSeq performs almost identically to DADA2 in terms of association studies between the gut microbiota and biological variables. Random forest
classification was used to study the association between the sequence variants with metadata variable of interest for five different 16S rRNA data sets. The
areas under the curves (AUC) of the receiver operating characteristic (ROC) curves were essentially superimposable between our inference-based approach
and DADA2. For the China data set, we examined if the gut microbiota can predict rural versus urban samples. For the RYGB data set, we tested if the gut
microbiota can predict presurgical versus postsurgical samples. For the vaginal data set, we studied the association between the microbiota and ethnicity
(black women versus white women). For the autism data set, we examined if the gut microbiota can predict children with autism versus the control group.
For the soil data set, the association between the microbiota and two types of soil, Amazon Dark Earth (ADE) and agricultural soil (AGR), was examined.

FIG 8 HashSeq is faster and more efficient in memory usage than DADA2. Runtime and memory usage by DADA2 and HashSeq are plotted for each 16S
rRNA gene data set.
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there is a dependency on sequencing depth, the simplest approach would be a
Poisson-based model in which the mean equals the variance. However, the Poisson
model failed to control the distribution of one-mismatch children in each cluster, pre-
sumably because the Poisson assumption of equal mean and variance was not met. In
a similar way, previous studies have shown that when the Poisson distribution is used
to test for differential gene expression in RNA-seq data sets, the Poisson-estimated var-
iance is smaller than the observed variance in real data, resulting in increased false dis-
coveries (7, 11). Therefore, overdispersion (where variance is higher than mean) is a
general feature of sequence count genomic data sets, including sequence variants,
and this problem causes inference based on the Poisson distribution to fail.

We therefore argued that inference of a true variant should utilize a model in which
the variance was not constrained to equal the mean. Previous algorithms designed for
RNA-seq data sets, such as DESeq and EdgeR, model count data with a negative bino-
mial distribution which assumes that the variance is greater than the mean (7, 12). We
preferred the normal distribution over the negative binomial distribution to model the
background error for two reasons. First, the negative binomial distribution is not
defined when the variance is less than the mean, and although for the majority of
sequence variants the variance is greater than the mean, there are still a large number
of child sequences that have a mean greater than the variance (Fig. 3). Second, the
negative binomial as a count model does not work on log-transformed data, which
contain noninteger values. The normal distribution instead gives us more flexibility in
terms of the relationship between the mean and variance as well as more naturally
allowing for the transformation of count data. Regardless of the limitations of the neg-
ative binomial distribution, at high sequencing depth the negative binomial distribu-
tion is well approximated by the normal distribution, further justifying the use of the
normal distribution.

In order to use a normal distribution-based model to infer true sequences from the
background noise, we used the mean and standard deviation predicted by a localized
regression fit between mean and standard deviation and parent sequences (Fig. 5). In
order to be as conservative as possible, we chose the mean and standard deviation for
our inference test to be the higher of the mean and the standard deviation found for
each parent directly or predicted by the LOESS regression. This conservative approach
detected sequence variants that had a good match to existing variants in the SILVA
database, suggesting that many of the variants that we detected had been previously
observed and therefore are unlikely to be sequencing errors. This provides further con-
firmation of the conservative nature of our method.

Our normal-distribution-based algorithm for detection of sequence variants, which
we here call HashSeq, has a number of advantages. First, it is very fast and can detect
sequence variants in less than 3 h on a single central processing unit (CPU) even for a
very large data set. It can run all sequences in a data set together and does not require
running sequences from each sample independently. This eliminates any potential
problems in which the characteristics of individual samples impact overall variant call-
ing in potentially complex ways. Second, our algorithm, compared to the popular algo-
rithm DADA2, is fairly conservative and calls a lower number of sequence variants as
true. The conservative nature of our method potentially increases the power of a study
to detect a signal since fewer spurious variants are reported and therefore there will be
a lower number of hypothesis to be corrected for in downstream analyses using FDR
multiple-hypothesis correction. By determining where the smooth relationship
between parent abundance and mean of child abundance breaks down, our algorithm
offers a natural way to set a threshold for removing low-abundance variants. This was
set at a parent abundance of 1,000 reads for all of our data sets except the largest one,
where it was set to 10,000. Setting a low abundance threshold in this way is an appeal-
ing alternative to removing taxa based on arbitrary thresholds of rarity or prevalence.
In addition, because our algorithm provides explicit P values for a null hypothesis that
a child sequence was derived from sequencing error of a parent sequence, our results
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may be easier to interpret than algorithms that do not assign a score to variants or
that assign scores based on arbitrary scales.

Finally, our algorithm is simple and is based on a two-parameter model. In contrast,
DADA2 assumes that each nucleotide transition has its own parameter which is calculated
from the transition probabilities and quality scores. DADA2 assumes that the parameters
obtained from quality scores are independent of sequencing depth, while our model ex-
plicitly considers background mean and variance as a function of sequencing depth.
Despite these differences in parametrization, using our variants or DADA2 variants pro-
duces essential identical power for machine learning-based supervised classification.

Our algorithm has some limitations to be noted. First, our algorithm is not sensitive
to detect true low-abundance sequences. Therefore, we recommend using more sensi-
tive algorithms, such as DADA2, to detect low-abundance sequence variants. Another
limitation is that our algorithm does not consider two or more mismatches. However,
we believe that one-mismatch errors are more likely to happen than two or more mis-
matches, and therefore, the abundances of two or more mismatches will reliably fall
below the detection limit of the algorithm (usually ,1,000 reads). This assertion is sup-
ported by simulation results (Fig. S2) which suggest that variants with more than one
mismatch error occur very infrequently in short reads. This assumption of the rarity of
multiple-mismatch sequences, however, may not be appropriate for long-read technol-
ogies such as PacBio, and this is another potential limitation of our method. Finally,
our algorithm does not explicitly model insertions or deletions (indels) and will treat
indel events as a separate parent sequence. Users who need to capture indel variation
in relationship to a parent might consider use of Deblur or other methods that incor-
porate multiple-sequence alignments. Our algorithm does not address issues of com-
positionality and the ways in which compositional artifacts might impact sequence var-
iant calling. Compositionality is an important and appropriate topic for future research.

Depending on the goals of the analysis, our algorithm can be run independently or
in combination with other sequence variant callers such as DADA2 or Deblur. If the
goal of an analysis is to find sequence variants that are associated with a particular ex-
perimental condition, our algorithm could be run independently and will produce a se-
ries of high-confidence variants which can be fed into statistical models to produce
FDR-corrected P values. Different thresholds from our algorithm can be used to pro-
duce more or fewer variants, which allows users to trade off sensitivity for power in
FDR-corrected hypothesis tests of each variant over the threshold. If the desired analy-
sis is machine learning or supervised classification, our results suggest that our algo-
rithm can give results very similar to those of DADA2 with reduced requirements for
processing time and memory. A limitation of our algorithm is that it produces only
one-off (single-nucleotide polymorphism [SNP]) variants. Combination with other OTU-
picking algorithms will be required if users desire a broader clustering approach, with
our algorithm used as a preprocessing step to perform initial one-off variant clustering
for input into a final OTU-generating algorithm. Likewise, since our algorithm does not
provide meaningful inference on low-abundance variants, if low-abundance taxa are of
interest to a user, algorithms such as DADA2 are likely more appropriate.

In summary, we have described HashSeq, a very simple and fast algorithm to infer
true variants from background sequencing errors. This algorithm can be easily used for
small or large 16S rRNA gene data sets generated from a diverse range of ecosystems.
Source code is freely available at https://github.com/FarnazFouladi/HashSeq as an R
package.

MATERIALS ANDMETHODS
Publicly available data sets. Six data sets were included in this study: one publicly available micro-

bial mock community (MMC) consisting of three samples (BioProject accession number PRJEB24409)
and five publicly available 16S rRNA gene data sets, including three human gut microbiota data sets to
which we refer as the China (PRJNA349463; n = 80), autism (PRJNA533120; n = 81), and Roux-en-Y gastric
bypass (RYGB) (Sequence Read Archive [SRA] accession number SRP113514; n = 71) data sets, one vagi-
nal microbiota data set (SRP115697; n = 2,367), and one soil microbiota data set (PRJEB14409; n = 40)
(13–18). For all data sets except for the soil data set, forward and reverse reads were merged using the
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PEAR software (19), and the paired reads were then trimmed to a constant length and shorter reads
were discarded (250 nucleotides for the China, vaginal, and MMC data sets, 200 nucleotides for the
RYGB data set, and 151 nucleotides for the autism data set). For the soil data set, only forward reads
were used, due to concerns about sequence quality for the reverse reads, and the reads were trimmed
to 250 nucleotides. For the soil, RYGB, and MMC data sets, primers were present in the public sequences
and were removed by our pipeline. Information regarding primers and the variable region of 16S rRNA
gene that were sequenced can be found in Table S1. For all data sets, singletons in each sample as well
as sequences with N’s were removed.

Cluster of sequences composed of a parent and one-mismatch children. We used a HashMap, a
simple data structure, to detect all 16S rRNA gene sequence variants, excluding sequence variants with
only one read in a sample (singletons). In our method, sequence variants are sorted according to their
abundance. Starting with the most abundant sequence variant (considered a parent sequence), all possi-
ble one-mismatch sequence variants in the data set are identified and considered as the one-mismatch
children for the parent sequence. Similar searches for parent and child sequences are performed for the
remaining sequences until all sequences are assigned as a parent sequence or as a one-mismatch child
sequence, resulting in the formation of numerous clusters of sequences that are composed of one par-
ent and one-mismatch children (Fig. 1).

Poisson model of frequency of one-match child variants. In order to estimate the rate of observ-
ing a one-mismatch sequence variant, we fit our data to a very simple model based on the Poisson dis-
tribution. This model has one free parameter which is the probability of a single-nucleotide sequencing
error. In this approach, we treat each nucleotide within a set of parent and child sequence variants inde-
pendently. Given the background error rate of P and a parent sequencing depth of Pi (a parent belong-
ing to the cluster i), the probability of seeing at least one error for a given nucleotide is given by

12 dpois 0; Pi � P=3ð Þ (1)

“dpois” is an R programming function that calculates density for Poisson distribution. We divide P by 3
in the above equation because there are 3 possible distinct nucleotides that can be tabulated as an error
(for example, an A base can be erroneously observed as either C, G, or T). If P is close to 1, we would
expect to always see all three possible variants of the nucleotide, and if P is close to zero, we would
expect to never see a mutation at that position in the sequence. We argue that we can fit equation 1 to
our data sets by considering the fraction of all unique one-mismatch children observed for a parent
sequence divided by the number of all possible one-mismatch children as shown in Fig. 1 and described
in Results. If P is high, then we would expect to see most of all the possible one-mismatch variants of a
parent sequence, and if P is low, we would expect to see few.

This model makes a number of simplifying assumptions. A key assumption is that the error rate P can be
estimated independently for each nucleotide and that not considering sequences with more than one nucle-
otide difference between parent and children does not bias our error rate estimate. We think this is a reason-
able assumption, as simulating a polymerase with the same error rate as the Poisson equation above and
examining the resulting distribution of one-mismatch children observed from among all resulting sequences
yields an essentially identical distribution as the Poisson equation above (the simulation code is available
here at https://github.com/afodor/metagenomicsTools/blob/master/src/binomFit/HowManyVariants.java; see
also Fig. S2). This concordance occurs because the overall error rate is low enough that sequences with more
than one mismatch occur infrequently and can therefore be ignored without altering our baseline error rate
estimate. For example, for a 250-bp sequence length with a P value of 0.00015 for error rate, sequences with
more than one mismatch are seen only in about 1 of 1,600 sequences in our simulation code. Obviously, this
assumption of independence of sequence variants that allows us to ignore sequences with multiple mis-
matches becomes more problematic for read lengths greater than the 250 bp that we examined in this study
and for overall higher error rates.

In addition, in order to see whether the estimated error rate derived from the presence or absence
of one-mismatch variants using the above model can be used to predict the background abundance of
sequence errors and therefore to infer true variants whose abundances are above the background noise,
we used a Poisson test using “poisson.test” in R with the following parameters:

Poisson:test ðCji;Pi; P=3; alternative ¼ “greater”Þ (2)

where Cji is the abundance of a jth child sequence of the cluster i, Pi is the abundance of a parent
sequence of the cluster i, and P is the estimated error rate from the Poisson model above (equation 1). P
values generated by the Poisson test (Fig. S1) were adjusted for multiple-hypothesis testing using the
Benjamini-Hochberg procedure.

Normal distribution of the background noise. As equation 2 based on the Poisson distribution under-
estimates the abundances of one-mismatch children (see Results), we further examined if the abundances
of one-mismatch children can be better fit by the normal distribution. For this purpose, abundances of
sequence variants were log10 transformed and their histograms were plotted for each parent sequence.
Next, the mean and standard deviation for each parent were calculated. The relationship between the
mean abundance of children and the parent sequences as well as the standard deviation abundance of chil-
dren and the parent sequences were fitted to a local regression, or locally estimated scatterplot smoothing
(LOESS). We show that for parent sequences with depths above 1,000 reads, the LOESS regression is a rea-
sonable fit for most data sets; however, for parents with depths below 1,000 reads, variance of the means
and standard deviations is increased due to the sparsity of one-mismatch children, and therefore, the
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LOESS regression does not fit as well (Fig. 5). Therefore, as a default, sequence variants with total abun-
dance of less than 1,000 across all samples are filtered (i.e., removed) in our pipeline. This threshold of 1,000
can be changed by users based on their data. For example, for the vaginal data set, we increased the
threshold to 10,000, as the sequencing depth is significantly higher for this data set than for other data sets
and the LOESS regression is a good fit when sequences have depths higher than 10,000 reads (Fig. 5).

The means and standard deviations estimated from the LOESS regression were assumed to be the
background noise, and therefore, any variant above this background noise would be called a true
sequence variant. Based on this assumption, for each child variant, a one-sided P value was generated
using the “pnom” function in R and the following formula:

pnorm½log10ðCjiÞ; lower:tail ¼ FALSE; Mi; Si� (3)

Mi ¼ max mean Cið Þ; mean for LOESS fit½ � (4)

Si ¼ maximum SD Cið Þ; SD for LOESS fit½ � (5)

where Cji is the abundance of jth child of cluster i and Mi and Si are, respectively, the estimated mean
and standard deviation (SD) of cluster i, which are the maximum of the mean and standard deviation
predicted by the LOESS regression from the abundance of the parent sequence in cluster i and the
mean and standard deviation estimated directly from the child abundance of cluster i (equations 4 and
5). Taking the maximum of the mean and standard deviation enables us to be more conservative, espe-
cially for low-abundance sequences where data become sparse and the LOESS fit is less reliable. P values
generated by the “pnorm” test were adjusted for multiple-hypothesis testing using the Benjamini-
Hochberg procedure. Corrected P values of less than 0.05 were considered significant, rejecting the null
hypothesis that the variant child is a sequence error.

Comparison to DADA2. We compared the performance of HashSeq to the performance of the
DADA2 pipeline (5). For this purpose, reads for each data set were trimmed to the same length as dis-
cussed above. Trimming was performed with the function “filterAndTrim” in DADA2 with default param-
eters. Inference of sequence variants was performed as described in https://benjjneb.github.io/dada2/
bigdata.html with default parameters. Filtering and inference were performed using separate scripts in
order to better compare the run time and memory usage between the DADA2 algorithm and HashSeq.

In order to compare DADA2 and our algorithm, we used “blastn” to map sequence variants inferred
from both algorithms to the SILVA132 database. Percent identity was calculated as

alignment length – number of mismatches1 gapsð Þ½ �=maximum alignment length; sequence lengthð Þ � 100

(6)

where “sequence length” is the known length of the query sequence and all other parameters were
reported by BLAST. This formula penalizes both mismatches and gaps in either the sequence or the
alignment. For each sequence variant, the first hit with the highest bit score with the database was
selected.

Finally, we compared DADA2 and our algorithm in terms of associations between the inferred
sequence variants and the variable of interest in the metadata. For this purpose, we performed random
forest classification for each algorithm and data set with four cross-validations and 10 repeats using
RandomForestClassifier with 100 decision trees and RepeatedKFold methods from the Scikit-learn library
in python 3.8.1.

Data availability. Our pipeline is written in Java (JDK 1.8) and R (4.0.2) but can be installed as an R
package and run from an R environment. Source code with instructions for installing HashSeq package
can be found at https://github.com/FarnazFouladi/HashSeq. All codes and figures for the analyses of
this manuscript can be found at https://github.com/FarnazFouladi/HashSeq_Manuscript.

SUPPLEMENTAL MATERIAL

Supplemental material is available online only.
FIG S1, PDF file, 0.04 MB.
FIG S2, PDF file, 0.2 MB.
TABLE S1, DOCX file, 0.01 MB.
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