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Abstract

Longitudinal next-generation sequencing of cancer patient samples has enhanced our understanding of the evolution
and progression of various cancers. As a result, and due to our increasing knowledge of heterogeneity, such sampling is
becoming increasingly common in research and clinical trial sample collections. Traditionally, the evolutionary analysis of
these cohorts involves the use of an aligner followed by subsequent stringent downstream analyses. However, this can
lead to large levels of information loss due to the vast mutational landscape that characterizes tumor samples.

Here, we propose an alignment-free approach for sequence comparison—a well-established approach in a range of biological
applications including typical phylogenetic classification. Such methods could be used to compare information collated in raw
sequence files to allow an unsupervised assessment of the evolutionary trajectory of patient genomic profiles.

In order to highlight this utility in cancer research we have applied our alignment-free approach using a previously established
metric, Jensen–Shannon divergence, and a metric novel to this area, Hellinger distance, to two longitudinal cancer patient
cohorts in glioma and clear cell renal cell carcinoma using our software, NUQA.

We hypothesize that this approach has the potential to reveal novel information about the heterogeneity and evolutionary
trajectory of spatiotemporal tumor samples, potentially revealing early events in tumorigenesis and the origins of metastases and
recurrences.
Key words: alignment-free, Hellinger distance, exome-seq, evolution, phylogenetics, longitudinal.

Introduction

Investigating evolution and heterogeneity of a neoplasm can
give insight to the nature and origins of therapeutic resistance
as well as assist in predicting response to treatment (Greaves
and Maley 2012; Turajlic et al. 2018) As a result, and due to
the decreasing costs of next-generation sequencing (NGS),
there has been a recent increase in longitudinal profiling of
patient samples throughout their care leading to a number of
high-quality studies (Gerlinger et al. 2014; Johnson et al. 2014;
Mazor et al. 2015; Turajlic et al. 2018). However, there are
limitations introduced by bulk sequencing of a tumor and a
lack of bioinformatic tools to handle these analyses.
Phylogenetic reconstruction is commonly used to study evo-
lution in biology, and so, it would be intuitive to apply this to
study clonal evolution in cancer (Nowell 1976). However,
current studies build phylogenies based on knowledge from
only one type of somatic mutation, such as single nucleotide
variants (SNVs) and copy number alteration (Gerlinger et al.
2014; Mart�ınez et al. 2015). These methods also require an
alignment step to highlight somatic mutations occurring in
each sample introducing information loss and bias due to
intrinsic issues previously highlighted (Kidd et al. 2010;
Rosenfeld et al. 2012; Paten et al. 2017). Similarly, a number

of methods have been highlighted previously to measure
intratumoral heterogeneity (ITH) including the use of ecology
measures of diversity in Barrett’s esophagus, the MEDICC
algorithm, PyClone, and EXPANDS (Mart�ınez et al. 2015;
Schwarz et al. 2015; Andor et al. 2016). However, similar
limitations apply here as only one type of somatic alteration
is incorporated, such as allele frequency, also requiring the use
of an aligner. Additionally, ecological measures, such as iden-
tifying the number of clones, can be found relatively easily in
“2D” tumors such as Barrett’s esophagus but this would be
difficult to replicate in 3D tumors.

Alignment-free sequence comparison, defined as any ap-
proach calculating similarity/dissimilarity between sequences
which does not use or produce alignment, can be used as an
alternative approach to address these issues and create ho-
listic patient profiles for assessing evolutionary trajectories
and spatiotemporal heterogeneity. It is more sensitive in
the context of sequence divergences and robust against ge-
nome rearrangement compared with alignment approaches
(Vinga 2014; Bernard et al. 2017). These methods can broadly
be split into two groups: word-based methods and
information-theory based methods. Here, we will focus on
word-based methods which have recently been shown to
have greater accuracy compared with information-theory
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based methods in protein sequence comparison (Zielezinski
et al. 2017). The natural efficiency and accuracy of this algo-
rithm has led to its use in many areas including assessing
phylogenetic relationships between bacterial and viral
genomes, promoter recognition, and protein sequence com-
parison expanding to an extensive list of tools currently avail-
able for various applications (Sims et al. 2009; Chattopadhyay
et al. 2015; Fan et al. 2015; Xu et al. 2016), which has been
reviewed previously (Zielezinski et al. 2017). However, very
few tools can scale to handle the quantity of data as required
by longitudinal cancer research cohorts.

Here, we present NUQA (NGS tool for Unsupervised anal-
ysis of fastQ using Alignment-free), a framework that utilizes a
highly efficient k-mer counter, jellyfish, alongside software
built in Cþþ to quickly and efficiently produce alignment-
free “phylogenetic” trees for longitudinal cancer patient
cohorts on a standard workstation. In order to ensure this
approach is robustly applicable to cancer research cohorts we
have assessed a well-known metric, Jensen–Shannon diver-
gence (JSD), which has previously been applied in an
alignment-free context (Sims et al. 2009), as well as a novel
metric in this space, Hellinger distance (HD).

New Approaches
NUQA was developed using bespoke scripts written in bash
and Cþþ along with prebuilt software jellyfish (Marçais and
Kingsford 2011) and PHYLIP (Felsenstein 2004). This algorithm
consists of five steps: k-mer counting using jellyfish; sorting the
resulting count vectors for easier processing and normalizing
to values between one and zero for comparison; merging the
count vectors into a single data matrix using a Cþþ script;
calculating the distances between these vectors using a be-
spoke Cþþ script; and finally, building a newick tree using
PHYLIP. These steps are combined in a single wrapper script
written in bash (supplementary fig. S1, Supplementary
Material online). We have tested both JSD and HD for appli-
cability in the comparison of whole-exome sequencing (WES)
samples in longitudinal cancer patient cohorts. Given two
probability vectors, P and Q, JSD is defined as:

JS P;Qð Þ ¼ 1

2
KL P;Mð Þ þ 1

2
KL Q;Mð Þ;

where M ¼ 1
2 Pþ Qð Þ and KL is Kullback–Leibler divergence:

KL P;Mð Þ ¼
Xk
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Detailed methods are available in the Supplementary
Material online (Section 1) and the software implementation
can be found on GitHub (https://github.com/ACRoddy/
NUQA; last accessed August 22, 2019).

Results

Identifying Optimal Parameters
Multiple distance metrics have been highlighted for their util-
ity in alignment-free sequence comparison in various studies
and reviews (Höhl et al. 2006; Dai et al. 2008; Vinga 2014;
Zielezinski et al. 2017), From these we selected the most ap-
plicable to our cohort (discussed in the supplementary note
1.2, Supplementary Material online). We decided to focus on
JSD, a previously studied metric in alignment-free methods,
and HD which is novel to this domain. We applied each of
these metrics to 6 patients, 3 clear cell renal cell carcinoma
(ccRCC) patients and 3 glioma patients, using a 21-mer length
in order to assess their applicability to cancer patient cohorts
(fig. 1A–D and supplementary fig. S2, Supplementary
Material online). We compared the trees using both
branch-score distance (BSD) and symmetric distance (SD)
(fig. 1C and D). BSD suggests that HD produces similar results
to JSD with distances <0.3 for 5/6 patients, whereas SD
highlighted that JSD and HD produce the same tree topolo-
gies (SD¼ 0) for all patients except P17 which obtained a SD
of 2 due to a change in location of sample “Recurrence A.” We
conclude that JSD and HD both produce consistent results in
this context suggesting that HD may perform well in other
alignment-free applications.

With the aim of identifying an appropriate k-mer length
which should be used when applying alignment-free methods
to longitudinal cancer patient cohorts, we assessed the effect
of varying k-mer length (13, 15, 17, 19, 21, 23, 25, and 31 bp)
for patient RMH004 (fig. 1E–G) and additionally for patients
P90, P17, EV001, and EV002 (supplementary figs. S3–S6,
Supplementary Material online, respectively) using JSD. An
ideal k-mer length would have the sensitivity of representing
only one mutation while also ensuring it does not occur fre-
quently or represent multiple regions (supplementary note
1.2, Supplementary Material online).

Again, we compared trees using BSD and SD. Results were
visualized using heatmaps (fig. 1F and G) and a line graph
depicting the effects of sequential increases in k-mer length
on BSD (fig. 1H). Results indicate an optimal range of 17–25
for these patients supporting previous findings that 21 is an
optimal k-mer length for large genomes (Sims et al. 2009; Fan
et al. 2015).

Application to Cancer Patient Cohorts
To first validate the use of this method on longitudinal, spa-
tial, and temporal cohorts, we created simulated data sets,
A and B, to represent cancer patient profiles through intro-
ducing controlled mutational events (fig. 2A and B, respec-
tively). The aim was to anticipate a predefined branching
pattern and assess the ability of NUQA to correctly assign a
branching pattern. A “normal” file (N) was produced initially
before being mutated to form a “cancerous” file (C). This
cancerous sample was then mutated three separate times
to represent heterogeneity (files C1a, C2a, and C3a) and finally
each of these three files were mutated two successive times
(files b and c) to represent the evolution of these three sub-
clones. Data set A was simulated to represent SNVs and indels
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FIG. 1. Identifying optimal parameters for use with alignment-free. Application of Jensen–Shannon divergence (JSD) and Hellinger Distance (HD)
to (A) clear cell renal cell carcinoma (ccRCC) patient RMH004 with a germline sample (GL), multiple samples from the ccRCC tumor (R2-4, R8,
R10) and a tumor thrombus from the renal vein (VT) and (B) glioma patient P90 with a germline sample (Normal), multiple samples from the
initial grade II glioma (Initials A–F) and two samples from a recurrent grade II glioma (Recur 1A and 1B). (C) A table summarizing branch-score
distance (BSD) and symmetric distance (SD) values returned when comparing trees for six patients for which both JSD and HD have been applied.
(D) A bar chart summarizing BSD and SD values returned when comparing trees for six patients for which both JSD and HD have been applied. (E)
Tree topologies produced using k-mer lengths 13, 15, 17, 19, 21, and 23 in combination with JSD when applying alignment-free methods to patient
RMH004. (F) A heatmap representing the BSD between trees produced using varying k-mer lengths and HD applied to patient RMH004. (G) A
heatmap representing the BSD between trees produced using varying k-mer lengths and JSD applied to patient RMH004. (H) A line graph
representing the BSD between trees produced using increasing k-mer lengths when applying JSD.
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within WES data whereas data set B represents SNVs, indels,
and structural variants within whole-genome sequencing
(WGS) data. As expected, these three subclones form three
distinct branches with file “c” being the most distal sample
and file “a” being the least.

Furthermore, we identified two well-studied, high-quality
longitudinal cancer research cohorts to test the utility of our
software in glioma (Johnson et al. 2014; Mazor et al. 2015) and
ccRCC (Gerlinger et al. 2014). We have identified one patient
from each cohort for whom the original authors have pro-
duced phylogenetic trees drawn from the information

obtained using a variant caller to highlight SNVs and small
indels. Patient P90 from the glioma cohort had longitudinal
samples, whole-exome sequenced, including circulating blood
samples (Normal), six samples from the initial tumor (Initials
A–F) classified as a grade II glioma and two samples from a
recurrence tumor (Recur A and B) also classified as a grade II
glioma. We applied our own algorithm to this patient and
produced phylogenetic trees and MDS plots based on our
output (fig. 2B and C). A least-squares minimum-evolution
(LSME) tree was produced from somatic SNVs and indels for
patient P90 by Mazor et al., for which, detailed methods can

FIG. 2. Applying alignment-free sequence comparison methods to glioma patient P90 and ccRCC patient RMH004. (A) Simulated data set “A”
created using software XS and fastx-mutate-tools to represent SNVs and indels in small scale data such as WES. (B) Simulated data set “B” created
using software pIRS to represent SNVs and indels and structural variants in WGS. (C) Least-square minimum-evolution tree produced based on a
binary matrix of SNVs present in the samples for P90 reused with permisson from Mazor et al. (2015). (D) An unrooted Neighbor-Joining tree
produced applying our alignment-free software (NUQA), incorporating JSD, to patient P90. (E) Multidimensional scaling plot representing the
distances between samples produced applying NUQA, incorporating JSD, to patient P90. (F) A maximum parsimony tree produced based on a
binary matrix of SNVs present in the samples for RMH004 adapted with permission from Gerlinger et al. (2014). (G) An unrooted Neighbor-Joining
tree produced applying NUQA, incorporating JSD, to patient RMH004. (H) Multidimensional scaling plot representing the distances between
samples produced applying NUQA, incorporating JSD, to patient RMH004.
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be found in the original paper (Mazor et al. 2015) (fig. 2A).
We use these as a basis for comparison, aware that bias will
have been introduced as only reads which uniquely aligned to
the reference genome have been considered and the variant
callers used could only identify SNVs and small indels but not
larger aberrations. This tree contains a relatively long trunk
region before tumor samples diverge indicating linear evolu-
tion. Furthermore, three key clusters of samples are formed,
the first containing Initials C, D, and F, the second containing
Initials A, B, and E and the final cluster containing the two
recurrent samples. Similarly, the tree produced using NUQA
is highly consistent, also indicating that initial samples C, D,
and F occur early in evolution, clustering closely with the
Normal sample whereas initial samples A, B, and E branch
distally suggesting that these are later events in evolution. In
addition, recurrence samples A and B branch early, clustering
closely with initial samples C, D, and F. Moreover, both trees
seem to suggest high levels of ITH within the initial tumor and
that there is little ITH within the recurrent tumor.

For ccRCC patient RMH004 we have WES data for germ-
line DNA in the blood (GL), five samples from the initial
ccRCC tumor (R2-4, R8, and R10) and one sample from a
thrombus in a renal vein (VT). Again, we produced phyloge-
netic trees and MDS plots based on our output from NUQA
for this patient (fig. 2E and F). Maximum parsimony trees
were created based on SNVs and small indels found to be
present within the tumor samples as described in the original
paper (Gerlinger et al. 2014) (fig. 2D). The original maximum
parsimony tree suggests that R3, VT, and R10 occur early in
evolution whereas R8, R4, and R2 occur much later and are
more highly mutated. The original authors highlighted that
two distinct mutations occurred in PBRM1 indicating parallel
evolution of two subclones within the tumor. The phyloge-
netic tree produced using NUQA also suggests that sample
R10 occurs early in evolution and that R2 and R4 are more
genetically divergent, occurring much later in evolution
(fig. 2E). However, samples R3, VT, and R8 show variations
in branching suggesting that more complex mutational
events may be present in these samples. Both trees also ap-
pear to show high levels of ITH which can also be seen in the
MDS plot for these samples (fig. 2F).

Further analysis of patients P17 and EV001 also indicate
similar groupings to what can be seen using alignment-based
methods, however, again there are key differences in branch-
ing within these patients (supplementary fig. S6; supplemen-
tary note 3.1 and fig. S7; supplementary note 3.2,
Supplementary Material online, respectively). Additional anal-
yses can be performed based on these results, for example, by
using the branching pattern produced through NUQA to
inform groups as a basis for further analysis. An example using
FastGT (Pajuste et al. 2017) to identify SNP calls differentiating
groups found in patient P90 can be found in the supplemen-
tary note 3.3 (Supplementary Material online).

Benchmarking Alternative Alignment-Free Packages
Reviewing the literature on current alignment-free phyloge-
netic software identified two capable of processing multiple
large fastq files for sequence comparison: AAF and kWIP (Fan

et al. 2015; Murray et al. 2017) both of which are designed to
classify organisms at species level requiring a sensitivity to
much larger genetic distances. All packages were tested using
patient P90 using a k-mer length of 21 and allowing 64 GB
RAM. AAF produced the best time of 1 h, 57 min whereas
NUQA ran in 2 h, 25 min and kWIP ran in 5 h, 48 min. In order
to assess the applicability of these to cancer research data we
tested NUQA, AAF, and kWIP on our simulated data set
(fig. 3A–C, respectively). It is promising to see that all soft-
wares produce the branching pattern we expect to see.
However, when applied to patient P90 (fig. 3D–F, respec-
tively) we see a variation in tree topology, but more impor-
tantly, AAF and kWIP produce a very small trunk (orange)
compared with branch lengths indicating that they are less
sensitive to the changes occurring between single-patient
samples.

Discussion
Alignment-free sequence comparison is capable of building
evolutionary relationships between samples without the use
of an aligner. This approach allows for the inclusion of all
information regardless of whether it would align to a refer-
ence genome preventing bias to pipeline specific information
and allowing the inclusion of larger insertions and deletions or
chromosomal rearrangements which would be difficult to
align. It is also a highly efficient approach yielding grossly
improved times over traditional methods using an aligner
(Zielezinski et al. 2017).

Here, we have shown potential utility for this approach to
be applied to longitudinal cancer patient cohorts as an unsu-
pervised approach for comparing sequencing files. In order to
do this we have tested a range of suitable distance metrics for
their applicability to this type of data, highlighting JSD as an
appropriate measure to assess pairwise distances between
feature frequency profiles as previously described (Sims
et al. 2009). But also HD, a previously untested metric in
alignment-free sequence comparison which we have shown
produces equally consistent results. Varying k-mer length
revealed that a k-mer greater than 17 should be sufficient
for this analysis, however, we decided to continue further
analysis with a k-mer length of 21 to reduce the effects of
homoplasy. We validated the use of NUQA on longitudinal,
spatial, and temporal cohorts using two simulated data sets A
and B, representing SNVs and indels in small scale data and
SNVs, indels, and structural variants in large scale, WGS data,
respectively. Furthermore, we assessed the utility of applying
an alignment-free framework in cancer research by applying
this method to one patient each from two high-quality lon-
gitudinal cohorts in ccRCC (Gerlinger et al. 2014) and glioma
(Johnson et al. 2014; Mazor et al. 2015). In both cases, clear
similarities could be seen when comparing the results of
alignment-free analysis to the trees produced using
alignment-based approaches, deduced from changes in
SNVs and small indels, however, clear and possibly fundamen-
tal differences could be seen. This may be a result of unas-
sessed gene fusion events, larger indels or chromosomal
rearrangements which are also contributing to the tumors
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mutational landscape and therefore affecting the evolution-
ary pathway of these cancer patients. Finally, we bench-
marked our software, NUQA, against other large-scale
alignment-free softwares designed for assessing a much
greater genetic divergence between samples: kWIP and
AAF. We found that AAF yielded a marginal improved speed
over our current approach; however, neither software was
designed to assess the relatively small genetic distances which
would be seen in a cancer patient cohort.

Our tool, in combination with alignment-free genotyping
tools, such as FastGT (Pajuste et al. 2017), has the potential to
add extra layers to the evolutionary analyses of cancer types
providing insights which may otherwise be passed over.
Further analysis of the feature frequency profiles built in
our extendable alignment-free framework could highlight
patterns and abnormalities contributing to the branching
pattern obtained for each cancer patient helping to tease
out contributing factors in cancer evolution. We would ex-
pect that given current precision medicine paradigms and
reductions in sequencing costs this approach may be adopted
clinically to highlight a cancer trajectory and consequential
strategies for the patient.

In conclusion, we have introduced NUQA, a novel and
efficient software application for performing alignment-free
sequencing comparison, with the aim of highlighting the util-
ity of these methods for the unsupervised phylogenetic as-
sessment of longitudinal patient cohorts in cancer research.

We hypothesize that this presents an opportunity to provide
a landscape view to identify early and late events in evolution
as well as give an indication of the origins of metastatic and
recurrent tumors in quick turnaround time and can be used
in combination with the more targeted and previously
adopted approaches.

Materials and Methods
This framework was applied to two previous published data
sets: A glioma cohort containing spatial and temporal exome-
seq data for patients P17, P49, and P90 (Johnson et al. 2014;
Mazor et al. 2015), A ccRCC cohort containing spatial and
temporal exome-seq data for patients EV001, EV002, and
RMH004 (Gerlinger et al. 2014).

Both the glioma and the ccRCC cohort were preprocessed
using the same steps prior to applying our algorithm:
SAMTOOLs (Li and Durbin 2009) was used to revert files
for patient’s P17, EV001, EV002, and RMH004 from bam to
fastq files to allow us to work with the raw reads obtained
from sequencing. Following this, FastQC (Andrews 2010) was
used to ensure the files were a good quality for alignment-free
processing and for setting levels for trimming, if required reads
were trimmed using Trimmomatic (Bolger et al. 2014). Finally,
resulting trees were visualized using the online software tool,
iTOL (https://itol.embl.de/). MDS plots were created using the

FIG. 3. Benchmarking of NUQA against other alignment-free softwares. Unrooted Neighbor-Joining trees produced when applying NUQA (A),
AAF (B), and kWIP (C) to a simulated data set using a k-mer length of 17 and allowing 64 GB RAM and trees produced when applying NUQA (D),
AAF (E), and kWIP (F) to patient P90 using a k-mer length of 21 and allowing 64 GB RAM.
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cmdscale() function and ggplot2 (Wickham 2009) package
within the R statistical environment (R Core Team 2017).

To assess changes in tree topology and branch lengths
between trees produced using alignment-free methods for
the same patient we used BSD, a measure accounting for
both branch length and tree topology, and SD, a measure
accounting for only tree topology. Both of these are available
through the PHYLIP package.

Further description of the generation of simulated data
and discussion on the choice of distance metric and evalua-
tion of k-mer length are available in supplementary notes
1.2–1.6 (Supplementary Material online).

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.
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Höhl M, Rigoutsos I, Ragan MA. 2006. Pattern-based phylogenetic dis-
tance estimation and tree reconstruction. Evol Bioinform Online
2:359–375.

Johnson BE, Mazor T, Hong C, Barnes M, Aihara K, McLean CY, Fouse SD,
Yamamoto S, Ueda H, Tatsuno K, et al. 2014. Mutational analysis
reveals the origin and therapy-driven evolution of recurrent glioma.
Science 343(6167):189–193.

Kidd JM, Sampas N, Antonacci F, Graves T, Fulton R, Hayden HS, Alkan
C, Malig M, Ventura M, Giannuzzi G, et al. 2010. Characterization of
missing human genome sequences and copy-number polymorphic
insertions. Nat Methods 7(5):365–371.

Li H, Durbin R. 2009. Fast and accurate short read
alignment with Burrows–Wheeler transform. Bioinformatics
25(14):1754–1760.
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