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Abstract: The human leukocyte antigen system (HLA) is a cluster of highly polymorphic genes
essential for the proper function of the immune system, and it has been associated with a wide range
of diseases. HLA class I molecules present intracellular host- and pathogen-derived peptides to
effector cells of the immune system, inducing immune tolerance in healthy conditions or triggering
effective immune responses in pathological situations. HLA-C is the most recently evolved HLA
class I molecule, only present in humans and great apes. Differentiating from its older siblings,
HLA-A and HLA-B, HLA-C exhibits distinctive features in its expression and interaction partners.
HLA-C serves as a natural ligand for multiple members of the killer-cell immunoglobulin-like
receptor (KIR) family, which are predominately expressed by natural killer (NK) cells. NK cells are
crucial for the early control of viral infections and accumulating evidence indicates that interactions
between HLA-C and its respective KIR receptors determine the outcome and progression of viral
infections. In this review, we focus on the unique role of HLA-C in regulating NK cell functions and
its consequences in the setting of viral infections.

Keywords: HLA-C; NK cells; killercell immunoglobulin-like receptors; viral infection

1. Introduction

The human leukocyte antigen (HLA) system represents a cluster of highly polymorphic
genes that are associated with a large number of diseases. In its core function, the HLA
system provides the underlying means for the immune system to distinguish between
“self” and “non- or altered-self” [1]. Proteins encoded by HLA genes can be subdivided into
two major groups, based on topography and function: HLA class I, comprising classical
(HLA-A, -B and -C) and non-classical (HLA-E, -F and -G) molecules, and HLA class II.
In particular, classical HLA class I molecules play a crucial role in inducing tolerance on
the one hand and triggering innate and adaptive immune responses on the other. Being
expressed by all nucleated cells, they represent the vehicles for the presentation of host-
cell-, as well as pathogen-derived peptides which allow recognition by effector cells of the
immune system [2]. The remarkable diversity of the HLA gene locus is the result of millions
of years of evolution shaping the human species through natural selection. The tremendous
impact of the HLA locus on the still-ongoing selection is reflected by the numerous disease
associations between HLA and the outcomes of infections [3], autoimmunity [4], cancer [5],
transplantation [6] and reproduction [7].

In the setting of viral infections, HLA class I molecules take a central position in a
race between the effective elimination of virus-infected cells by the immune system and
virus-mediated evasion from immune recognition. Cytotoxic T lymphocytes (CTLs) as
well as natural killer (NK) cells are the major effector cells contributing to antiviral immu-
nity, however utilizing opposing mechanisms for identifying virus-infected cells. CTLs
recognize specific HLA:peptide complexes through their T cell receptor (TCR), whereas
NK cells sense alterations of HLA class I surface expression and the presented peptides
using germline-encoded receptors recognizing HLA class I. Most notably, CTLs require
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the presence of HLA class I for target cell recognition, whereas NK cells are triggered by
the absence of HLA class I (“missing-self signal”) [8]. Viruses are challenged to counteract
these opposing mode of actions and establishing a “sweet spot” in avoiding both CTL- as
well as NK cell-mediated immune pressure. For this, viruses developed various evasion
strategies that include modulation of HLA class I expression and antigen presentation.

In recent years, the classical HLA class I molecule, HLA-C, gained attention for its,
previously neglected, role in viral immunity. In comparison to HLA-A and -B, HLA-C
displays unique features. For one, HLA-C is the most recently evolved HLA class I molecule
and only present in humans and great apes [9,10]. HLA-C is the only HLA class I molecule
that is expressed on trophoblasts, which can be recognized by maternal decidual NK cells,
and therefore represent a key molecule for the maternal-fetal immune tolerance in the
establishment of pregnancy [11]. In contrast to its older siblings, HLA-C is expressed
at a considerably lower level on the cell surface [12]. Hence, HLA-C was thought to
play a minor role in the adaptive immune response of antigen-specific T cells [13]. For
the functional maturation and induction of tolerance in NK cells; however, HLA-C is
crucially involved by serving as the natural ligand for multiple members of the killer-cell
immunoglobulin-like receptor (KIR) family [14]. Similar to HLA, the KIR gene locus is
highly polymorphic and its gene products are predominantly expressed by NK cells [15–17].
KIRs interacting with HLA-C rapidly co-evolved with the first appearance of HLA-C and
are able to recognize virtually all HLA-C allotypes, in contrast to the limited spectrum of
HLA-A and -B allotypes recognized by human KIRs [18]. Finally, accumulating evidence
showed that certain combinations of HLA-C/KIR alleles are associated with the clinical
outcome of various types of diseases [19–22]. Given the impact of KIR/HLA-C interactions
on the acquisition and progression of viral infections, this review sought to glean and
discuss information on the unique role of HLA-C in regulating the immune responses of
NK cells in the course of viral infections.

2. Structure, Expression, and Regulation of HLA-C

HLA class I molecules are heterodimers that consist of a glycosylated transmembrane
heavy α-chain, encoded by chromosome 6 (6p21) and a light soluble non-covalently as-
sociated β2-microglobuline (β2m). Its encoding gene is located on chromosome 15 [23].
The promoter region of HLA class I molecules is highly conserved [24] and controls the
transcription through regulatory elements that are located mainly in the proximal but also
in the distal region upstream the transcriptional start side (Figure 1). The SXY box consists
of W/S, X1, X2 and Y box motifs that are able to bind a range of transcription factors.
The X1 box binds the RFX complex, which includes RFX5, RFXAP and RFXANK/B [25],
whereas the X2 box interacts with CREB and ATF1 [26]. Moreover, the Y box is bound by
NFY [27]. Factors for W/S binding are still unknown. The described complex is crucial
for the recruitment of the transactivator NOD-like receptor caspase recruitment domain
containing protein 5 (NLRC5) and the formation of an enhanceosome. NLRC5 is highly
induced by IFNγ stimulation and also relevant for the expression of β2m [28,29]. In ad-
dition, the promoter region of HLA class I consists of an interferon stimulated response
element (ISRE) and an EnhancerA, which are also important for cytokine-induced expres-
sion of HLA class I [30,31]. The production of IFNγ for example by activated lymphocytes
mediates the expression and binding of interferon-response factors (IRFs) to ISRE via
the JAK/STAT pathway. Compared to HLA-A with two functional NFκB binding sites
and HLA-B with only one binding site [32], HLA-C exhibits none of these NFκB binding
sites [30,33]. HLA-C encodes a polymorphic heavy chain, which can be subdivided into
three domains: the two antigen-binding domains α1 and α2 and the α3 domain, which
connects the molecule to the cell surface with a short cytoplasmic tail and interacts with the
CD8 co-receptor of cytotoxic T cells [34,35]. The assembly of the heavy α-chain and β2m
that occurs in the endoplasmic reticulum (ER) is tightly controlled and involves a number of
co-factors (Figure 2). At least four of these accessory proteins thought to be involved in the
assembly of the HLA class I/β2m heterodimers with peptides are the ABC transporter TAP
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(transporter associated with antigen processing), the type I transmembrane glycoprotein
tapasin (tpn), ERp57 and calreticulin (Crt) [36,37]. This multi-subunit complex is referred
to as peptide-loading complex (PLC). Prior to the incorporation into the PLC, the HLA
class I heavy chain is associated with another ER resident co-factor, the lectin-chaperon
calnexin (Cnx) [38,39]. ERp57, a thiol oxidoreductase together with Cnx plays an essential
role in protein folding by promoting the formation of disulfide bounds [40]. Most newly
formed heterodimers are unstable and need to enter the PLC in which Cnx is replaced with
its orthologue Crt. The dissociation of HLA class I molecules from Cnx marks the end of
the early assembly process. In the cytosol, proteins are degraded in the proteasome [41],
transported into the ER lumen by TAP and loaded onto the peptide-binding grove of the
HLA class I molecule. Only HLA class I molecules with high-affinity peptides are released
from the PLC and enter the Golgi apparatus for subsequent glycosylation. Following this,
the HLA:peptide complex is transported to the cell membrane where they present the
endogenously-generated peptides to CD8+ T cells and NK cells [42].
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Figure 2. Protein synthesis pathway of HLA-C. Transcription of HLA-C is regulated through various transcription factors 
in the promoter region. Once the HLA-C mRNA is translated, the generated polypeptide undergoes proper folding, as-
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Figure 1. Location and structure of the HLA-C gene. HLA class I genes are located on the short arm of chromosome 6. The
transcription of HLA-C is regulated by core promoter elements but also by distal regulators. The core promoter consists of
the EnhancerA, ISRE and a SXY box. Compared to HLA-A and -B, the EnhancerA of HLA-C has no functional binding site
for NFκB. ISRE activation is mediated through IFNγ stimulation which recruits the transcription factor IRF. The SXY box
is composed of the W/S, X1, X2 and Y and is important for the binding of NLRC5 and formation of the enhanceosome.
Transcription factors for W/S are still unknown, but X1 has binding sites for RFX and ETS, X2 has binding sites for CREB
and ATF1 and Y for NFY. Moreover, the non-coding region of HLA-C contains an OCT1 binding site ~800 bp upstream of the
core promoter region. HLA-C has 8 exons. Exon 1 encodes the signal peptide. Exon 2 and 3 encode the α1 and α2 domains
which build the peptide binding grove. The α3 domain (exon 4) is connected to the transmembrane domain (TM) and
cytoplasmic tail (CYT) (exon 5–7), anchoring the molecule to the cell membrane. Created with BioRender.com.

Besides peptide specificity and binding affinity, the expression level on the cell surface
is an important factor for an effective immune response. Compared to HLA-A and -B,
HLA-C has a lower expression at the cell surface [23,43,44]. Several underlying mecha-
nisms that are involved in HLA-C surface expression have been postulated and further
investigated and include regulation at transcriptional, translational and post-translational
levels. HLA-C mRNA has an increased turnover rate, which correlates with a low HLA-C
cell surface expression [44]. HLA class I gene expression is cell type-dependent and
can be induced by inflammatory cytokines [45,46]. The absence of NFκB binding sites
consequently results in a weaker induction of HLA-C transcription by the inflammatory
cytokines IFNγ and TNFα, which is associated with lower levels of HLA-C transcription
compared to HLA-A and -B [26]. In addition, an SNP (rs2395471) in the OCT1 transcrip-
tion factor binding site, located ∼800 bp upstream the HLA-C transcription start side, is
significantly associated with HLA-C expression levels. Individuals with the rs2395471_A
allele have higher HLA-C surface levels compared to individuals with the rs2395471_G.
The higher binding affinity to the A allele results in a better promoter activation and higher
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expression level [47]. Another polymorphism (rs9264942) in the 5’ region of HLA-C, 35 kb
away from transcription initiation is also associated with differences in HLA-C expression
levels. A further recgulatory mechanism is the binding of microRNAs (miRNAs) to spe-
cific sites in the 3’ untranslated region (UTR). A variation (rs67384697) in the 3’ UTR of
HLA-C affects the binding of miR-148. Alleles with an intact miR-148 binding site have
a lower surface expression of HLA-C due to the binding of the miRNA, which results in
an inhibition of protein expression. Alleles with a deletion at position 263 downstream
of the HLA-C stop codon are able to escape the post-transcriptional regulation because
of the loss of the miR-148 binding site [48]. HLA-C heavy chains and β2m assembly is
less effective and slower, which leads to an accumulation of β2m-free heavy chains [43].
HLA-C is more selective in its presentation of antigens because of its restricted reper-
toire of peptides, characterized by a lower affinity [49]. This leads to an accumulation of
HLA-C molecules, which are rapidly cleared out of the ER. In line with that, variations
in exon 2 and 3, encoding the peptide-binding site domains, contribute to differential
cell surface expression. Comparison of two HLA-C alleles that have high (HLA-C*05)
and low (HLA-C*07) expression levels demonstrated that the peptide-binding groove of
HLA-C*05 is more permissive and filled with large aromatic residues, which allows the
binding of a large range of distinct peptides [50]. The regulation of HLA-C expression on
NK cells itself is an important factor for NK cell function and differentiation, supporting
the evolutionary development of HLA-C primarily for controlling NK cell function. An
SNP in the ETS-binding site of an NK cell-specific promoter element of HLA-C results in
different HLA-C expression, influencing NK cell activity. The disruption of the ETS site
results in reduced transcript levels and lower HLA-C expression, which increases NK cell
activity [51]. Taken together, the expression of HLA-C is controlled by distinct mechanisms
affecting transcription, translation and post-translation. HLA class I molecules share the
same core promoter elements, but, compared to HLA-A and -B, HLA-C exhibits regulatory
elements that lead to a lower cell surface expression.
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Figure 2. Protein synthesis pathway of HLA-C. Transcription of HLA-C is regulated through various transcription factors in
the promoter region. Once the HLA-C mRNA is translated, the generated polypeptide undergoes proper folding, assembly
and peptide loading. Translation of the HLA-C mRNA is regulated by micro-RNA-148 (miR148), which binds to the 3’
untranslated region. The assembly of the HLA-C heavy α-chain with β2m and a peptide is facilitated by a multi-subunit
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complex, composed of Cnx (calnexin), TAP (transporter associated with antigen processing), Tpn (type I transmembrane
glycoprotein tapasin), the thiol oxidoreductase ERp57 and Crt (calreticulin). The HLA complex is loaded with high-affinity
peptides that are generated by proteasome-mediated protein degradation in the cytosol. Peptides are transported into the
ER and loaded onto the peptide binding grove. After peptide loading, the mature HLA-C:peptide complex dissociates from
the multiprotein complex and is transported to the Golgi apparatus and then to the cell surface. Only HLA-C molecules with
high-affinity peptides are transported to the cell surface to present the peptide to immune cells: Created with BioRender.com.

3. Regulation of NK Cells by HLA-C

Like other classical HLA class I molecules, HLA-C is capable of regulating CTL activity
through interactions between the TCR and HLA:peptide complexes. Given the low surface
density of HLA-C, in contrast to HLA-A and HLA-B, HLA-C is considered to play a minor
role in triggering the adaptive immune system [23,52]. However, for several infectious
diseases, HLA-C restricted CTLs have been described [53,54]. Therefore, the overall impact
on disease control is still debated.

3.1. Killer-Cell Immunoglobulin-Like Receptors (KIRs) Recognize HLA-C

The other major group of interaction partners of HLA-C are members of the KIR
family. KIRs are predominantly expressed on mature NK cells, acting as key regulators of
development, tolerance and activation, but are also expressed on a subset of T cells [55,56].
Like HLA class I molecules, the KIR gene family is characterized by an extraordinary
high degree of genetic and functional diversity, resulting in varying susceptibilities to
pathogens and diseases. The diversity arises from variability in KIR gene content, KIR gene
copy numbers and from allelic polymorphism [17,57]. The KIR gene family is located on
chromosome 19q13.4 and consists of up to 15 genes. They are similar in structure but show
varying features in terms of expression, signaling pathways and ligand specificity [58].
The KIR nomenclature is based on the number of extracellular domains (2D or 3D) and
on the length of the cytoplasmic tail [S (short) or L (length)], reflecting the function of
the encoded protein (activating or inhibitory) [59]. While the inhibitory forms function
via immunoreceptor tyrosine-based inhibitory motifs (ITIMs), activating types possess
truncated cytoplasmic domains lacking ITIMs [60]. These molecules associate with adapter
molecules that contain immunoreceptor tyrosine-based activation motifs (ITAMs).

The KIR gene content can be separated into two haplotypes, A and B. Beside the frame
work genes KIR3DL3, KIR3DP1, KIR2DL4 and KIR3DL2, present in almost all individuals, A
haplotypes have a fixed gene content, comprising the pseudogene KIR2DP1, and addition-
ally encodes the inhibitory receptors KIR2DL1, KIR2DL3, KIR3DL1, KIR3DL2 and only one
activating receptor, KIR2DS4. Haplotype B is enriched for activating KIRs (KIR2DS1/2/3/5
and KIR3DS1) and the inhibitory receptors, KIR2DL2 and KIR2DL5 [61]. Individuals ex-
pressing haplotype A are thought to exhibit an improved response to pathogens, whereas
B haplotypes correlate with improved reproductive fitness [62–64]. The current KIR genes
and the resulting haplotypes display a snapshot of the rapid evolution of the KIR gene
locus. The two haplotypes are thought to be maintained within the human population
by balancing selection. However, the frequency of these haplotypes varies significantly
between populations [65,66]. The close proximity of the KIR genes and their organization
in the KIR locus probably facilitated gene expansion by duplication and recombination,
and is reflected by the substantial linkage disequilibrium between KIRs [67].

With a few exceptions, HLA class I molecules represent the primary natural ligands
of both activating and inhibitory KIRs (Figure 3). However, each receptor has a specific
spectrum of HLA class I ligands. Notably, only a limited number of HLA-A and -B al-
lotypes serve as KIR ligands, whereas virtually all HLA-C allotypes serve as interaction
partners for one or more KIRs [18], consistent with HLA-C being evolved to be a superior
and more specialized ligand for KIRs [68]. HLA-C allotypes are selectively recognized by
seven different inhibitory and activating KIRs: KIR2DL1, KIR2DL2, KIR2DL3, KIR2DS1,
KIR2DS2, KIR2DS4 and KIR2DS5. Their ligand specificity is determined by multiple
factors comprising the extracellular domains of both, HLA-C and KIRs, as well as the



Cells 2021, 10, 3108 6 of 23

presented peptide pool. KIR recognition of HLA-C is impacted by a dimorphism at posi-
tion 80 of the α1 domain of HLA-C: The C1 epitope is defined by asparagine (N) and the
C2 epitope is characterized by lysine (K) (Table 1) [69]. Inhibitory KIR2DL1 and activating
KIR2DS1 [70,71], which carry a methionine at position 44 and some KIR2DS5 allotypes [72],
exclusively recognize the HLA-C2 epitope. Inhibitory KIR2DL2, KIR2DL3 [71] and acti-
vating KIR2DS2 allotypes, which have a lysine at position 44, exhibit a selective affinity
for HLA-C1 epitopes. Additionally, certain KIR2DL2 and KIR2DL3 allotypes are also
cross-reactive with selected HLA-C2 allotypes [71,73]. Similarly, activating KIR2DS4 in-
teracts with some HLA-C1 and -C2 allotypes [74]. Many activating receptors evolved
from their inhibitory counterparts [75], thereby displaying a high degree of sequence ho-
mology in their extracellular Ig domains. This evolutionary relationship is also reflected
by their similar binding specificities. However, inhibitory KIRs exert higher avidity for
their respective HLA class I ligands than their activating counterparts [76]. While the
discrimination of C1 and C2 is defined by the dimorphism at position 80 of HLA-C, [77],
specificity and avidity of KIRs for HLA-C are strongly impacted by polymorphisms in key
positions [78]. For example, KIR2DS1 and KIR2DL1 differ by only seven amino acids in
their extracellular portion and, nonetheless, KIR2DS1 is known to bind about 50% less
pronounced to HLA-C2 than its inhibitory counterpart KIR2DL1 [71,79]. KIR/HLA-C
interactions, referring to specificity, affinity, as well as avidity is influenced by the specific
KIR allotypes [80]. Binding affinities between different KIR and HLA-C allotypes show
huge differences, which are important for the prediction of the NK cell response upon
HLA class I ligand recognition by KIRs. Furthermore, binding of specific KIRs to their
respective HLA ligands can be modulated by the presented peptide [81,82]. The loaded
peptide is essential for correct folding, expression and function of HLA class I molecules.
The HLA class I-presented peptide repertoire plays a significant role in KIR binding and
NK cell function and, furthermore, influences the response of NK cells against certain viral
infections [19,83]. KIRs are sensitive to changes in the peptide content presented by HLA
class I. KIR2DL3+ NK cells for example, are suggested to be more sensitive to changes
in the peptide content of the HLA class I binding groove than NK cells expressing other
KIRs [84]. Several studies have shown that miRNAs regulate the expression of genes that
are involved in the effector functions of NK cells [85]. The microRNA miRNA-146a-5p
modulates the expression of KIR2DL1/L2 by interacting with the 3’UTR of the mRNA.
Moreover, in silico functional characterization identified among others HLA-C as a putative
target of miRNA-146a-5p [86]. Overall, HLA-C allotypes, being entirely recognized by
KIRs, and the peptide presentation influencing KIR/HLA-C interaction leads to HLA-C
having an outstanding role among the classic HLA class I molecules.

Table 1. Distribution of HLA-C1 and -C2 allotypes.

HLA-C1 (80N) HLA-C2 (80K)
01:02, 01:03, 01:04, 01:05 02:02, 02:03, 02:04, 02:05

03:02, 03:03, 03:04, 03:05, 03:06,03:08, 03:09 03:10,
03:11, 03:12, 03:13, 03:14 03:07

04:01, 04:03, 04:04, 04:05, 04:06, 04:07, 04:08
05:01, 05:02, 05:03, 05:04

06:02, 06:03, 06:04, 06:05, 06:06, 06:07
07:01, 07:02, 07:03, 07:04, 07:05, 07:06, 07:08, 07:10,

07:11, 07:12, 07:13, 07:14, 07:15 07:07, 07:09
08:01, 08:02, 08:03, 08:04, 08:05, 08:06, 08:07, 08:08,

08:09
12:02, 12:03, 12:06, 12:08 12:04, 12:05, 12:07

13:01
14:02, 14:03, 14:05 14:04

15:07 15:02, 15:03, 15:04, 15:05, 15:06, 15:08, 15:09, 15:10, 15:11
16:01, 16:04 16:02

17:01, 17:02, 17:03
18:01, 18:02

Based on a dimorphism at position 80 of the α1 domain, HLA-C molecules can be subdivided into two groups: HLA-C group 1 and
group 2 [80,87].
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3.2. Appearance of HLA-C Triggered Rapid Co-Evolution of HLA-C Recognizing KIRs

The KIR gene cluster shows extensive genetic diversity, only exceeded by the HLA
class I loci. The extreme variability of the KIR and HLA gene loci is thought to provide
protection against a wide variety of pathogens, with different KIR/HLA combinations
leading to protection against distinct diseases and to reproductive success. Low-resolution
analysis showed that KIR and their HLA ligands have evolved in concert across populations
worldwide [88]. The extensive diversity of the HLA and KIR gene loci and the central
role of their interactions in modulating immune responses are presumed to favor the
co-evolution of genotypic combinations of these two loci in order to maintain appropriate
functional interaction. Furthermore, evidence of co-evolution has been suggested in disease
studies [65,89,90], as well as in comparative genetic studies across primate species. Co-
evolution was observed for example in Old World monkeys. Rhesus macaque comprise
ligands for HLA-A and -B, but not for HLA-C [91]. An abundance of HLA-A and -B genes
that encode the Bw4 epitope is accompanied by a corresponding expansion of the respective
lineage II KIR [92–94]. In contrast, the organization of the orangutan and chimpanzee KIR
loci is inverted. Corresponding with the emergence and fixation of HLA-C, the centromeric
region of the KIR locus contains different combinations of nine lineage III KIR genes
encoding receptors that recognize the C1 or C2 epitopes [68,95], while the telomeric region
comprises only one lineage II KIR encoding a receptor for Bw4-like epitopes of HLA-A and
HLA-B. Altogether, HLA-C developed under natural selection in the higher primates to be
a more specialized ligand for KIRs than either HLA-A or HLA-B [68]. Being absent in Old
World monkeys, extravillous trophoblasts of hominids express HLA-C but not HLA-A or
HLA-B during pregnancy, correlating with the emergence of HLA-C in the orangutan [96].
A gender bias in terms of non-random associations between KIR core haplotypes and HLA
class I has been found in the Japanese population [97]. Several associations between KIR
and HLA genes were limited to females supporting the view that reproduction is a strong
selective pressure acting on KIR genes [62,65,97,98].

Nevertheless, analysis of co-evolution remains complex: first, KIR and HLA genes
are inherited on different chromosomes, second not all functional interactions have been
defined and third known interactions are epistatic, meaning that the presence of genes or
alleles encoding corresponding receptor–ligand pairs is necessary for functional activity,
but the presence of one without the other has no influence on effector cell activity. Due to
that, direct evidence from human population studies pinpointing receptor-ligand combi-
nations that are major factors in their co-evolution is lacking. Observations of significant
correlations between frequencies of specific KIR genes and HLA alleles encoding their
corresponding ligands would support the idea of these unlinked loci co-evolving.

3.3. HLA-C Regulates NK Cell Activity through Inhibitory KIRs

The engagement of KIR receptors by HLA-C leads to intracellular signaling in NK cells.
Activating KIRs contain a positively charged amino acid in the transmembrane domain,
which allows the recruitment of the adapter molecule DAP12 that comprises an activating
ITAM [99]. Inhibitory KIRs comprise ITIM in their cytoplasmic tail that transfer the
signal to the cell, once tyrosines in the ITIMs become phosphorylated and associate with
intracellular phosphatases, such as SH2-domain-containing protein tyrosine phosphatase 1
(SHP-1) [100]. This provides a strong inhibitory stimuli that is able to overwrite activating
signaling in NK cells [101]. In addition, NK cells undergo a process of functional maturation
that requires the interaction of inhibitory KIR with HLA class I alleles expressed by the
host. This process, necessary for calibration of NK cell function, enabling “self” vs. “non-
or altered-self” discrimination, is termed education. To date, there are three different
models that describe how NK cell education is achieved: “Licensing/arming”, “disarming”,
and “tuning” [102]. Studies in the field of immunometabolism suggest that NK cell
metabolism might play a role in education as well as they revealed that cellular metabolism
is able to shape immune cell effector functions [103,104]. Apart from the current advances,
the molecular strategies of education are not yet fully understood, partially because the
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educational process of T cells proceeds differently. NK cell education is mediated through
the engagement of inhibitory KIRs, consequently called self-inhibitory receptors with their
cognate self-HLA class I molecules on healthy host cells-thus mediating self-tolerance and
preventing NK cells from killing healthy cells [105]. Education leads to the maturation of
a functionally competent NK cell repertoire that is adapted to the HLA class I molecule
environment of the host [106]. Due to the stochastic expression of many inhibitory receptors,
an individual NK cell expresses either none, one or various self-inhibitory receptors.
Educated NK cells exhibit a higher sensitivity against HLA class I molecule-induced
inhibition and are characterized by a low activation threshold with regard to target cells
with modulated or lower HLA class I molecule expression like virus- infected cells [107].
Uneducated NK cells, on the other hand, are weakly or non-reactive to HLA class I
molecule-negative target cells. The education of NK cells allows rapid recognition of
changes in HLA class I expression and reaction by NK cells with increased sensitivity [108].

Collectively, HLA-C plays a central role in the education process to establish self-
tolerant NK cells. From an evolutionary perspective, it is particular important as the most
prominent ligand for KIRs.
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Figure 3. KIR family and respective HLA class I ligands. Illustration of the structure and distribution of inhibitory
and activating KIRs and their respective ligands. Killer-cell immunoglobulin-like receptors (KIR) (orange), expressed
predominantly on NK cells, interact mainly with HLA class I molecules (purple) and its presented peptides (yellow).
Each KIR exhibits a specificity for only a selection of HLA class I molecules, including HLA-C allotypes (bold). For
example, inhibitory KIR2DL1 and activating KIR2DS1 exclusively interact with HLA-C2, while the inhibitory receptors
KIR2DL2/L3 are cross-reactive for the HLA-C1 and -C2 allotypes. Inhibitory KIRs (and the poliovirus receptor (PVR))
carry immunoreceptor tyrosine-based inhibitory motifs (ITIM, red circles), signaling NK cell inhibition upon receptor-
ligand engagement, whereas activating KIRs associate with adapter molecules that contain immunoreceptor tyrosine-based
activation motifs (ITAMs, green circles) conferring an activating signal. Created with BioRender.com.

4. HLA-C-Mediated Impact of Viral Immune Response

An increasing number of studies investigated the impact of KIR/HLA-C interactions
on the outcome and progression of viral infections and further explored the underlying
mechanisms. Genome-wide association studies (GWAS) provide an important first insight
whether host genetics may impact the course of infection. Ex vivo and in vitro assessment
of the NK cell repertoire, including NK cells expressing HLA-C recognizing KIR, and its
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antiviral activity allow an inference on the contribution of those subsets to viral control.
In vitro infection models allow the identification of immune evasion strategies including
ones that specifically demonstrate NK cell-mediated immune pressure and viral escape
through the selection of peptidevariants. The main findings of these topics are summarized
in Table 2 for HIV-1, HCV and CMV infections.

4.1. Human Immunodeficiency Virus (HIV)

Among HIV-1-infected individuals, a small group (0.15 to 2.5%) is able to intrinsically
control viral load without antiretroviral therapy. These HIV controllers are defined by a
durable low threshold viral loads, stable CD4+ T cell counts and lower risk of transmission
to others [109]. Many of these individuals have protective HLA alleles and potent T cell
responses, facilitating control of viral replication [110,111]. However, there are subgroups
of HIV-1 controllers without protective HLA alleles or strong T cell response suggesting
that additional host factors are relevant for HIV control [112]. In addition, case studies have
shown that an effective NK cell response may contribute to early control of HIV-1 repli-
cation [113,114]. GWAS comparing HIV controllers and chronically infected individuals
with advanced disease progression highlighted the importance of HLA-C in HIV-1 infec-
tion [115,116]. Two independent polymorphisms have been identified that are associated
with HLA class I. One polymorphism (rs2395029) in the HLA complex P5 (HCP5), 100 kb
centromeric from HLA-B, is associated with the HLA-B*57:01 allele. HLA-B*57:01 is known
to have a protective impact on HIV-1 progression, linked to restriction of HIV-1 replication,
non-progressive disease [117] and lower viral loads [118]. The second most significant
polymorphism (rs9264942) is located 35 kb (-35C/T) away from the transcription start site
of HLA-C and explains 6.5% of the total variation in HIV-1 set points. Individuals with
the -35C allele have higher CD4+ T cell counts and HLA-C mRNA levels [119,120]. They
also exhibit a higher HLA-C cell surface expression, progress more slowly to AIDS and
control viremia significantly better than individuals carrying HLA-C alleles expressed at
lower levels [115,121,122].

Characterization of cell surface expression levels of common HLA-C allotypes showed
a significant association of HLA-C expression levels and HIV control. High HLA-C ex-
pression levels are associated with increased likelihood of HLA-C-restricted cytotoxic
T cell response [123] and increased frequency of mutations in HLA-C-presented HIV-1
epitopes [124]. Another factor that is connected to HLA-C expression is an SNP in the
binding site of the miR-148 in the 3’ untranslated region of HLA-C. The polymorphism
at position 263 (263I/D) in this region leads to a different expression of various HLA-C
allotypes. Binding of this miR-148 leads to an inhibition of the HLA-C allele and low cell
surface expression. Individuals with at least one copy of a miR-148-inhibited allele showed
significant effects of miR-148 expression levels in HIV-1 control [48]. HLA-C expression
levels are also affected by miR-148 expression levels itself. An SNP (rs735316) downstream
of the 3’end of the mature miR-148 sequence is associated with miR-148 expression level
also affecting the HLA-C expression and level of HIV-1 control [125].

As NK cells directly interact with HLA class I molecules and are known for killing
virus-infected cells quite efficiently, studies have shown that specific KIR/HLA haplo-
types [126–128] and in detail specific combinations of HLA-C and its corresponding KIR
receptors, have an impact on anti-HIV immunity and clinical outcome. KIR+ NK cells
can exert immunological pressure on HIV-1. In turn, HIV-1 is able to evade this immune
pressure by selecting for KIR2DL2-associated amino acid polymorphisms, which enhance
the binding of the inhibitory KIR to HIV-1-infected cells and reduce the antiviral activity of
these KIR+ NK cells [83]. NK cells in primary HIV-1 infections showed a higher frequency of
KIR2DL1-3 in the presence of their cognate HLA-C ligand compared to healthy individuals.
KIR2DL1-3+ NK cells were more polyfunctional in primary HIV-1 infection in individuals
with their cognate HLA-C haplotypes; however, they were disproportionately subject to
NK cell dysfunction in the transition to the chronic phase of infection [129]. Genotyping of
HLA and KIR in chronically infected and antiretroviral-free HIV-1-infected individuals from
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Japan revealed a protective effect of KIR2DL2/HLA-C*12:02 and KIR2DL2/HLA-C*14:03
genotypes. Both combinations correlated with lower plasma viral load [130]. A study of
a South African cohort of chronically HIV-1-infected ART-naïve adults reported a dele-
terious effect of the HLA-C*16:01/KIR2DL3+ pair in HIV-1 clinical outcome [131]. In
addition, two other studies observed a deleterious effect of KIR2DL3/HLA-C1 on HIV-1
outcome [132,133], but others reported a protective effect against mother-to-child trans-
mission [134] and HIV-1 infection in exposed uninfected intravascular drug users [135].
HIV-1 and also other pathogens are able to decrease HLA class I expression to avoid
the presentation of viral peptides and thus activating cytotoxic CD8+ T cells. The HIV-1
accessory protein Nef specifically downmodulates HLA-A and -B on infected CD4+ T cells,
whereas HLA-C is not affected by Nef [136–138]. Based on these findings, established
models proposed that HIV-1 does not regulate the HLA-C expression to protect the infected
cell against the innate immune response of NK cells through the interaction of HLA-C with
inhibitory KIR2DL receptors [139]. However, a 2016 study by Apps et al. demonstrated
that many primary HIV-1 clones are able to downregulate HLA-C to a different extent,
and that this is mediated by the HIV-1 accessory protein Vpu. The reduction of HLA-C
from the cell surface impairs the ability of HLA-C-restricted cytotoxic T cells to suppress
viral replication. The dynamic regulation of HLA-C by HIV-1 provides an opportunity
to react to different immune pressures trigged by either dominant NK cell or CD8+ T cell
responses. The characterization of primary HIV-1 viruses revealed an adaption of Vpu-
mediated downmodulation of HLA-C to the host HLA genotype [140]. NK cells are able
to sense changes in HLA-C expression by an increased antiviral activity when exposed to
HIV-1-infected CD4+ T cells with different abilities to downmodulate HLA-C from the cell
surface [141]. HLA-C alleles with high surface expression levels showed an association with
strong viral downregulation of HLA-C [142]. In a recent publication, Hopfensperger et al.
showed that HIV-2, which lacks vpu, is able to downmodulate HLA-C surface expression
by the accessory protein Vif and that the decreased surface expression is associated with
higher killing of infected cells by NK cells [143]. Vpu targets HLA-C at the protein level,
independently of its ability to suppress NFκB-induced gene expression [142–144]. Due to a
putative NFκB binding site upstream the HLA-C core promoter [47], it is also possible that
Vpu inhibits HLA-C mRNA expression [143] (Figure 4).

Although multiple studies showed that HLA-C and inhibitory KIR interactions have
an impact on disease progression and NK cells are primarily known to be triggered by
the missing-self signal, there is increasing data that viral peptide-presentation of HLA-C
can also modulate NK cell function by different mechanisms. Functional analysis of HLA-
C*01:02-restricted HIV-1 p24 Gag epitopes showed that certain epitopes can modulate
binding to KIR2DL2 and subsequently NK cell function [145]. Sequence polymorphisms
in p24 Gag enabled improved binding of KIR2DL2/3 to HLA-C*03:04 expressing cells,
resulting in inhibition of these NK cells [19,146]. Functional analysis of HIV-1-derived
peptides and HLA-C*14:03+ and HLA-C*12:02+ cells showed a reduced expression of the
HLA-C:peptide complex on the surface of HIV-1-infected cells, which consequently had
an impact on NK cell recognition and activation without changing the binding affinity
between the KIR receptor and the HLA:peptide complex [130]. A recent study from Ziegler
et al. observedthat HIV-1 infection induced changes in HLA-C*03:04-presented peptides,
which reduced the binding of KIR2DL3 receptors and led to an enhanced recognition of
HIV-1-infected cells by NK cells [147]. Taken together, not only a potent T cell response
and protective HLA alleles are involved in HIV-1 control, but also the sensitive network of
HLA-C surface expression, KIR binding and NK cell activation contribute to an effective
viral immune response and underscore the sensitive balance between innate and adaptive
immune response upon HIV-1 infection.

4.2. Hepatitis C Virus (HCV)

NK cells contribute to the immune response in HCV infection [148]. Several studies
showed that KIR/HLA-C interactions impact the outcome of HCV infection and are
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linked to spontaneous resolution of HCV infection. Khakoo et al. observed that the
combined presence of KIR2DL3 and HLA-C alleles encoding for its ligand HLA-C1 directly
affected the resolution of HCV infection in Caucasians and African Americans. Individuals
homozygous for HLA-C1 alleles were enriched in the group with resolved infections
compared to the group of individuals with persistent infection. The protective association
of HLA-C1/C1 was only significant in individuals homozygous for KIR2DL3 but not for
individuals homozygous for KIR2DL2 or heterozygous for KIR2DL2/L3 [20]. Moreover,
the frequency of KIR2DL3 homozygosity in combination with HLA-C1 was shown to
be higher in seronegative aviremic individuals as compared to individuals with chronic
HCV, indicating a benefit of this specific KIR2DL3-HLA-C1 combination for the outcome
of HCV infection [149]. Males, but not females, carrying KIR2DL2 and KIR2DS2 genes
had a 1.7 higher probability to become chronically infected with HCV than males lacking
these genes [150]. Therapies for HCV, including pegylated interferon (PegIFN) alpha plus
ribavirin (RBV), can achieve a sustained virologic response (SVR) of 40–50% in patients
infected with the most common viral genotype 1 (GT1) [151]. The success of the treatment
also relies on host and viral factors. Genotyping of HLA-C and KIR in patients with chronic
HCV GT1 infection with PegIFN/RBV treatment-induced clearance and treatment failure
showed that the HLA-C2 homozygous genotype was more frequent in patients that do
not respond to the treatment (NSVR) [152]. Analysis of KIR2DL2/L3 alleles in chronic
HCV-infected patients revealed that the homozygous KIR2DL3-HLA-C1 genotype was
more frequent in patients with SVR than in NSVR. In contrast, KIR2DL2/L2-HLA-C1/C2
was more common in NSVR patients [153].

A study of 125 individuals with chronic HCV in Brazil showed a higher frequency of
KIR2DL2 and KIR2DL2/HLA-C1 genes in these individuals and an association of KIR2DS2,
KIR2DS2-HLA-C1 and KIR2DS3, independent from KIR2DL2, but they did not observe any
correlation with therapy response [154]. Besides reports of the beneficial KIR2DL3/HLA-
C1/C1 genetic association with HCV outcome, there are studies that did not confirm this
association or described other KIR/HLA combinations that may influence the outcome of
HCV infection. Patients with persistent infection had a higher frequency of KIR2DL3 and a
lower frequency for KIR2DL2 compared to individuals who cleared the infection [155]. A
recent study of HIV/HCV-co-infected patients showed an increased frequency of HLA-
C2/C2 in spontaneous clearance of HCV compared to chronic infected individuals but no
association of KIR2DL3-HLAC1/C1 with spontaneous clearance of HCV [156]. The gene
for the activating KIR receptor KIR2DS3 was significantly higher in patients who resolved
HCV infections in the presence of HLA-C2 [157]. KIR/HLA-C combinations also influence
the development of HCV related hepatocellular carcinoma (HCC). A study of 787 chronic
HCV individuals, with and without HCC, revealed an association of KIR2DL2/HLA-C1
and KIR2DS2/HLA-C1 and HCC in patients younger than 65 [158]. Hu et al. identified the
combination of KIR2DL2/HLA-C1 as a risk factor for chronic HCV infections and associated
it with non-responders to PegIFN/RBV therapy [159]. In contrast, another study showed
that KIR2DL2, KIR2DS2, KIR2DL2/L3 were more frequent in subjects with HCV clearance,
whereas KIR2DL3/L3, as well as KIR2DL3/L3-HLA-C1 or C1/C1 are associated with chronic
HCV infection [160]. Previous research demonstrated that SNPs in the HLA-C gene can
influence the outcome of HIV infections but little is known about the impact of SNPs in KIR
genes on HCV progression. The analysis of four KIR/HLA-C SNPs in a high-risk Chinese
population identified two SNPs (KIR2DS4/S1/L1 rs3544047-A and HLA-C rs1130838-A)
that are associated with increased susceptibility to HCV infection [161]. A study about the
connection of KIR/HLA genes and HCV in Romanian patients revealed that the expression
of KIR2DL3, KIR2DL5, KIR2DS4, KIR3DL3 genes and specific HLA alleles like HLA-A*23:01,
-B*44:02 and -C*04:02 may increase the susceptibility of the patients to develop chronic
HCV infection [162]. These inconsistent results may be due to the lack of allele-specific KIR
genotyping in most studies. While the presence/absence of KIR genes in gene association
studies may provide a first glimpse of the putative role in diseases control, low resolution
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of KIR genes may mask potential effects as high, as well as low binding KIR allotypes are
lumped together.

As described for HIV, the presentation of viral peptides by HLA can modulate the
binding to KIRs and affect NK cell function. Presentation of a core protein of HCV and
binding to HLA-C*03:04 led to inhibition of KIR2DL3+ NK cells through an increased
binding of HLA-C*03:04 to KIR2DL3 (Figure 4) [163].

4.3. Human Cytomegaloviruses (CMV)

Acute infection with CMV induces the expansion of NKG2C+ NK cell subsets, which
can remain stable over several years [164]. Reactivation of CMV in patients after hematopoi-
etic stem cell transplantation leads to an expansion of NKG2C+ KIR+ NK cells, which are
potent producers of IFNγ during acute infection and also after clearance [165]. Moreover,
multi-parametric flow cytometric analysis of NK cell subsets revealed that the immunolog-
ical checkpoint molecule programmed death 1 (PD-1) is highly expressed on mature NK
cells (CD56dimNKG2A-KIR+CD57+) cells of CMV-seropositive donors [166].

In comparison to CMV-seronegative individuals, healthy CMV-seropositive individ-
uals exhibit a stable imprint in their KIR repertoire because of the expansion of NK cells
expressing inhibitory KIRs specific for self-HLA-C. Individuals, homozygous for HLA-C1
had an increased frequency for KIR2DL3, whereas HLA-C2 homozygous donors had high
frequencies of KIR2DL1 expressing NK cells. Moreover, the KIR phenotyping revealed
an implication of activating KIRs (KIR2DS2, KIR2DS4 and KIR3DS1) in NK cell expan-
sion [167,168]. In contrast, NKG2C+ NK cells lack the expression of the inhibitory NK
cell receptors NKG2A and KIR3DL1 [169]. Co-culture experiments of NK cells with CMV-
infected fibroblasts showed an increased expression of KIR2DL1, KIR2DL3 and KIR3DS1
in CMV-seropositive donors. In line with previous results, NKG2C+ NK cells had an
increased expression of KIR2DL1 but not KIR3DL1 [168]. The adaptation of NKG2C+ NK
cells is highly associated with the cenA-located C2-specific KIR2DL1, independent from
the KIR2DL1 allele. A correlation of NKG2C+ NK cells co-expressing one of the HLA-C
specific KIR2DL1/L2/L3 with the CMV-specific IgG Ab concentration showed that the
adaptation is only restricted to NK cells expressing KIR2DL1 [170]. A study with patients
with hematological malignancies that were transplanted with NKG2C-/- umbilical cord
blood showed an expansion of CD56dimNKG2A-NKG2C-KIR+ NK cells, mainly express-
ing KIR2DS1 and KIR3DS1 after CMV reactivation [171]. In connection with placental
CMV infection, KIR2DS1+ decidual NK cells acquired a higher cytotoxic function when
exposed to CMV-infected decidual stromal cells [172]. Co-culture experiments of NK cell
subsets with CMV-infected human fetal foreskin fibroblasts activated KIR2DS1-expressing
NK cells. Blocking with the pan-HLA class I antibody W6/32 had an influence on the
KIR2DS1/HLA-C2 interaction but not on the interaction with KIR2DL1, indicating a dif-
ferent recognition of HLA-C by KIR2DL1 and KIR2DS1 [173].

Despite the elicited host immune response, generating a permanent phenotypical
imprint in T and NK cell subsets, CMV stays persistent in the host for a lifetime. Like many
other viruses, CMV developed numerous strategies to evade the host’s immune response.
In order to avoid NK cell-mediated killing of infected cells, CMV promotes the expression
of ligands that bind to inhibitory NK cell receptors and inhibits the expression of ligands
that enable the activation of NK cells. Mechanisms for NK cell inhibition include the
expression of a viral MHC class I-like protein UL18, which binds the LIR-1 inhibitory NK
cell receptor, or the expression of the TRAIL death receptor [174,175]. Some CMV proteins
and RNAs are directly involved in HLA class I antigen-presentation by down-modulating
HLA-A and -B and to some extent also HLA-C on CMV-infected cells [176]. CMV gene
products US3 and US6 downregulate HLA-C and HLA-G by two different mechanisms
in human trophoblast [177], but they are resistant to degradation associated with US2
and US11 [178,179]. Other studies demonstrated that US2 is involved in HLA-A and -C
downmodulation but not HLA-B, whereas US11 is able to downmodulate all three HLA
class I molecules [180,181] (Figure 4).
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The immune evasion strategy of CMV by affecting the antigen presentation of HLA
class I molecules also influences the efficiency of HLA class I-restricted T cell response in
an allotype-specific manner. HLA-C*07:02-restricted T cells are able to kill CMV-infected
cells by recognizing the viral antigen IE-1 in a much more efficient way than HLA-A
and -B-restricted T cells. At the same time, CMV-infected cells were resistant to NK cells
carrying KIR2DL3 [54]. In line with that, CMV-specific T cells restricted by HLA-C*07:02
expand markedly with age, representing the dominant CD8+ T cell repertoire in people
over the age of 70 years [182].

Table 2. HLA-C-mediated impact in HIV-1, HCV and CMV infections.

Mechanism/Observation Virus Reference

KIR/HLA-C disease association
High HLA-C expression is associated with HIV-1 control HIV-1 [115,121–123]

KIR2DL3/HLA-C1 combination is associated with severe HIV-1 clinical outcome HIV-1 [131–133]
KIR2DL3/HLA-C1 combination is associated with HIV-1 protection HIV-1 [134,135]

Homozygous KIR2DL3/HLA-C1 combination is associated with spontaneous
HCV resolution and better treatment response HCV [20,149,152,153]

Higher frequency of KIR2DL2/HLA-C1 in chronic HCV infection HCV [154]
Higher frequency of KIR2DL3 and low frequency of KIR2DL2 in persistent

HCV infection HCV [3]

Increased frequency of C2/C2 in spontaneous HCV clearance HCV/HIV-1 [156]
Higher frequency of KIR2DS3/HLA-C2 in HCV resolution HCV [157]

Combination of KIR2DL2/HLA-C1 is a risk factor for chronic HCV infecton and
associated with no treatment response HCV [159]

Homozygous KIR2DL3/HLA-C1 is associated with chronic HCV infection, higher
frequency of KIR2DL2, KIR2DS2 and KIR2DL2/L3 in HCV clearance HCV [142]

Alterations of NK cell repertoire
Reactivation of CMV in patients with hemaotopoietic stem cell transplantation

leads to expansion of NKG2C+ KIR+ NK cells CMV [165]

Healthy CMV-infected individuals have a stable imprint in the KIR repertoire with
a bias for inhibitory KIRs specific for self HLA-C CMV [167]

Increased expression of KIR2DL1 in NKG2C+ NK cells in CMV infection CMV [168,170]
Mature CD56dimNKG2A-KIR+CD57+ NK cells of seropositive CMV donors highly

express PD-1
CMV [166]

Antiviral activity of NK cells
KIR2DL1-3+ NK cells sense changes in HLA-C expression by increased

antiviral activity HIV-1 [141]

Virus-mediated modulation of HLA-C
HIV-1 Vpu mediates HLA-C downmodulation HIV-1 [140,143]
HIV-2 Vif mediates HLA-C downmodulation HIV-1 [143]

Downmodulation of HLA-C by various CMV proteins CMV [176,177,180,181]

Selection of viral peptides
KIR2DL2-associated HIV-1 sequence polymorphisms modulate NK cell function HIV-1 [83]

HLA-C*0102-restricted HIV-1 p24 Gag epitopes modulates KIR2DL2 binding HIV-1 [145]
Sequence polymorphismus in HIV-1 p24 Gag modulates binding of KIR2DL2/3 to

HLA-C*0304 HIV-1 [19,146]

Reduced expression of HIV-1-derived peptides and HLA-C*1403 and HLA-C*1202 HIV-1 [130]
HIV-1-derived peptides reduce binding of HLA-C*0304 to KIR2DL3 HIV-1 [147]

Presentation of HCV core protein by HLA-C*0304 results in inhibition of
KIR2DL3+ NK cells HCV [163]
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can influence HLA-C expression on the transcriptional, translational, post-translational and protein level. HIV-1 is able to
decrease HLA-C surface expression by specific variants of the accessory protein Vpu. CMV encodes different US proteins
that target HLA-C heavy chains for proteasomal degradation or block the transport of peptides into the ER. Moreover,
HIV-1 and HCV are able to select for specific HLA-C-restricted peptides that modulate the activation of NK cells by altering
KIR binding. Created with BioRender.com.

4.4. Other Viruses

In addition to HIV-1, HCV and CMV infection, there are only a few reports about
the role of HLA-C in other viral infections. Reasons for that could be that HLA class I
expression and modulation are usually assessed by a pan-HLA class I antibody, which
does not allow the differentiation of specific HLA-A, -B or -C expression that HLA-C was
disregarded because of its low surface expression or thought not being modulated in viral
infections. The following chapter briefly summarizes the information about KIRs and
HLA-C in the context of other viral infections.

One of the first reports of HLA-C downregulation of HLA-C expression in the context
of viral infections was described by Elboim et al. The group showed that, upon herpes
simplex virus type 2 infection (HSV-2), HLA-C is downregulated from the cell surface
of dendritic cells by the viral protein ICP47, which induces killing of the infected cell by
NK cells [183].

An in vitro influenza A infection model showed that KIR2DL3+ NK cells from homozy-
gous HLA-C1 donors responded more rapidly with IFNγ secretion and displayed greater
degranulation than KIR2DL1+ NK cells from HLA-C2 homozygous subjects [184]. Genetic
association studies between KIR and influenza infection progression with the 2009 pan-
demic influenza A (H1N1) virus showed a higher frequency of KIR2DL2 and/or KIR2DL3
in combination with their cognate HLA-C1 ligand and KIR2DL1 without the presence
of HLA-C2 ligands in patients with severe influenza infection [185]. Infection of HLA
class I transduced cell lines with influenza A and B viruses revealed that HLA class I
downregulation occurs across a range of HLA-A, -B and -C allotypes [186]. In contrast,
Hantavirus-infected cells upregulate HLA class I molecules, including HLA-C on the cell
surface. Infection with Hantavirus leads to an expansion of NKG2C+ NK cells, which
express educated inhibitory KIRs [187]. Acute infection with Chikungunya virus (CHIKV)
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leads to a clonal expansion of NKG2C+KIR2DL2/L3+NK cells in direct association with
the viral load [188]. Another study, which investigated the impact of KIR/HLA class I
genotypes on the susceptibility to CHIKV and Dengue virus (DENV) infection, showed
an increased frequency of HLA-C2 homozygous CHIKV-infected individuals compared to
DENV-infected and control individuals in combination with KIR2DL1 and an association
with susceptibility to CHIKV infection [189]. In Lassa virus infection, the presentation
of HLA-C-restricted viral epitopes led to a stronger binding to KIR2DL2+ NK cells and
inhibited NK cells [21]. Association studies of KIR/HLA in Ebola virus infected patients
identified various KIRs that are associated with clinical outcome of Ebola: One study
showed that the activating KIR2DS1 and KIR2DS3 are associated with a fatal outcome in
Ebola infection [190]. Contrary to these findings, Wawina-Bokalanga identified KIR2DL2 as
a protective gene, whereas KIR2DL5 and KIR2DS4*003 were more frequent in persons who
died from Ebola infection [191]. A third study found an increased expression of KIR2DL1
on NK cells in Ebola-infected patients [192]. Although Maucourant et al. did not find
differences in the expression profile of inhibitory KIRs on NK cells or NK cell education
in COVID-19 patient compared to controls [193], there are a few reports about specific
KIR/HLA-C combinations in COVID-19. HLA-C*05:01-restricted peptides promote bind-
ing and activation of KIR2DS4+ NK cells [194]. The gene combination of KIR2DS2/HLA-C1
was more common in asymptomatic-paucisymptomatic patients compared to patients with
severe symptoms [195].

5. Conclusions

HLA-C takes a special position in the regulation of NK cells. Its peculiar features
affecting its expression and antigen presentation separate it from other classical molecules.
Its unique role is further highlighted by the rapid co-evolution of HLA-C recognizing KIRs
since its first appearance. HLA-C exerts an extraordinary role in pregnancy, as it is the only
classical HLA class I gene expressed at the maternal-fetal interface. However, accumulating
evidence shows that interactions between KIRs and HLA-C also impact the course of
various pathological conditions, including infectious diseases. The diversity of KIRs and
HLA-C leads to an extraordinary complexity of these interactions posing a challenge for
researchers to grasp the impact of KIR/HLA-C interactions on NK cell function and on
the course of human diseases. Integration of in vitro binding data, functional NK cell data,
as well as high resolution gene association studies may provide the foundation for the
generation of prediction models for the outcome of various diseases and the contribution
of NK cells in those.
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