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A B S T R A C T   

Approximately 60% of cancer patients receive curative or palliative radiation. Despite the significant role of 
radiotherapy (RT) as a curative approach for many solid tumors, tumor recurrence occurs, partially because of 
intrinsic radioresistance. Accumulating evidence indicates that the success of RT is hampered by activation of the 
DNA damage response (DDR). The intensity of DDR signaling is affected by multiple parameters, e.g., loss-of- 
function mutations in tumor suppressor genes, gain-of-function mutations in protooncogenes as well as 
radiation-induced alterations in signal-transduction pathways. Therefore, the response to irradiation differs in 
tumors of different types, which makes the individualization of RT as a rational but challenging goal. One 
contributor to tumor cell radiation survival is signaling through the Ras pathway. Three RAS genes encode 4 Ras 
isoforms: K-Ras4A, K-Ras4B, H-Ras, and N-Ras. RAS family members are found to be mutated in approximately 
19% of human cancers. Mutations in RAS lead to constitutive activation of the gene product and activation of 
multiple Ras-dependent signal-transduction cascades. Preclinical studies have shown that the expression of 
mutant KRAS affects DDR and increases cell survival after irradiation. Approximately 70% of RAS mutations 
occur in KRAS. Thus, applying targeted therapies directly against K-Ras as well as K-Ras upstream activators and 
downstream effectors might be a tumor-specific approach to overcome K-Ras-mediated RT resistance. In this 
review, the role of K-Ras in the activation of DDR signaling will be summarized. Recent progress in targeting DDR 
in KRAS-mutated tumors in combination with radiochemotherapy will be discussed.   

1. Introduction 

Conventional fractionated radiotherapy (RT) is a curative approach 
that significantly contributes to human tumor treatment. Nevertheless, 
treatment failure still occurs, and overall survival for certain tumor 
types remains dismal. One of the major mechanisms of tumor survival 
after irradiation is hyperactivation of the survival signaling pathways 
regulated by different oncogenes. Among these, RAS (rat sarcoma viral 
oncogene homolog) encodes a small molecular weight protein with 
intrinsic GTPase activity. Ras proteins cycle between inactivated GDP- 
bound and active GTP-bound states and couple extracellular signals to 
intracellular effector pathways [1]. The three RAS genes in humans 
consist of KRAS (Kirsten rat sarcoma virus), HRAS (Harvey RAS) and 
NRAS (Neuroblastoma RAS). The KRAS gene has two splice variants, 
KRAS4A and KRAS4B, with differential expression levels of the two 
variants in tumors [2]. Approximately 19 % of human cancers harbor 
mutations in one of the RAS isoforms, equivalent to approximately 3.4 
million new cases per year worldwide [3]. Mutations in RAS genes are 

mainly at hotspots, such as codons 12, 13 and 61, reviewed elsewhere 
[4]. Nearly 70 % of the mutations occur in KRAS, mainly in pancreatic 
cancers (86 %), colorectal cancers (CRC; 41 %) and lung cancer (32 %) 
[4]. 

Anchoring Ras to the cell membrane via a variety of posttranslational 
modifications (PTMs) is essential for the localization of Ras in the cell 
membrane, subsequent activation and carcinogenic potency. PTMs on K- 
Ras have been reviewed in [5]. Essential steps in K-Ras PTM are pre-
nylation of CAAX box by the enzymes farnesyltransferase or ger-
anylgeranyl transferase, removing the last 3 amino acids AAX through 
proteolysis by endoplasmic reticulum located Ras-converting enzyme 
and, finally, methylation of the cysteine residue of the CAAX box cata-
lyzed by the enzyme isoprenylcysteine carboxyl methyltransferase. Both 
proteolysis and methylation are essential for efficient membrane bind-
ing of prenylated K-Ras [6], a prerequisite for its biological activity. 
Activation of Ras occurs by changing GDP-bound inactive Ras to the 
GTP-bound active state. Guanine nucleotide exchange factors (GEFs) 
and GTPase activating proteins (GAPs), such as neurofibromin 1 (NF1) 
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and p120-GAP, promote nucleotide exchange by Ras (Fig. 1). Due to RAS 
point mutations, GTPase stimulation by GAPs is greatly reduced, and 
intrinsic GTPase activity is also reduced. Under these conditions, Ras 
inactivation is suppressed and it predominantly stays bound to the cell 
membrane in a constitutively active form [7]. 

Among the upstream activators of Ras, the epidermal growth factor 
receptor (EGFR)/HER family consisting of four members, is the most 
important among the membrane-bound receptor tyrosine kinases. 
Stimulation of these receptors by their respective ligands results in 
homo- and heterodimerization, leading to the activation of signaling 
cascades. Ras transmits these signals, which regulate a variety of cellular 
functions. Growth, proliferation, survival, tumorigenesis, and metastasis 
are among the important cellular functions that are stimulated by the 
EGFR [8]. KRAS mutation leads to constitutive K-Ras activity in asso-
ciation with stimulated autocrine production of the EGFR ligand as re-
ported in panc-1 pancreatic carcinoma cells [9], A549 lung cancer cells 
and MDA-MB-231 breast cancer cells [10,11] as well as in CRC cell lines 
LIM1215, OXCO-2 and DiFi that develop resistance to cetuximab, pre-
sumably due to a secondary KRAS mutation[12] (Fig. 1). KRAS mutation 
promotes post-irradiation cell survival through EGFR activity in non- 
small-cell lung cancers (NSCLC) as demonstrated in NCI-H1703 cells 
in vitro and in vivo [13,14] and possibly through wild-type HRAS, which 
has been shown in DLD-1 colorectal and MiaPaCa-2 pancreatic cancer 
cells harboring frequent mutations in KRAS [15]. Additionally, in vitro 
and in vivo studies have shown that EGFR signaling in KRAS-mutant 
NSCLC cell line A549 promotes chromatin condensation in interphase 

cells, thereby restricting the number of DNA double-strand breaks (DSB) 
produced by 1 Gy ionizing radiation (IR) [13]. In addition to point 
mutations and stimulation with receptor ligands, exposure to a clinically 
relevant dose of IR rapidly activates K-Ras in KRAS wild-type head and 
neck squamous cell carcinoma FaDu cells [10]. 

GTP-bound Ras stimulates several cytoplasmic signaling cascades. 
Among these pathways, mitogen-activated protein kinase (MAPK), 
phosphoinositide 3-kinase (PI3K), protein kinase C and RAL guanine 
nucleotide dissociation stimulator (RALGDS) are the most important 
pathways [16,17]. K-Ras triggers the Raf family of serine/threonine 
kinases, which in turn stimulates mitogen-activated protein kinase ki-
nase 1/2 (MEK1/2). MEK1/2 stimulate MAPK/extracellular signal- 
regulated kinases (ERK1/2). Activated ERK1/2 phosphorylate their 
target substrates, such as multifunctional protein Y-Box binding protein- 
1 (YB-1) [18,19]. Oncogenic K-Ras hyperactivates the PI3K/AKT 
pathway. The PI3K/AKT pathway is the major survival pathway, which 
is hyperactivated in human tumors and is involved in DNA damage 
response (DDR) signaling, as reviewed elsewhere [20,21]. In terms of 
cell survival after RT, constitutive K-Ras activity due to RAS mutation or 
IR-induced Ras activation leads to accelerated repair of radiation- 
induced DSB and increased survival in solid tumors from different tis-
sues [18,22–25]. In line with the preclinical data on the role of K-Ras in 
therapy resistance, the association of KRAS mutation with worse treat-
ment outcome has been well documented. In this regard, pancreatic 
cancers, as the most lethal cancer with frequent mutations in KRAS, have 
a 5-year survival rate of approximately 10 % [26]. In a study in Chinese 

Fig. 1. K-Ras controls cell cycle progression after irradiation. A point mutation in KRAS results in autocrine secretion of EGFR ligands but maintains K-Ras in a 
continuous GTP-bound active state, independent of EGFR. In contrast, ionizing radiation stimulates K-Ras in wild-type cells in an EGFR-dependent manner but 
independent of the EGFR ligand. Activation of K-Ras stimulates ERK1/2 phosphorylation/activation. ERK1/2 activity stimulates the transition of cells from G1 to S 
phase. In parallel, KRAS mutation increases the expression of WEE1, which is activated after DNA damage induction. Activated WEE1 phosphorylates CDC2 and 
prevents mitotic entry by inhibiting the cyclin B/CDC2 complex. 
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patients with advanced pancreatic ductal adenocarcinoma, patients 
with KRAS mutation showed worse overall survival than patients with 
KRAS wild-type [27]. Likewise, KRAS wild type pancreatic adenocar-
cinoma patients exibited a survival benefit, both, in overall cohorts and 
in patients treated with chemotherapy agents [28]. The second most 
common KRAS-mutated human tumor is CRC, which is resistant to 
chemoradiation [29,30]. KRAS-mutated cervical cancer has signifi-
cantly worse recurrence-free survival and distant metastases after RT 
[31]. The lung adenocarcinoma subgroup of NSCLC is the third cancer 
category with the most frequent mutations in KRAS. NSCLC has a 5-year 
survival rate of approximately 25 %, and KRAS mutation has been 
shown to be associated with radioresistance [32] and decreased cancer- 
specific survival after lung stereotactic RT [33]. Thus, accumulating 
evidence from preclinical and clinical studies indicates that mutation in 
KRAS diminishes the effect of RT. 

2. Role of K-Ras in DDR signaling 

2.1. K-Ras cascades regulate cell-cycle progression 

Upon induction of DNA damage, the DDR is activated, which is a 
complex signal-transduction network responsible for sensing and 
responding to specific types of DNA damage, encompassing specific 
machineries mediating cell-cycle regulation and DNA repair. Exposure 
to IR (2 Gy) rapidly stimulates Ras-dependent activation of ERK1/2 by 
phosphorylation of the threonine and tyrosine residues in different 
tumor cells lacking mutations in the components of the Ras/MAPK 
pathway [34,35]. ERK1/2 activity stimulates the expression of imme-
diate target genes, which in turn, by phosphorylating retinoblastoma 
protein (RB), enhances the expression of the transcription factor E2F and 
prepares cells for transition from the G1 to S phase [36] along with 
sequestering and degrading cyclin-dependent kinases (CDKs), such as 
p27 [37,38]. ERK1/2, as a regulator of the G1- to S-phase transition, has 
been extensively reviewed previously [39]. Continuous activation of 
ERK1/2, in parallel to stimulating the expression of proliferation- 
associated genes, suppresses the expression of antiproliferative genes 
as well [40,41]. IR-induced ERK phosphorylation promotes cell prolif-
eration by stimulating the G1 to S transition, as shown in KRASG13D- 
mutated colorectal cancer HCT116 cells after irradiation with 1 Gy [17]. 
The transition of cells from G1 to S after irradiation is important in the 
context of DSB repair. Radiation-induced DSB in G1 phase in cells with 
wild-type TP53 results in ataxia telangiectasia mutated (ATM)/ check-
point kinase 2 (CHK2)-dependent G1 arrest until the damage is repaired 
through NHEJ. G1 progression in cells with loss of p53 function makes 
DSB repair solely dependent on G2/M arrest. G2/M arrest through 
ataxia telangiectasia and Rad3 related (ATR)/checkpoint kinase 1 
(CHK1) arrest is crucial since the majority of tumors with KRAS muta-
tions also harbor TP53 mutations, as shown in pancreatic ductal carci-
nomas [42]. The expression of mutated KRAS and TP53 in NSCLC was 
also shown to be associated with poor clinical outcomes [43]. Due to the 
role of CHK1 in G2 arrest and, consequently, HR repair of DSB, CHK1 
and ATR have been described to be targets in combination with DNA 
damage-inducing agents as treatment approaches for pancreatic cancers 
[44,45]. The p53-independent expression of the CDK inhibitor p21 in 
response to mitogen-activated ERK1/2 has been described in early 
G1 phase. However, it remains to be investigated whether in TP53- 
mutated cells IR-induced activation of ERK1/2 also induces p21 
expression [40]. Hyperactivation of ERK1/2 in KRAS-mutated cells also 
stimulates cell proliferation. In this context, the stimulated proliferation 
of KRASG12D-transformed pancreatic ductal cells harboring common 
TP53 and p16(INK4a) mutations was shown to be dependent on ERK2 
downstream of K-Ras [46]. 

KRAS mutation increases the expression of WEE1 kinase, which 
drives cell-cycle progression [47]. Upon induction of DNA damage, 
WEE1 becomes activated, presumably by CHK1 and CHK2 as ATR and 
ATM downstream kinases [48]. Mitotic entry is prevented by inhibition 

of the cyclin-B/CDC2 complex, in which inhibitory phosphorylation of 
CDC2 plays a fundamental role and is stimulated by WEE1 activity [49]. 
Thus, the function of WEE1 in G2/M arrest is crucial in all tumor cells, 
especially in TP53-mutated tumors with a lack of G1 arrest. Accordingly, 
targeting WEE1 can be an efficient approach to sensitize tumor cells to 
DNA-damaging agents [50,51], particularly in TP53-mutated cells, 
based on the concept of synthetic lethality [52]. 

Aurora kinase A (AURKA) is involved in the G2/M transition by 
promoting centrosome maturation and mitotic spindle assembly and is 
thus involved in chromosomal stability [53]. Oncogenic K-Ras stimu-
lates the expression of both AURKA and its activator,TPX2, as shown in 
pancreatic ductal adenocarcinomas (PDACs) cell lines KRASG12D 

mutated PANC-1 and KRASG12C mutated PaCa-2 [54]. In PDACs, high 
expression levels of AURKA and TPX2 were associated with shorter 
patient survival and the presence of oncogenic KRAS [54]. The expres-
sion of AURKA is stimulated by IR in a dose-dependent manner and 
induces radioresistance in preclinical studies [55–57]. Likewise, it has 
been shown that AURKA expression diminishes RT outcome in cancer 
patients with different tumor types [58–60]. Thus, it can be concluded 
that K-Ras-mediated radiochemotherapy resistance occurs partially 
through regulating cell-cycle progression. The function of oncogenic K- 
Ras in cell-cycle progression is outlined in Fig. 1. 

2.2. K-Ras downstream cascades stimulate DNA DSB repair 

Direct evidence for oncogenic K-Ras-mediating radioresistance was 
initially shown by Bernhard et al. [24] and Kim et al. [61], who 
demonstrated that knockdown of K-Ras by siRNA in KRASG12V SW480 
cells resulted in radiosensitization by a radiation dose enhancement 
ratio (DER) of 1.22. PI3K/AKT and MAPK/ERK are the two major 
pathways downstream of K-Ras that are hyperactivated by mutated 
KRAS and stimulated by irradiation. The impact of these two pathways 
on DDR repair has been investigated mainly in the context of stimulating 
the 3 key kinases, i.e., ATM, DNA-dependent protein kinase catalytic 
subunit (DNA-PKcs) and ATR. Activation of ATM following 53BP1 focus 
formation at the DNA damage site seems to be one of the early steps in 
the DDR after irradiation [62]. ATM induces CHK2 activity, leading to 
p53-dependent responses that promote G1 cell-cycle arrest, as a pre-
requisite event for DSB repair through NHEJ. Activation of p53 also 
induces chromatin remodeling and enhances the induction of DNA- 
repair genes [63]. If radiation-induced DNA damage is not repaired, 
cell death occurs mainly due to mitotic catastrophe but not senescence 
or autophagy [64,65]. ATM functionally interacts with K-Ras. ATM 
deficiency markedly increases the proportion of chromosomal alter-
ations in pancreatic primary tumors with KRASG12D and renders 
pancreatic tumors highly sensitive to radiation in association with 
increased residual DSB 24 h post-4 Gy [66]. This observation indicates a 
link between the K-Ras protooncogene and the activation of ATM. 
Several studies have shown that the activation of ERK and AKT depends 
on ATM kinase activity and that ATM forms a complex with ERK1/2 
[67]. Thus, the K-Ras-ATM-AKT-ERK signaling pathway can be one of 
the underlying signaling pathways involved in DSB repair in KRAS- 
mutated cells. This conclusion is supported by the literature indicating 
that DSB repair is stimulated by HR and NHEJ through the AKT and ERK 
pathways [68–75]. In further support of this conclusion, ATM was 
shown to mediate crosstalk between the prosurvival MEK/ERK and 
AKT/mTOR pathways as the two major pathways regulated by K-Ras 
[76]. The key function of K-Ras in this interaction is also supported by 
the enhanced sensitivity of KRAS-mutant lung cancer cells to MEK in-
hibition after ATM loss [76] and radiosensitization of KRAS-mutated 
pancreatic cancer cells after MEK targeting through inhibition of HR- 
and NHEJ-dependent DSB repair [77]. KRAS mutation also activates 
NRF2 antioxidant signaling [78,79] that suppresses p53 expression [78] 
and increases the expression of 53BP1 [79]. Upregulation of 53BP1 
stimulates NHEJ repair and mediates radioresistance, as shown in CRC 
cells SW48 and HCT116 after single doses of IR up to 8 Gy [79]. In 
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KRASG12V-mutated NSCLC cell line A549 cells, AKT1-dependent 
expression of RAD51 has also been reported [80]. This indicates that 
KRAS-mutated cells may produce an effective HR repair of DSB, as 
described previously in lung cancer cells [81] (Fig. 2). 

YB-1 is highly expressed in human solid tumors from different tissues 
and is involved in various cellular processes, e.g., cell cycle progression, 
maintaining cancer stemness and DDR as reviewed in [82,83]. The 
cancer hallmarks described thus far, i.e., resisting cell death such as after 
RT, are also regulated by YB-1 [84]. YB-1 expression is associated with a 
limited response to radiochemotherapy [18,83,85]. Serine 102 (S102) is 
one of the major phosphorylation sites in YB-1 that is necessary for its 
cellular functions. p90 ribosomal S6 kinase (RSK) and AKT are the key 
kinases within the oncogenic K-Ras downstream pathway that directly 
activate YB-1 [18,86]. YB-1 is constitutively phosphorylated at S102 in 
KRAS-mutated tumor cells, i.e., in CRC cells [85] and in triple-negative 
breast cancer (TNBC) cells [18]. In KRAS wild-type breast cancer cells, 
exposure to IR (4 Gy) induces YB-1 phosphorylation as early as 5 min 
post-IR [18]. Delayed YB-1 phosphorylation was also detected in CRC 
cells 6 h as well as 12 h after IR (5 Gy) [87]. Similar to the knockdown of 
K-Ras, knockdown of YB-1 inhibits the repair of IR-induced DSB in 
KRASG13D-mutated MDA-MB-231 breast cancer cells after irradiation 
with single doses of 2, 4 and 6 Gy, resulting in an enhanced radiosen-
sitivity [18]. Likewise, blocking YB-1 with an S102 blocking peptide 
[83] or by impairing its interaction with RSK [88] blocks DSB repair 
after 4 Gy irradiation in breast cancer cells. Thus, YB-1 is one of the 
components that is stimulated by the K-Ras protooncogene and en-
hances DSB repair, mediating RT resistance. The function of oncogenic 
K-Ras in DSB repair is outlined in Fig. 2. 

3. Targeting strategies to improve RT of KRAS-mutated tumors 

3.1. Targeting the K-Ras-regulated components of DDR signaling 

As reviewed above, KRAS mutation interferes with cell-cycle pro-
gression by stimulating the G1 transition and activating G2/M arrest 
(Fig. 1). After induction of DSB, arrested cells initiate DSB repair 
through HR and NHEJ in KRAS-mutated cells (Fig. 2). According to the 
function of K-Ras in DDR signaling, targeting K-Ras signaling will 

partially interfere with DSB repair after irradiation either by over-
whelming cell-cycle arrest or by hampering the components of repair 
pathways downstream of K-Ras. Thus, a selective approach to overcome 
RT resistance of KRAS-mutated cells would be targeting the components 
of cell-cycle progression and DNA repair that are known to be affected 
by mutated KRAS. In preclinical studies, the classical components of 
cell-cycle progression and DNA-damage repair, such as ATM, DNA-PKcs, 
ATR, CHK1, CHK2 and WEE1, have shown to be very promising targets 
for radiosensitizing tumor cells by applying small-molecule inhibitors 
[89–92]. Since the majority of tumors with KRAS mutations also harbor 
TP53 mutations, targeting the G2/M checkpoint might be the most 
effective approach to interfere with the repair of DSBs in KRAS-mutated 
cells. Thus, among a variety of targets involved in DDR and regulated by 
K-Ras, the current status of targeting DDR signaling involved in the G2/ 
M checkpoint will be summarized. The major focus will be on those 
clinical trials performed specifically in 3 tumor entities, i.e., pancreatic, 
CRC and lung cancers with frequent mutations in the KRAS gene. 

3.1.1. Targeting ATR 
ATR is activated upon DNA damage and in turn activates CHK1 to 

induce G2/M cell-cycle arrest. The mechanism of ATR function in DDR 
has been extensively investigated in preclinical studies. Currently, spe-
cific small-molecule inhibitors of ATR, e.g., VE-821, M6620 (berzosertib, 
VX-970), and AZD6738 (ceralasertib), are available, and the sensitizing 
effect of ATR inhibitors has been successfully demonstrated after com-
bination with RT or chemotherapy agents. In PSN-1, MiaPaCa-2 and 
primary PancM pancreatic cancer cells, VE-821, as the first highly se-
lective and potent ATR inhibitor, increased sensitivity to radiation doses 
of 2, 4 and 6 Gy in vitro [93]. VE-821 also induced sensitivity of the 
pancreatic cancer cells to gemcitabine [93]. Likewise, ATR inhibition by 
VE-821 enhanced the response to a single dose irradiation of 6 Gy in a 
PSN-1 tumor xenograft model in vivo [94]. A study by Baschnagel et al. 
demonstrated that inhibition of ATR by M6620 radiosensitizes NSCLC 
brain metastasis patient-derived xenografts [95]. 

3.1.2. Targeting CHK1 
ATR stimulating CHK1 activation protects oncogenic K-Ras- 

expressing pancreatic cancer cells from DNA damage induced by the 

Fig. 2. K-Ras stimulates repair of IR-induced DSB. The PI3K/AKT and MAPK/ERK pathways are the major signaling pathways activated either directly by K-Ras-GTP 
or downstream to EGFR by K-Ras-dependent autocrine secretion of EGFR ligands. Activation of these two pathways accelerates DSB repair by stimulating key 
components of the HR and NHEJ repair pathways. For further details, please see the text. 
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irradiation mimic neocarzinostatin [44], potentially through interfer-
ence with G2 arrest and successful DSB repair. AZD7762, MK-8776 (SCH 
900776) and LY2606368 (prexasertib) are the most studied CHK1 in-
hibitors that have been investigated in combination with DNA- 
damaging agents in a variety of tumor entities. In a study by Dinkel-
borg et al, targeting CHK1 in combination with single doses of irradia-
tion (2, 4, 6, and 8 Gy) resulted in radiosensitization in KRAS mutant/ 
hyperactivated TNBC cells but not in KRAS wild-type non-TNBC cells. 
[96]. Targeting CHK1 as a potential approach to induce radio-
sensitization of KRAS-mutated cells has also been demonstrated in 
tumor cells with frequent KRAS mutations. In pancreatic cancer cells, 
targeting CHK1 by applying AZD7762 or MK-8776 was shown to 
improve the effect of chemotherapy agents [97,98], radiation [99,100], 
and chemoradiation [101] in vitro and/or in vivo. In KRAS-mutated 
rectal cancer cells, AZD7762 was shown to be an effective compound 
to induce radiosensitization after 2 Gy irradiation [102]. Likewise, lung 
cancer cells could also be radiosensitized by CHK1 inhibitors in pre-
clinical studies in vitro and in vivo [103,104]. Currently, there are no 
clinical studies published applying CHK1 inhibitors in combination with 
chemoradiation in tumors with frequent KRAS mutations. However, 
based on the results published from preclinical studies, the combination 
of CHK1 inhibitors in patients with KRAS-mutated tumors may be 
beneficial and should be tested in a clinical setting. Table 1 presents the 
clinical trials in which CHK1 targeting was combined with chemo-
therapy or RT in 3 tumor entities most frequently harboring KRAS mu-
tations, i.e., pancreatic cancer, CRC and lung cancers. 

3.1.3. Targeting WEE1 
WEE1 is the key kinase and the direct target of CHK1, and its 

expression is enhanced by KRAS mutation, as shown in pancreatic 
cancer cells [47]. In irradiated cells, activation of WEE1 stimulates G2/ 
M cell-cycle arrest and, consequently, DSB repair through both HR and 
NHEJ. Thus, WEE1 inhibition can boost the cells harboring residual DSB 
through replication, resulting in cell death through mitotic catastrophe. 
The WEE1 kinase inhibitor AZD1775 (adavosertib) has been investi-
gated in preclinical studies and has shown radio/chemosensitization. In 
pancreatic cancer cells, as a representative KRAS-mutated tumor entity, 
targeting WEE1 induced sensitization to radiation with a DER of 1.3 ±
0.1 in MiaPaCa-2 cells and gemcitabine chemoradiation in vitro and in 
vivo through inhibition of the HR repair pathway and abrogation of the 
G2 checkpoint [105,106]. Abrogation of the G2 checkpoint as a poten-
tial mechanism of radiosensitization in pancreatic cancer cells has also 
been shown in vitro and in vivo through controlling translational regu-
lation of WEE1 and RAD51 by metformin [107]. Furthermore, WEE1 
targeting was shown to be more efficient in KRAS-mutant NSCLC 
expressing mutated TP53 [108], indicating that the G2 checkpoint is the 
major target of WEE1 inhibitors. The data obtained from clinical trials of 
the WEE1 kinase inhibitor AZD1775 are promising. In a phase II ran-
domized trial, AZD1775 improved the progression-free survival of CRC 
patients with KRAS- and TP53-mutated tumors and was well-tolerated 
[109]. Together, pharmacological inhibitors targeting the components 
of the ATR/CHK1/WEE1 pathway in 3 tumor entities expressing most 
KRAS mutations have reached phase II clinical trials. However, except 

Table 1 
Clinical studies targeting K-Ras and K-Ras-regulated DDR signaling. The studies in combination with RT are marked in bold.  

Target Drug Trial Combination Cancer type Major findings Ref. 

ATR M6620 phase I GEM advanced NSCLC  - well tolerated. [129] 
+/- CB ST including CRC  - well tolerated.  

- complete response in ATM loss CRC 
[130] 

TPT ST including NSCLC and PaCa  - MTD of combination was well tolerated  
- enhanced DNA DSB in combination  
- partially active in TPT-non-responding NSCLC 

[131] 

CHK1 AZD7762 phase I GEM ST including CRC and lung cancer  - MTD of 21 mg, stable disease [132] 
phase 
II 

GEM PaCa  - not superior to GEM [133] 

LY26063618 phase 
II 

GEM + CDDP advanced nonsquamous NSCLC  - improved PFS  
- increased risk of thromboembolism 

[134] 

pemetrexed advanced or metastatic NSCLC  - partial response (9.1 %)  
- stable disease (36.4 %)  
- no association between p53 status and response 

[135] 

WEE1 AZD1775 phase 
II 

GEM þ RT LAPaCa  - well tolerated  
- improved OS 

[110] 

– RAS and TP53 mutations mCRC  - improved PFS [109] 
FTase tipifarnib phase I – brainstem glioma  - MTD (125 mg/m2 twice-daily) [136] 

RTþ/-TMZ GBM  - MTD (300 mg/m2 twice-daily) [137] 
RT GBM  - MTD (200 mg/m2/day) [138] 

phase 
II 

RT brainstem glioma  - no clinical advantage [115] 
GBM  - no clinical advantage [116] 

FTase +
GGTase-1 

L-778,123 phase I RT HNSCC and NSCLC  - acceptable toxicity  
- partial to complete response  
- radiosensitization of PD cell line  
- accumulated in G2/M after L-778,123 

[118] 

PaCa  - acceptable toxicity.  
- radiosensitization of PD cell line 

[119] 

KRASG12C AMG 510 phase I – KRAS G12C ST  - encouraging anticancer activity  
- Grade 3 or 4 treatment-related toxic effects 

occurred in 11.6 % 

[128] 

phase 
II 

– KRAS G12C NSCLC, previously treated with 
standard therapies  

- durable clinical benefit  
- partial and complete response in 37.1 %  
- adverse events in 69.8 % 

[139]  

KRAS G12C CRC, previously treated with 
standard therapies  

- 9.7 % overall response [140] 

ATR: ataxia telangiectasia and Rad3 related, CB: carboplatin, CDDP: cis-diammindichloridoplatin, CHK1: checkpoint kinase 1, CRC: colorectal cancer, DSB: double- 
strand break, FTase: farnesyltransferase, GBM: glioblastoma multiforme, GEM: gemcitabine, GGTase-1: geranylgeranyl transferase type-1, HNSCC: head and neck 
squamous cell carcinoma, LAPaCa: locally advanced pancreatic cancer, mCRC: metastatic colorectal cancer MTD: maximum tolerated dose, NSCLC: non-small-cell 
lung cancer, PaCa: pancreatic cancer, PD: patient derived, PFS: progression-free survival, OS: overall survival, RT: radiotherapy, ST: solid tumors, TMZ: temozo-
lomide, TPT: topotecan. 
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for one study, nearly all other studies were in combination with 
chemotherapy, and combination studies with RT or radiochemotherapy 
should be conducted. To date, the data of only one study have been 
published combining the WEE1 inhibitor AZD1775 with gemcitabine 
and RT in pancreatic cancers [110]. In this study, AZD1775 in combi-
nation with gemcitabine and RT was well tolerated, and the overall 
survival was described to be substantially higher than prior results 
combining gemcitabine with radiation [110]. The result of this study 
[110] is of special importance because it targets WEE1, whose expres-
sion is expected to be higher in KRAS-mutated tumors than in KRAS 
wild-type tumors [47]. This difference might be an advantage for tar-
geting WEE1 instead of ATM and CHK2 to block G2/M arrest in terms of 
tumor specificity and limited normal tissue toxicity issues. 

3.2. Direct targeting of KRAS PTMs 

Prenylation, palmitoylation/depalmitoylation, phosphorylation, 
acetylation, nitrosylation, ubiquitination and SUMOylation are the 
major PTMs of K-Ras [5]. These PTMs regulate K-Ras membrane local-
ization and, consequently, its activity and oncogenic capacity. Thus, 
inhibitors of PTMs were supposed to be the first approach to overcome 
the radioresistance of KRAS-mutated tumors. Prenylation by farnesyl- 
protein transferase as the first step in K-Ras maturation occurs by add-
ing the lipid farnesyl group to the cysteine near the end of the target 
protein, which is necessary for localization of K-Ras to the plasma 
membrane [111]. Targeting farnesyltransferase was one of the first ap-
proaches proposed to target Ras by applying farnesyltransferase in-
hibitors (FTIs). Several FTIs, i.e., L-744,832, L-778,123, FTI-276 and 
R115777 (tipifarnib), have been preclinically investigated in combina-
tion with RT. A study by Cohen-Jonathan et al. was one of the first 
studies to demonstrate that inhibition of farnesyltransferase by L- 
744,832 and FTI-276 radiosensitizes T24 bladder cancer cell lines 
expressing HRAS mutations but not the human colon carcinoma cell line 
HT-29, which expresses wild-type RAS, and both cell lines express TP53 
mutations [112]. A separate study from the same group demonstrated 
that FTI can change the oxygenation of HRAS mutated but not HRAS 
wild-type tumors [113]. In a further study of L-744,832 in pancreatic 
cancer cells, it was demonstrated that L-744,832 enhanced the cytotoxic 
effect of IR, apparently by overriding G2/M checkpoint activation 
[114]. Although the effect of the studied FTIs on DSB repair has not been 
investigated in any of these studies, the results confirmed the potential 
radiosensitizing effect of FTIs in pancreatic cancer in combination with 
clinically relevant doses of IR. However, cell-cycle regulation by L- 
744,832 was associated with changes in PTM of H-Ras and N-Ras, but 
not K-Ras [114]. From this study, it could be concluded that FTIs can 
also interfere with the activation and function of other farnesylated 
proteins. 

Most clinical trials on the combination of FTIs with RT have been 
conducted in brain tumors (Table 1). Tipifarnib entered a phase II trial in 
combination with RT of gliomas and glioblastomas [115,116]. Admin-
istration of RT did not offer a clinical advantage over historical controls 
in pontine gliomas [115]. A similar result was observed from the com-
bination of tipifarnib with RT in glioblastomas. The lack of benefit of the 
combination of tipifarnib with RT in brain tumors is not surprising since 
only 2 % of glioblastomas harbor RAS mutations [117]. Thus, RAS 
mutation seems to be a prerequisite for selecting patients for the com-
bination of RT and FTIs. This conclusion is supported by the results of 
the combination of FTI L-778,123 in NSCLC [118] and pancreatic can-
cers [119]. Although RAS mutation was not essential for study enroll-
ment, L-778,123 in a phase I trial led to local responses without an 
increase in RT-associated toxicities in four NSCLC patients [118]. In a 
study of four pancreatic cancers (3 with KRAS mutation), a combination 
of L-778,123 and RT at dose level 1 showed acceptable toxicity. In this 
study, L-778,123 radiosensitized a patient-derived cancer cell line 
[119]. 

Since only very limited clinical trials on the combination of FTIs with 

RT exist, no solid conclusion can be made on the effectiveness of such a 
combination. Thus, the combination of FTIs with standard RT is 
reasonable, and in such a trial, stratification on the basis of mutation or 
pathway activation would be more informative. Evidence from pre-
clinical studies indicates that in farnesyltransferase-inhibited cells, 
prenylation of K-Ras can occur by geranylgeranyl transferase type-1 
(GGTase-1) [120]. Therefore, the applied FTI should also be able to 
block GGTase-1 with tolerable toxicity when combined with RT. 

3.3. Other approaches to block prosurvival effect of K-Ras protooncogene 

Discovering small-molecule inhibitors that bind irreversibly in the 
switch-II pocket of oncogenic KRASG12C [121,122] accounts for the 
latest progress in targeting the K-Ras protooncogene. AMG510 (sotor-
asib) is among those K-RasG12C inhibitors that has been approved by the 
FDA for the treatment of patients with NSCLC with KRASG12C mutations. 
To date, most of the studies with AMG510 have been performed on the 
antitumor activity of the compound as a single treatment or in combi-
nation with DNA damage-inducing chemotherapy agents. The mutation- 
specific cellular activity of AMG510 has been shown across a panel of 
KRASG12C-mutated cell lines compared to non-KRASG12C lines [123]. 
AMG510 was shown to selectively target KRASG12C mutated tumors, 
with a durable tumor regression effect as a monotherapy and with a 
synergistic effect in combination with chemotherapy and targeted 
therapy agents [123]. Several clinical trials with AMG510 are enrolling 
patients for study. The results of previously published trials are sum-
marized in Table 1. The effect of K-RasG12C inhibitors in terms of an 
objective response in NSCLC and CRC patients is limited, which may be 
due to the reported resistance to these inhibitors. In this context, the 
development of resistance to AMG510 has been demonstrated to be due 
to a variety of different mechanisms. Deregulation of upstream receptor 
tyrosine kinases, activation of the MAPK/ERK and PI3K/AKT pathways 
due to mutations in the regulatory components of these pathways, KRAS 
secondary mutation in codons 12, 13, 61, 68, 95, 96 and amplification of 
the KRASG12C allele are among those resistance mechanisms [124–127]. 
Additionally, applying these inhibitors is limited to a small number of 
tumors with KRAS mutation, i.e., in 13 % of KRAS mutated NSCLCs, in 1 
to 3 % of KRAS mutated colorectal cancers and in 1 to 2 % of KRAS 
mutated pancreatic cancers [128]. Thus, due to the diverse mechanisms 
of resistance to KRASG12C inhibitors and applicability of this strategy to 
very limited tumors, there is uncertainty regarding the combination of 
this strategy with radiotherapy. 

Targeting upstream and downstream effectors of K-Ras, e.g., EGFR, 
PI3K, Raf, AKT and MEK, is not restricted to KRAS-mutated cells. These 
targeting strategies were not discussed in this review since they have 
been extensively reviewed by other investigators. 

4. Conclusions and future directions 

In addition to targeting the components of K-Ras downstream cas-
cades, two major strategies have been used to overcome K-Ras-induced 
radioresistance, which were reviewed here. Targeting the PTM of K-Ras 
is the most well-studied approach. In this context, preclinical studies 
showed that the use of FTI in combination with RT may be an effective 
approach to radiosensitize KRAS-mutated cells. However, the applied 
FTIs should also be able to block prenylation of K-Ras not only by 
blocking farnesyltransferase but also by inhibiting GGTase-1 as an ac-
quired resistance mechanism to FTIs. Due to the lack of benefit of the 
combination of FTIs with RT of KRAS wild-type tumors, KRAS mutation 
should be a prerequisite for enrolling patients in future trials. 

The role of the protooncogene K-Ras in the DNA-damage response 
and G2/M cell-cycle arrest has been well described. This function of 
KRAS may well be of special importance in tumors with TP53 mutations 
that rely on the G2/M checkpoint for DNA repair after RT, based on the 
concept of synthetic lethality. The results of early-phase clinical trials 
applying inhibitors of ATR, CHK1 and WEE1 are promising and suggest 
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that suppressing G2/M arrest might be the most effective approach to 
combine with RT in KRAS-mutated tumors. 
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