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MOTIVATION Different brain areas communicate in order to produce a given behavior. Understanding
brain function therefore requires detailed knowledge of how information flows through long-range neural
circuits. Illuminating long-range structures requires whole-brain imaging at high resolution to trace axonal
arbors of individual neurons to their termini across the brain; however, current platforms are complicated
and require 1–2 weeks of continuous imaging for each mouse brain. To address this challenge, we have
developed an imaging strategy that enables high-speed, high-resolution, high-contrast brain-wide imaging
to reconstruct sparsely labeled neurons in their entirety.
SUMMARY
Understanding brain functions requires detailed knowledge of long-range connectivity through which
different areas communicate. A key step toward illuminating the long-range structures is to image the whole
brain at synaptic resolution to trace axonal arbors of individual neurons to their termini. However, high-res-
olution brain-wide imaging requires continuous imaging for many days to sample over 10 trillion voxels, even
in themouse brain. Here, we have developed a sparse imaging and reconstruction tomography (SMART) sys-
tem that allows brain-wide imaging of cortical projection neurons at synaptic resolution in about 20 h, an
order of magnitude faster than previous methods. Analyses of morphological features reveal that single
cortical neurons show remarkable diversity in local and long-range projections, with prefrontal, premotor,
and visual neurons having distinct distribution of dendritic and axonal features. The fast imaging system
and diverse projection patterns of individual neurons highlight the importance of high-resolution brain-
wide imaging in revealing full neuronal morphology.
INTRODUCTION

The mammalian brain consists of several hundred functionally

distinct regions that form complex networks through their dense

inter-areal connections (Felleman and Van Essen, 1991; Glasser

et al., 2016; Oh et al., 2014). These long-range connections

direct how information flows across brain regions, and thus

play a crucial role in sensory processing, perception, working

memory, decision-making, and execution of actions (Alexander

et al., 1990; Glickfeld et al., 2013; Guo et al., 2017; Otis et al.,

2017). Great efforts have been devoted to probe brain-wide

inter-areal connectivity using techniques with varied spatial

scales. Functional imaging methods provide coarse spatial

organization, as they typically sample mammalian brains at the

millimeter scale (Heeger and Ress, 2002). Bulk application of
Cell Rep
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anterograde and retrograde tracers followed by light microscopy

can achieve micrometer-scale resolution, but they average over

a large population of neurons and obscure fine projection pat-

terns of individual neurons (Gerfen and Sawchenko, 1984; Luppi

et al., 1990; Oh et al., 2014; Veenman et al., 1992; Zingg et al.,

2014), as neurons in one brain area are typically composed of

subpopulations with distinct projection targets to mediate

distinct functions. Full morphological reconstructions can reveal

individual neurons’ complicated projection patterns, which are

often widely diverse but arranged in an intermingled way with

neighboring neurons (Wang et al., 2019b; Winnubst et al.,

2019). Morphological properties of axonal and dendritic

arbors provide crucial information to classify cell types

(Sanes and Masland, 2015), and strongly influence the firing

properties and computational capabilities of individual neurons
orts Methods 1, 100089, October 25, 2021 ª 2021 The Authors. 1
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(Mainen and Sejnowski, 1996). However, despite the importance

of obtaining full neuronal morphology, complete reconstruction

is still technically challenging, as it requires high-contrast

brain-wide scanning at sub-micrometer resolution and is

achieved only in scattered cases that typically require special-

ized imaging systems and prolonged imaging time (Economo

et al., 2016; Ghosh et al., 2011; Gong et al., 2016; Han et al.,

2018; Kuramoto et al., 2009; Li et al., 2010; Wang et al., 2019b;

Winnubst et al., 2019; Wu et al., 2014).

Specialized imaging platforms and their associated recon-

struction pipelines have been developed to detect and trace

full neuronal morphology. Micro-optical sectioning tomography

(MOST) can scan a whole mouse brain at �0.3 3 0.3 3 1 mm3

voxel in 8 days, and an updated version of wide-field large-vol-

ume tomography (WVT) can image at a reduced voxel size of

0.32 3 0.32 3 2 mm3 in 3 days (Gong et al., 2016; Li et al.,

2010). Serial two-photon tomography integrates laser-scanning

two-photon microscopy with vibratome-based tissue sectioning

to image one mouse brain at 0.3 3 0.3 3 1 mm3 voxel in 7 days

(Economo et al., 2016). The long duration of imaging and the

large dataset collected (�10–20 TB) pose a huge challenge

for imaging and data processing. Light-sheet fluorescence

microscopy combined with tissue clearing techniques, and spin-

ning-disk confocal or two-photon systems integrated with a vi-

bratome for serial sectioning, have achieved volumetric imaging

of mouse brains in a few hours but at reduced resolution (espe-

cially along the z axis) (Dodt et al., 2007; Migliori et al., 2018; Nar-

asimhan et al., 2017; Ragan et al., 2012; Seiriki et al., 2017;Wang

et al., 2019a). Thus, few techniques can image a whole mouse

brain at synaptic resolution within a relatively short time (approx-

imately a day) to enable efficient reconstruction of complete

neuronal morphology. Here, we have developed a high-speed

high-resolution serial-sectioning imaging system, which ac-

quired a whole mouse brain with sparsely labeled neurons in

its entirety in about 20 h (the exact time depends on the projec-

tion complexity of labeled neurons in one or several cortical

areas, Figure 1).

RESULTS

Working principles and setup
Sparse but strong labeling facilitates the disentanglement of

single neuronal fibers from the surrounding dendritic and
Figure 1. SMART system enables high-speed high-resolution whole-b

(A) Schematic of imaging strategy to detect regions with fluorescent signals. Imag

As a single neuron is structurally continuous, its extensive dendrites and axon arb

micrometers. Thus, a cuboid is empty of fluorescent signal if there is no fluoresce

there are fluorescent signals within the cuboid (or on its surfaces) and the cuboid

(B) The system setup. Shown are a confocal spinning-disk unit (CSU), objective

mouse brain.

(C) An example section with imaged tiles indicated in dark gray.

(D) Zoom-in view of the stitched tiles in (C) showing a portion of the dendrites and

Scale bar: 200 mm.

(E) Left: maximum-intensity projection of a large volume (1.53 2.43 0.6 mm3) con

depicted in the x-y view (left). Scale bar: 100 mm. Right: zoom-in views of rectangu

dendritic ends. SNR, signal-to-noise ratio of structures indicated by arrowheads

See also Figures S1 and S2.
axonal processes, and thus is a fundamental requirement for

reconstruction of full neuronal morphology using light micro-

scopy (Economo et al., 2016; Lin et al., 2018; Winnubst

et al., 2019). A robust sparse labeling method is to inject a

mixture of high-titer EGFP virus and low-titer Cre virus (Xu

et al., 2012). This approach can randomly label a few dozens

of neurons near the injection site to allow visualization of indi-

vidual spines in vivo (Xu et al., 2012) and to allow detection and

reconstruction of long-range projections in cleared brains

(Economo et al., 2016; Winnubst et al., 2019). We posited

that sparse signal introduced through viral injection extends

along only the labeled neuronal structures, and this feature

can be used to speed up imaging. To fully exploit the sparsity

of signals, we aim to image only regions with fluorescent sig-

nals (Figure 1A). At first sight, this is paradoxical: how do we

know which region has a fluorescent signal without imaging

the region first? We achieve this based on the fact that axonal

and dendritic arbors emanating from a soma are continuous,

and a projection neuron with its full process cannot be fitted

into a small cuboid with each dimension spanning a few hun-

dred micrometers. Thus, if there is no fluorescent signal on

the surface of a cuboid, there would be no signal within the

cuboid. During the process of imaging, we determine whether

there exists signal on the surface in order to avoid imaging

empty cuboids. We use this approach to speed up data acqui-

sition and reconstruction (i.e., sparse imaging and reconstruc-

tion tomography, SMART).

With this concept, we built an imaging system based on a

spinning-disk confocal system equipped with a 403 oil objective

(NA 1.3) and a high-quantum-yield back-illuminated scientific

complementary-metal-oxide semiconductor (sCMOS) camera

(113 11 mm2 pixel size), which provides high-resolution imaging

(0.33 0.33 1.0 mm3 voxel, Figures 1B, 1E, and S1). Alternatively,

we optimized the system with a long-working-distance objective

(253, NA 1.0) to achieve faster imaging (�23 due to a larger field

of view) at slightly reduced resolution (0.43 0.43 1.0 mm3 voxel

size, high-speed setup, see STAR Methods for details). Tissue

clearing with CUBIC-1 (Susaki et al., 2014) combined with

OPTIClear (Susaki et al., 2014) for refractive index matching al-

lows the spinning-disk confocal unit to image 250 mm thick slices

without evident signal degradation (Figure S2B). A vibratome is

integrated to section off the imaged top portion of tissue

(�195 mm) to achieve constant quality of imaging throughout
rain imaging

ing a brain is decomposed into imaging all the cuboids within the brain volume.

ors cannot be fitted into a cuboid with each dimension spanning a few hundred

nt signal on its six surfaces. In contrast, if a cuboid has signal on any surface,

should be imaged.

s, a vibratome for serial sectioning, and x-y-z stages for positioning a cleared

axons from a few dozens of labeled medial prefrontal cortex (mPFC) neurons.

sisting of 120 tiles from the same brain in (C). Labeled somata and neurites are

lar regions on the left show axon branchpoints, axon terminals, dendrites, and

. Scale bars: 10 mm.
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the cleared mouse brain (Figure S1). As the system uses a high

NA objective, fine structures such as spines and thin axons are

imaged with high signal-over-noise ratio (SNR), and there is no

evident degradation of the SNR with increased distance from

somata (Figures 1E and 2A–2F). Axons and their terminals

have a high SNR and are clearly visible (Figure 3).

The strategy of sparse imaging crucially depends on success-

ful detection of signals on the surfaces of each cuboid. To quan-

tify the accuracy of signal detection, we calculated the false

positive and false negative rates in multiple imaged brain sam-

ples (STAR Methods). False positive rate, defined as the fraction

of imaged tiles without fluorescent signals, reached 28.6% on

average (Figure 2H). These extra tiles prolonged imaging time

roughly by the same percentage. False negative rate was limited

to 0.13%, equivalent to approximately nine surfaces in imaged

brain samples (with about 7,000 surfaces surrounding imaged

stacks). We also imaged cleared brains completely using the

high-speed setup, and the false negative rate was about

0.65%. The undetected surfaces are typically due to faint axons

from weakly labeled neurons, as the viral delivery strategy does

not label neurons with uniform brightness (accounting for over

96% of cases, Figure 2I). We characterized the brightness of sig-

nals on false negatively detected surfaces (Figure 2J). The sig-

nals on these surfaces have low SNR of 4.6 ± 2.1 (mean ± SD,

n = 47). Low-fluorescence signals render tracing the full neuronal

morphology almost impossible, and thus, the undetected signals

on surfaces do not affect our pipeline of brain-wide imaging and

reconstruction.

Physical sectioning and other factors such as temperature

fluctuations can lead to tissue deformation. We characterized

the deformation field and found that mismatches between adja-

cent sections were at 10 mm scale along the x, y, and z directions

(Figures S2F and S2G). As stacks of images are acquired with

partially overlapped regions in all dimensions (10% or �30 mm

in the x and y directions, 55 mm along the z direction), we used

Elastix (Klein et al., 2010) to register adjacent regions (Figures

S2H–S2J). A zoom-in view of a stitched volume comprising

120 stacks (1.5 3 2.4 3 0.6 mm3) reveals distal axon collaterals

in the contralateral hemisphere with high contrast and natural

continuity (Figure 1E).
Figure 2. Analysis of signal quality of SMART

(A) Histogram of SNR of axons in each tile from brain H241. Tiles were randomly

(B) Left: relationship between SNR of axonal terminals and their distance from ce

shown on the right. Right: axons in tiles indicated by orange circles on the left (ma

slightly different, depending on the density of signals nearby that contribute to b

5 mm.

(C and D). Same format as in (A and B), respectively, but for 351 tiles from brain

(E and F) Same format as in (A and B), respectively, but for 345 tiles from brain H

(G) Type of errors in signal detection. False positively (FP) detected cuboids are

imaged volume that increases the total imaging time. False negatively (FN) detec

signals (post hoc checked by inspecting a few layers of images near the surfa

truncation of traced neurons.

(H) Fraction of FP and FN ratios. We optimized the FN ratio to be extremely low

(I) Quantification of FN detected surfaces with signal. Of 0.13%FNdetected surfac

extremely difficult, and we typically pick bright somata to trace, FN detected sur

(J) Quantification of SNR for signals on FN detected surfaces due to low SNR. M

(K) Example of cases that lead to FN detected signals. In the top row, a segment

cuboid is not imaged using the 403 objective. Themissing of signal is confirmed b

In the bottom row, the signal is hardly visible in the 163 objective (left).
Imaging prefrontal, premotor, and visual cortical
neurons
Cortical projection neurons have distinct cell types with

different innervation targets (Harris and Shepherd, 2015; Oh

et al., 2014; Wang et al., 2019b; Winnubst et al., 2019). We

used SMART to image sparsely labeled EGFP neurons in the

medial prefrontal cortex (mPFC; a frontal region in the regula-

tion of cognitive and emotive functions; Fuster, 2015; Miller,

2000), the anterior lateral motor cortex (ALM; a premotor re-

gion in the regulation of motor planning and movement; Guo

et al., 2014; Li et al., 2015), and the primary visual cortex (V1;

a primary sensory area for visual processing; Han et al.,

2018; Hubel and Wiesel, 1959). The three cortical areas were

virally injected individually or in combination. We first analyzed

whole-brain imaging data with sparsely labeled neurons in the

mPFC, ALM, or V1 by projecting raw fluorescence along the

dorsal-ventral, anterior-posterior, and medial-lateral directions

(Figures 4 and S3). Maximum-intensity projections of a typical

mouse brain with a few dozens of mPFC neurons show surpris-

ingly widespread projections across dozens of brain areas. The

axonal arbors are extensive in several interbrain, midbrain, and

hindbrain nuclei (Figure 4B), consistent with their diverse roles

in behavioral control (Fuster, 2015; Miller, 2000; Otis et al.,

2017). Despite the extensive projections, a vast majority of vol-

ume was screened out by our strategy for not imaging (Fig-

ure 4A). The whole-brain data with neurons in the ALM show

similar characteristics (Figure 4C and 4D). However, neurons

in the V1 seem to have many fewer long-range projections to

subcortical areas (Figures S3A and S3B). SMART is not limited

to brains with a single area labeled. We also imaged samples

with sparsely labeled neurons in mPFC, ALM, and V1 in the

same brain (Figures S3C and S3D).

By taking advantage of the sparsity of signals, we need to

image only 11.1 ± 2.1% of the total brain volume (mean ±

SD, Figures 5A and 5B). This results in a dramatic reduction

in imaging time (25.6 ± 3.1 h for ALM, 27.3 ± 3.2 h for

mPFC, and 14.2 ± 0.9 h for V1, mean ± SD, versus �204 h if

all regions are imaged, Figures 5C and 5D), and produces a

much reduced dataset size (2.7 ± 0.3 TB versus �31 TB if

all regions are acquired at 16 bits). With labeled neurons in
selected (n = 386).

ll bodies. Blue circles, data of individual tiles with axons. Orange circles, tiles

ximum-intensity projection). The background of each tile of the images can be

ackground through pinhole cross-talk in spinning-disk microscopy. Scale bar:

H236.

244.

those imaged cuboids without fluorescent signal. Thus, FP cuboids add to the

ted surfaces are on the outer surfaces of the major titles that have fluorescent

ce for axons and dendrites). FP surfaces lead to loss of signal and potential

to avoid missing bright signals. Error bar: SD.

es, over 96%had lowSNR. As low SNR renders tracing the full cell morphology

faces do not interfere with tracing the full axonal arbors.

ean ± SD is 4.6 ± 2.1 (n = 47).

of axon is present in the bottom surface of one section (left, section N) but the

y the 163 and 403 objectives during imaging of the next section (section N + 1).
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mPFC, ALM, and V1, the fraction of imaged volume is only

roughly twice that with a single injected area (mPFC or ALM,

Figure 5B). And the overall imaging time using the high-speed

setup is similar to that with a single injected area (mPFC or

ALM, Figure 5C). Notably, this increase in imaging speed is

not at the cost of reduced resolution or SNR, and the high-res-

olution high-contrast method enables clear identification of in-

dividual axonal terminals (Figure 3).

Analysis of single neuronal morphology
We traced putative full morphology of 29 projection neurons in

mPFC, ALM, or V1 (Figure 6A, see Figures S4 and S5 for full

axonal morphology of each reconstructed neuron, and Fig-

ure S7 for local dendrites and axons). The processes of

mPFC, ALM, and V1 neurons show differential distributions

along the anteroposterior, mediolateral, and dorsoventral di-

rections, reflecting their distinct projection targets (Figure 6B).

The longest axonal path of mPFC neurons is significantly

longer than those of ALM and V1 neurons, with ALM neurons

also longer than V1 neurons (Figure 6C, t test, p < 0.01). The

total axonal length shows a similar pattern (Figure 6D). The to-

tal axonal length is linearly correlated with the total number of

branches (Figure 6E). Cortical projection neurons contain py-

ramidal tract (PT) and intratelencephalic (IT) neurons classified

based on their distinct projection targets (Harris and Shep-

herd, 2015). Consistently, single-neuron reconstruction re-

veals that PT and IT neurons form different clusters (Figures

6F–6H), with distinct dendritic morphology and local axonal

arbors (Figure S6), and project to different cortical and

subcortical areas (Figures S7–S9). Most mPFC and V1 projec-

tion neurons have local axonal arbors (defined as axonal

branches within 500 mm of a soma) while relatively few ALM

neurons have local collaterals (70%–90% versus 25%, Fig-

ure S6). We further compared PT and IT neurons from

mPFC and ALM (Figures 6I and S10). PT neurons from either

mPFC or ALM tend to project more ipsilaterally, but with some

contralateral projections in the thalamus, hypothalamus, and

brain stem (Figures 6I, 7A, and 7B). PT neurons in mPFC bifur-

cate to target more brain areas compared with ALM neurons,

with both mPFC and ALM neurons targeting much larger

numbers of areas compared with V1 neurons (Figures 7C

and 7D). Although ALM neurons on average have fewer tar-

gets, some of them have a massive number of terminals in

one or two subcortical regions (for example, superior collicu-

lus, motor related [SCm], Figure 6I). On average, PT neurons

from mPFC have more projections in periaqueductal gray

(PAG), while ALM have more in SCm, consistent with their

roles in behavioral control (Lui et al., 2021) and orienting

(Guo et al., 2014; Li et al., 2015), respectively. IT neurons

from mPFC and ALM also tend to project more ipsilaterally

(Figure S10).
Figure 3. All axonal terminals of one mPFC neuron

(A) 3D visualization of the intratelencephalic neuron in the mPFC. Scale bar: 1 m

(B) Distribution of SNR for the axon endings (n = 265) in the example neuron. Signal

Noise was calculated using a rectangular background area without signal. SNR

(C) Maximum-intensity projections (along the z axis) of all axonal terminals (n = 265

SNR for each axon terminal. All the images have the same intensity range. Scale
DISCUSSION

We have developed a high-speed high-resolution high-contrast

imaging system and demonstrated its capability in imaging and

tracing individual neurons with fine axonal tracts and collaterals

across the mouse brain. By taking advantage of sparse labeling,

which is necessary for the reconstruction of fine axon collaterals

using light microscopy, we have used the SMART system to im-

age neurons in a variety of cortical regions within a few hours to a

day, a much shorter time than previous methods (Table S1)

(Economo et al., 2016; Gong et al., 2016; Li et al., 2010). This

further demonstrates that real-time data analysis combined

with instrument control can dramatically augment the perfor-

mance of specific imaging systems (Long et al., 2017; Peng

et al., 2014b; Zhang et al., 2021). There have been a number of

alternative methods for whole-brain imaging, including knife-

edge scanning microscopy, block-face two-photon or confocal

microscopy, and light-sheetmicroscopy (Dodt et al., 2007; Econ-

omo et al., 2016; Gong et al., 2016; Li et al., 2010; Migliori et al.,

2018; Narasimhan et al., 2017; Ragan et al., 2012; Seiriki et al.,

2017; Wang et al., 2019a). The idea of sparse imaging may be

adapted to these imaging approaches to increase the imaging

speed without sacrificing resolution. Large-scale electronmicro-

scopy can image a small piece of tissue (typically much less than

1mm3) with nanometer resolution, and thus has the capability for

dense reconstruction of neurites and synapses (Bock et al., 2011;

Briggman et al., 2011; Morgan et al., 2016). With sparse imaging

and tracing,mapping long-distance projections of single neurons

using electron microscopy may be feasible in the future.

Visualizing the complete morphology of individual neurons is

crucial to understand how the neurons implement their functions

through dendritic and axonal processes. Neurons in the mPFC,

ALM, and V1 show qualitatively different local and long-range

axonal arbors, emphasizing their distinct roles in cognitive,

movement, and sensory processing (Fuster, 2015; Guo et al.,

2014; Han et al., 2018; Hubel and Wiesel, 1959; Li et al., 2015;

Miller, 2000). Our system builds on a commercially available

confocal scanning unit, and its fast speed, simple design, and

lower requirement for data storage enable the system to be

easily adapted in individual labs, facilitating routine use of

whole-brain imaging for probing single-cell full morphology.

The core of the SMART concept relies on efficient detection of

regions with signals that typically requires volumetric imaging.

We speed up this process by converting volumetric imaging

into surface imaging of the volume as the neural process is

essentially continuous. With SMART, we need to sample only

roughly one-tenth the volume, and this consequently reduces

the dataset by about 90%, greatly facilitating handling of large

datasets. The pipeline is expected to greatly facilitate the

investigation of single-neuron morphology through brain-wide

imaging.
m.

was calculated using 33 3 pixelsmanually selectedwithin each axonal ending.

was the mean signal divided by the standard deviation of the background.

) belonging to the mPFC neuron. The number on each small panel indicates the

bar: 5 mm.
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Figure 5. Acquisition time for whole-brain imaging of sparsely labeled neurons in various brain areas

(A) Fraction of imaged tiles in each section along the dorsal-ventral axis of a mouse brain. Solid downward-pointing triangle indicates the position of the example

section in Figure 1C.

(B) Fraction of volume imaged with neurons labeled in various brain regions. Error bar: SD.

(C) Imaging time for brain samples in (B). Samples with labeled neurons in mPFC, ALM, and V1 (multi-sites injection) were imaged with the high-speed setup

(STAR Methods). Error bar: SD.

(D) Imaging time is linearly correlated with the fraction of volume imaged.

See also Table S1.
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Limitations of study
The concept of SMART relies on signal detection and imaging of

signals with regional confinement. Neurons in individual regions

typically project to one or two dozens of brain areas, leaving

about 90% of brain tissue unlabeled. For brain-wide labeling

through transgenic mouse lines, our approach will require a

similar amount of time compared with cutting-edge high-resolu-

tion whole-brain imaging methods such as MOST (Gong et al.,

2016; Li et al., 2010) and serial two-photon tomography (Econ-

omo et al., 2016). Under conditions that require brain-wide imag-

ing, our setup can be used as a block-face spinning-disk system

(Seiriki et al., 2017), diversifying its application for fast whole-

brain imaging. Furthermore, we have demonstrated that SMART

can still achieve �103 speed-up with sparse labeling in three

cortical areas when using the high-speed setup, lessening the

requirement of sparse labeling.
STAR+METHODS

Detailed methods are provided in the online version of this paper

and include the following:
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Figure 6. Analyses of morphological features of mPFC, ALM, and V1 neurons

(A) Brain-wide projection of neuronal processes of traced individual neurons along the horizontal (left), coronal (right top), and sagittal (right bottom) directions.

Blue, mPFC neurons; green, ALM neurons; orange, V1 neurons. Scale bar: 1 mm.

(legend continued on next page)
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Figure 7. Long-range projections of pyrami-

dal tract neurons in mPFC, ALM, and V1

(A) Total axon length of individual neurons in different

cortical and subcortical areas in the ipsilateral (top)

or contralateral (middle) hemisphere. The normal-

ized fraction of axon length in the contralateral

hemisphere (to total axon length) is shown in the

bottom row. There are typically fewer contralateral

projections. Blue, mPFC neurons; green, ALM

neurons; orange, V1 neurons.

(B) Number of axonal terminals in the ipsilateral (top)

or contralateral (middle) hemisphere. Note the dif-

ference in color bar for the top and middle rows.

There are typically fewer terminals in the contralat-

eral hemisphere.

(C) Number of nuclei with axons for mPFC, ALM, and

V1 neurons. mPFC and ALM neurons project

more extensively than V1 neurons. Error bar: SD.

*p < 0.05, ****p < 0.0001 (unpaired t test).

(D) Number of nuclei with axonal terminals formPFC,

ALM, and V1 neurons. Error bar: SD. *p < 0.05, ***p <

0.001, ****p < 0.0001 (unpaired t test).

See also Figure S10.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Bacterial and virus strains

pENN-AAV-hSyn-Cre-WPRE-hGH James M. Wilson Addgene 105553-AAV1;

AAV-pCAG-FLEX-EGFP-WPRE Hongkui Zeng Addgene 51502-AAV1

Chemicals, peptides, and recombinant proteins

Urea Sigma-Aldrich 51456, CAS:57-13-6

Triton X-100 Sigma-Aldrich T9284, CAS:9002-93-1

N,N,N0,N0-Tetramethylethylenediamine Sigma-Aldrich NB20130, CAS:110-18-9

Histodenz Sigma-Aldrich D2158, CAS: 66108-95-0

N-Methyl-D-glucamine Sigma-Aldrich M2004, CAS: 6248-40-8

PBS(10X) ThermoFisher 70011069

Experimental models: organisms/strains

Mouse: C57BL/6J Vital River 219

Software and algorithms

MATLAB 2017b & 2018b MathWorks https://www.mathworks.com/products/

MATLAB.html;

RRID: SCR_001622

LabVIEW National Instruments http://www.ni.com/enus/shop/labview.

htm;

RRID: SCR_014325

Elastix Klein et al. (2010) RRID:SCR_009619

ANTs Tustison et al. (2014) RRID:SCR_004757

Vaa3d Peng et al. (2010) RRID:SCR_002609

Other

488nm laser Obis LX/LS OBIS 488-150 mW

Confocal scanner unit Yokogawa Electronic CSU-W1

180 mm tube lens Olympus U-TLU

Motorized X-Y-Z stages Thorlabs LNR50SE/M

40x oil immersion objective Olympus UPlanFLN

16x water immersion objective Nikon N16XLWD-PF

25x multi-immersion objective Olympus XLSLPLN25XGMP

10x multi-immersion objective Olympus XLPLN10XSVMP

Piezo objective positioner Thorlabs PFM450E

Motorized stage Zaber X-LSQ075B

Motorized stage Henggong HGTA0850

sCMOS camera Teledyne Photometrics Prime 95B

I/O Device National Instruments USB-6366

Vibratome Leica VT1200

Source code This paper https://doi.org/10.5281/zenodo.5346760
RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Zengcai V.

Guo (guozengcai@tsinghua.edu.cn).
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Materials availability
This study did not generate new unique reagents.

Data and code availability

d The data of single neuronmorphology generated during this study are available at https://github.com/NeuralCircuits-Behavior/

Chen-Huang-Yang-et-al-2021 (https://doi.org/10.5281/zenodo.5346760).

d The code for hardware control and imaging generated during this study will be available at https://github.com/

NeuralCircuits-Behavior/Chen-Huang-Yang-et-al-2021 (https://doi.org/10.5281/zenodo.5346760).

d Any additional information required to reanalyze the data reported in this work is available from the lead contact upon reason-

able request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Mice
C57BL/6J adult male mice (8–15 weeks) were used for sparse labeling and imaging experiments. Mice were maintained on a 12/12-

hour light/dark cycle, and at 22–26�C with sterile pellet food and water ad libitum. All animal experiments used in this study were

approved by the IACUC (Institutional Animal Care and Use Committee) of Tsinghua University.

METHOD DETAILS

Virus injection and sparse neuronal labeling
To achieve sparse labeling of a few dozens of cortical neurons, a mixture of AAV2/1-hSyn-Cre (final titer�53 107 GC/mL) and AAV2/

1-CAG-Flex-EGFP (�23 1012 GC/mL) was injected (Economo et al., 2016). The injection procedure was similar as before (Wang et

al., 2021). Mice were kept anesthetized under 1–2% isoflurane during the whole injection procedure. The viral mixture was delivered

through an oil hydraulic micromanipulator (Narishige, MO-10,�17 nL/min for 50 nL) into mPFC (injection site, AP: +1.85, ML: 0.4, DV:

1.7), ALM (AP: +2.5, ML: 1.5, DV: 0.7), and V1 (AP: �3.78, ML: 2.3, DV: 0.6). Each mouse was injected unilaterally in one selected

cortical area (mPFC, ALM or V1) or in three cortical areas (mPFC, ALM and V1). Mice were maintained for 5 weeks to allow stable

and strong expression of EGFP.

Tissue clearing and sample embedding for imaging
Five weeks after virus injection, mice were anesthetized with 0.5% pentobarbital sodium solution (0.4 mL/30 g body weight), and

transcardially perfused with 0.1 M PBS containing 20 U/ml heparin. The internal liquid pressure during perfusion was adjusted to

be low (�70 mmHg) during the first 10 min of perfusion, followed by another 10 min at a higher pressure (�100 mmHg). We found

the higher pressure potentially reduced autofluorescence from blood vessels that interfered detection of neuronal signal during im-

aging. After PBS, mice were perfused with 4% paraformaldehyde (PFA) in 0.1M PB.

Brains were dissected and post-fixed in 4% PFA for about 2 days at 4�C. After washing in PBS for 1 day (solution changed at 6 h

and 12 h), brain samples were delipidated with CUBIC-1 solution for 6 days at room temperature (solution changed at day 3 and

day 5) (Murakami et al., 2018). Alternatively, if brain samples were not needed urgently, samples were delipidated for 16 days at

4�C (solution changed at day 4, 8 and 12). Following washing in PBS for 1.5 days with solution changed at 6 h, 12 h, and 24 h, brain

samples were immersed in refractive index matching solution OPTIClear for another 1.5 days at room temperature with solution

changed at 6 h, 12 h and 24 h (Lai et al., 2018).

After refractive index matching, brain samples were embedded in 3–4% agarose dissolved in OPTIClear solution (Lai et al., 2018).

The agarose gel cannot be glued well to the substrate for imaging. Thus, the embedded brain samples were further embedded in 4%

agarose dissolved in OPTIClear solution (but without the N-methylglucamine component for better adherence), and then glued on the

sample stage using instant adhesive (Loctite 401). Alternatively, the embedded brain samples were mechanically clamped on the

sample stage to avoid the gluing process.

To measure the degradation of signal along the imaging depth, we imaged a cleared thy1-YFP-H transgenic mouse brain (Feng

et al., 2000). Brightness of somata at each depth was quantified in ImageJ.

Whole brain imaging
For excitation, light from a 488nm laser (Obis LX/LS, Coherent) passed a Nipkow disk-based confocal scanner unit (CSU-W1;

Yokogawa Electronic), a tube lens (U-TLU, Olympus), and an objective to reach brain samples that were fixed on motorized X-Y-

Z stages with optical encoders (LNR50SE/M, Thorlabs). We adopted two sets of objectives: a high-resolution high-sensitivity set

for weak fluorescence imaging and a high-speed set for faster whole brain imaging. The former consisted of a 40x oil immersion

objective (UPlanFLN, NA1.3, Olympus) and a 16x water immersion objective (N16XLWD-PF, NA 0.80, Nikon). The 40x oil objective

was attached to a piezo objective positioner (PFM450E, Thorlabs) for fast Z scanning. The 16x objective provided a larger field of view
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and was used to quickly scan the sample to detect fluorescent signals. A customized dipping cap was attached to the 16x objective

to reduce spherical aberration due to mismatch of refractive index of immersion solution. As we used an Olympus tube lens with a

focal length of 180mm, the 16x Nikon objective had an effective magnification of 14.43. The 40x and 16x objectives were assembled

in a dual-objective nosepiece that was attached to a motorized stage (X-LSQ075B, Zaber) to enable fast switching of objectives. In

addition, the Zaber stage was attached to amotorized stage (HGTA0850, Henggong) in order to correct themismatch of focal planes

of the two objectives. The emitted fluorescence passed the objective, tube lens, confocal scanner unit equipped with a band-pass

filter (525 ± 25 nm) to reach a back-illuminated sCMOS camera (Prime 95B, Teledyne Photometrics) that was triggered by a multi-

functional I/O Device (USB-6366, National Instruments). After imaging the top section of brain sample (250 mm), a thin section

(195 mm) was cut off by a vibratome (VT1200, Leica) to leave �55 mm of overlap between sections. In the high-speed configuration,

we used a 25x and a 10x multi-immersion objective (XLSLPLN25XGMP, NA 1.0; XLPLN10XSVMP, NA 0.6, Olympus), corresponding

to the 40x and 16x objectives in the high-resolution configuration. All results were obtained with the high-resolution configuration if

not specified.

Whole-brain imaging was performed by repeating the following steps (for the high-resolution set of objectives). First, XY stages

automatically moved along the tissue edge and acquired images to determine the boundary of imaging area using the 16x objective.

Second, thewhole imaging areawas divided into overlapping tiles according to the image size using the 16x objective. For each tile, a

set of 9 images with 30 mm spacing along the z axis were acquired. As the camera chip has a size of 13.2 3 13.2 mm2, each tile

covered about 917 3 917 mm2 area with 22.5 mm overlap in XY directions between adjacent tiles. The maximum intensity projected

image (along the z axis) was analyzed by a custom written script in MATLAB (MathWorks) to detect fluorescent signals (see signal

detection). The Z-projected image was then divided into 3 x 3 subregions. Third, subregions with neuronal signals were pushed into a

queue for imaging using the 40x objective. The stack acquired with the 40x objective covered 3303 330 mm2 with�30 mm overlap in

XY directions. As the 40x objective had a short working distance of �400 mm, we chose each stack to span �250 mm in the axial

direction. The piezo objective positioner moved at 1 mm step and thus the voxel size using the 40x objective was �0.3 3 0.3 3

1.0 mm3. After each successful movement, a voltage signal triggered camera to acquire a high-resolution image. For each acquired

stack, the sides (�5%ofwidth along each direction) wasmaximum intensity projected and the projected imageswere analyzed using

a custom written script to determine whether there were fluorescent signals (see signal detection). If there were signals detected on

one side, then the neighboring tile was pushed into the imaging queue. Imaging of each tile was repeated until the queue was empty.

Finally, the imaged section was trimmed off using a vibratome. The overlap between sections was 55 mm.

For the high-speed configuration, a set of 17 images with 15–30 mm spacing along the z axis was acquired with the 10x objective.

Each tile covered about 13203 1320 mm2 area with 132 mm overlap in XY directions between adjacent tiles. The stack acquired with

25x objective was 5283 5283 400 mm3with�70 mmoverlap in XY directions (voxel size�0.43 0.43 1.0 mm3). We chose each stack

to span 400 mm to roughly match the size of the stack in XY directions. The overlap between sections was 55 mm. The 25x objective

has a long working distance (8 mm) that enables deeper imaging. Thus each section was imaged starting 400 mm below the cutting

plane to reduce tissue distortion as deformation induced by mechanical cutting decayed along depth.

Estimation of photobleaching
Our cleared brain samples are nearly transparent which potentially causes photobleaching of fluorescent proteins within the cone of

light propagation. The mouse brains were imaged along the dorsal-ventral direction that spans�6 mm. If we assume excitation light

does not expand during propagation (equivalent to the case of using objectives with NA<<1), fluorescent proteins near the ventral

surface will be illuminated during exposure for each image above. As we used a 1 mm imaging step along the Z direction, this equiv-

alents to 6000 exposures, or 2 minutes as each image requires 20 ms light exposure. In another extreme condition, if we assume

excitation light expands to cover every slice below (equivalent to the case with NA close to the refractive index of mounting media),

the light intensity on each slice will be 1/N of the original intensity I (assuming light just propagates to fill in each brain slice and no

more, yielding an upper bound of estimation of light intensity). As there are on average N images on each slice and there are 6000

slices, fluorescent proteins near the ventral surface will be illuminated with total intensity of N x I/N x 6000 (equivalent to 2 minutes of

total exposure at the in-focus intensity). We also simulated the effect of photobleaching based on the size of field of view of the spin-

ning disk, light propagation angle of the 40x oil objective (NA 1.3), and our imaged stacks using the SMART system (with consider-

ation of extra imaging in overlapped regions). We found that on average each location was illuminated from 1 min in V1 to 1.8 min in

mPFC samples (Figure S2D). With the calibrated photobleaching rate, we estimated that this reduced fluorescent signal by 11–19%.

Consistently, we did not observe obvious intensity drop in axons with increased distance from somata (Figure 2).

Signal detection
A custom written program in MATLAB (MathWorks) was used to semi-automatically detect fluorescent signals. Edge and line detec-

tion methods was first applied to automatically detect signals from the maximum intensity projected image acquired using the 16x

objective (Kuan et al., 2015). Then manual inspection was used to improve the detection accuracy. For finer images acquired using

40x objective, intensity above a conservative threshold (�140 units above background, i.e. high threshold) was used to classify im-

ages with signals. As intensity in the background region was�2–5 units above background, images with 140 units above background

almost always had signals. Images with intensity below a threshold (�10–25 units above background, depending on the level of

noise) was automatically classified as without signals. In practice, faint signals with SNR below �3–5 were hard to trace. Images
e3 Cell Reports Methods 1, 100089, October 25, 2021
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with maximum intensity in between were manually inspected for signals or alternatively were imaged automatically without further

inspection (this approach reached a similar accuracy in detecting signals but produced more empty regions to image, and thus

increased imaging time).

We analyzed false positive (FP) and false negative (FN) rate of signal detection by examining image stacks acquired using 40x

objective. There were two types of FP tiles, with Type I referring to isolated tiles that did not connect to labeled neurons and Type

II tiles that did not have any fluorescent signals inside despite that these tiles were connected to tiles with fluorescent signals (Fig-

ure 2G). Type I tiles were not connected to the cluster of tiles with fluorescent signals and were counted directly after imaging. Type II

tiles were identified bymanually checking themaximum intensity projection of all tiles after imaging. The FP rate is defined by the ratio

of the number of Type I and Type II tiles to the total imaged tiles. Thus, the FP rate reflected the percentage of tiles imaged beyond

those tiles with signals. To characterize FN rate, we inspected the tiles on the surface of the cluster of tiles having neuronal signals and

counted the number of surface tiles with fluorescent signal on their surfaces. The FN rate is defined by the number of signal-contain-

ing outer surfaces divided by the total number of outer surfaces for the cluster with fluorescent signals (Figure 2G). Thus, FN rate

reflected the number of outer surfaces with signals that were not detected. Typically, the FN rate was low, �0.13%, corresponding

to about 9 surfaces out of about 7000 surfaces (Figure 2H). One major contribution to FN rate was that signals from some neurons

were relatively weak (accounting for over 96% of FN cases). Thus, there was on average only one undetected surface with bright

signals in�3 imaged brains (assuming 7000 surfaces in each brain, Figure 2I). As we only traced neurons with bright signals (neurons

with weak signals were hard to trace), this tiny FN rate did not affect our pipeline of tracing. We also manually checked the complete-

ness of traced individual neurons.

Image processing
Custom scripts were written in MATLAB (MathWorks) unless otherwise stated. Images acquired using 40x objective were used to

interactively annotate single-neuron reconstructions, and images acquired using 163 objective were used for mapping the imaged

brain to the AllenMouseCommonCoordinate Framework (CCFv3) (Wang et al., 2020). A global coordinate systemwas defined by the

absolute stage positions of both the 40x and 16x tiles, so that any voxel in the 40x image volume can be mapped back onto the 16x

image volume, and vice versa.

Image tiles acquired at 40xwere grouped to their neighboring tiles if they were connected, resulting in a few groups of tiles with one

major group having the majority of tiles (�90%). Other groups of tiles were disconnected from the major group, containing only a

small number of tiles without fluorescent signals, and thus were abandoned for further analysis (Figure 2H). Then tiles in the major

groupwere assembled into a large 3D image stack according to their positions recorded by stages during imaging, with the tile having

smallest X and Y coordinates placed as the origin set. Signal mismatch occurred between tiles along the X, Y and Z axes. The

mismatch along the X or Y axis was typically small, and was corrected by rigid transformation. The vertical mismatch along the z

axis was corrected in Elastix (Klein et al., 2010). After registration, the large 3D image volume was saved as horizontal 2D tiff series

along the z axis, with zeros filling in the non-imaged brain volume. Filling the non-imaged area with zeros was necessary to use stan-

dard software such as teraConverter to convert the full resolution whole-brain imaging data to amultiresolution format to enable visu-

alization using Vaa3D (see annotation and visualization section).

Images acquired at 16x was stitched and registered using the same pipeline as above. The generated 16x whole-brain volumewas

down-sampled to 25 mm3 voxel size in order to match the 25 mm scale of the Allen brain template. Then the 3D volumewas registered

to the AllenMouse CommonCoordinate Framework (CCFv3) by ANTs (Tustison et al., 2014). A global coordinate systemwas defined

by the absolute stage positions of both the 40x and 16x tiles, so that any voxel in the 40x image volume can bemapped back on to the

16X image volume, and vice versa. Using this way, the 3D volume acquired using the 40x objective was registered to the CCF.

QUANTIFICATION AND STATISTICAL ANALYSIS

Annotation and visualization
Manual annotation of single neurons was performed using Vaa3d (Peng et al., 2010). The multiresolution whole-brain volume was

imported to Vaa3d TeraFly plug-in which enabled visualization of any partial volume centered at a given position of interest at any

selected resolution (Peng et al., 2014a). We typically chose a few brightest labeled neurons for annotation. Multiple annotators co-

operated to trace the full morphology of single neurons. The first annotator started from the soma and drew each and every process of

the neuron by mouse clicking and dragging, using the virtual finger function of Vaa3d which enabled accurate reconstruction of

neuronal processes (Peng et al., 2014b). A second annotator checked the uncertain areas marked by the first annotator, and

gave correction feedbacks to the first annotator. Finally, a third annotator, who typically had more experience in tracing of neuronal

morphology, was introduced if there were any unresolved structure left, and made a final decision after discussion with the first two

annotators. The resulting reconstruction of a single-neuron was saved in SWC format. Because projection neurons typically have

processes with total length in several hundred millimeters and we accurately traced fine axonal collaterals using the virtual finger

function of Vaa3D, each neuron on average requires about one week of full time work for annotation (the first annotator), with addi-

tional time for further checking.
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For visualization and morphological analysis, SWC files generated from the annotation based on the 40x image volume were first

mapped back to the 16x image volume through the global coordinate system. Then the same transformation as used in the 16x image

volume was applied to the SWC files to map the coordinates to the CCF. The registered SWC files were used to visualize single

neuron skeleton in the model mouse brain (Figure S2).

Statistics
Statistical details including the definitions and exact value of n (e.g., number of samples), p values, and the types of the statistical

tests can be found in the figures and figure legends. All statistical tests were two-tailed, and the significancewas assigned at p < 0.05.
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