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Abstract
Analog forecasting is a mechanism-free nonlinear method that forecasts a system for-
ward in time by examining how past states deemed similar to the current state moved 
forward. Previous applications of analog forecasting has been successful at producing 
robust forecasts for a variety of ecological and physical processes, but it has typically 
been presented in an empirical or heuristic procedure, rather than as a formal statisti-
cal model. The methodology presented here extends the model-based analog method 
of McDermott and Wikle (Environmetrics, 27, 2016, 70) by placing analog forecasting 
within a fully hierarchical statistical framework that can accommodate count observa-
tions. Using a Bayesian approach, the hierarchical analog model is able to quantify 
rigorously the uncertainty associated with forecasts. Forecasting waterfowl settling 
patterns in the northwestern United States and Canada is conducted by applying the 
hierarchical analog model to a breeding population survey dataset. Sea surface tem-
perature (SST) in the Pacific Ocean is used to help identify potential analogs for the 
waterfowl settling patterns.
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1  | INTRODUCTION

Contemporary issues in natural resource management such as climate 
change rely increasingly on quantitative forecasts at time scales rang-
ing from seasonal to decadal (e.g., LeBrun, Thogmartin, Thompson, 
Dijak, & Millspaugh, 2016). There are great challenges when making 
such forecasts in a rapidly changing environment. One of the most im-
portant challenges to policy and management is to quantify the uncer-
tainty of the forecasts (e.g., Clark et al., 2001; Conroy, Runge, Nichols, 
Stodola, & Cooper, 2011; and references therein). There are many 
potential issues with quantifying uncertainty, related to the charac-
terization of uncertainties in data, mechanistic processes, and interac-
tions across biological and physical systems (e.g., Oliver & Roy, 2015). 
Perhaps surprisingly, in many cases, the best forecast models rely on 

nonparametric and “mechanism-free’’ specifications (e.g., Perretti, 
Munch, & Sugihara, 2013; Ward, Holmes, Thorson, & Collen, 2014). 
Bayesian models in general, and Bayesian hierarchical models in par-
ticular, provide a comprehensive modeling framework which account 
for multiple sources of uncertainty in ecological models (e.g., Wikle, 
2003; Royle & Dorazio, 2008; Cressie, Calder, Clark, Hoef, & Wikle, 
2009; to name a few); for a historical overview, see Ellison (2004). To 
date, there have been few attempts to cast “mechanism-free’’ models 
within the Bayesian framework (McDermott & Wikle, 2016).

Quantifying uncertainty for spatial–temporal ecological processes 
is complicated because the evolution of these processes over time is 
often nonlinear. One mechanism-free solution to the spatiotemporal 
forecasting problem is known as “analog forecasting’’ (e.g., Lorenz, 
1969). Analog forecasting uses past states of a system that are similar 
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to the current state and then assumes that the current state of the 
system will evolve in a manner similar to how the identified past states 
evolved. For our purposes, an analog refers to a past state of some sys-
tem that is similar to the current state of the system. Analog forecast-
ing is appealing for dynamical processes governed by some underlying, 
but unspecified, deterministic law. Specifically, analog forecasting 
leverages the predictability in these types of systems by finding past 
trajectories similar to the current trajectory of the system.

Much of the current development of spatiotemporal analog meth-
ods utilizes the idea of embedding a dynamical system in time, similar 
to the simplex prediction method outlined in Sugihara and May (1990) 
for univariate time series. Indeed, the Sugihara and May (1990) ap-
proach was one of the first practical methods to introduce the idea of 
embedding a dynamical system in the context of nonlinear forecasting. 
Their methods utilized the state-space dynamical system reconstruc-
tion theory of Takens (1981). In complicated dynamical systems, one 
rarely observes all of the state variables. State-space reconstruction 
allows one to reconstruct a dynamical system with only a subset of 
the state variables, by considering those state variables at multiple lags 
in the past. As dynamical systems evolve in time, they tend to revisit 
previous paths in the phase space, where these paths live on some 
low-dimensional manifold of the entire space (i.e., the attractor). Thus, 
through the use of state-space reconstruction, one can recover fea-
tures of past dynamical paths along the attractor. Sugihara and May 
(1990) recognized the utility of state-space reconstruction within the 
context of nonlinear forecasting. In particular, they showed how em-
bedding vectors, created by lagging past states of a system (historical 
data) in time (e.g., see Chapter 3 of Cressie & Wikle, 2011), could be 
utilized to find robust analogs for the current state of the system. In 
an ecological context, Takens’ theorem (Takens, 1981) has also been 
utilized to analyze the relationships between multiple components of 
an ecological system in Nichols, Moniz, Nichols, Pecora, and Cooch 
(2005), and more recently in Sugihara et al. (2012). This remarkably 
simple forecasting method has proved successful in a multitude of 
time series applications (e.g., Perretti et al., 2013; Sugihara et al., 
2012; Zhao & Giannakis, 2014).

Mechanism-free and analog methods traditionally have relied on 
nonparametric and/or heuristic approaches that did not include a for-
mal probabilistic error structure (although, see Tippett & DelSole, 2013; 
Lguensat, Tandeo, Ailliot, Pulido, & Fablet, 2016). Modern nonpara-
metric analog methods require choice of the embedding dimension of 
the analogs, the number of past analogs to consider, and weights for 
those analogs. All of these choices can significantly impact the analog 
forecast. For example, the question of how many past analogs to use 
can be thought of as a k-nearest neighbor problem, where the neigh-
borhood consists of the analogs most similar to the current state of the 
system. Given the number of “neighboring” analogs, a kernel defined 
by a smoothing parameter is typically used to determine the weights 
(e.g., McDermott & Wikle, 2016; Zhao & Giannakis, 2014). However, 
previous analog forecasting implementations have employed either 
some heuristic method that does not explicitly account for uncertainty 
associated with the choice or a multidimensional cross-validation 
search (e.g., Arora, Little, & McSharry, 2013), to choose these values. 

The Bayesian framework described in McDermott and Wikle (2016) 
allows for both the estimation and incorporation of model averaging 
over the various parameters in the analog model, thereby accounting 
for the uncertainty induced by their selection.

Once framed within the context of Bayesian modeling, analog 
forecasting can be placed within the rich class of models available 
in the space-time hierarchical Bayesian framework (e.g., Cressie & 
Wikle, 2011; Wikle, 2015), which allows for robust quantification of 
uncertainty. We present here a hierarchical analog forecasting model 
that extends the model developed in McDermott and Wikle (2016) 
to include a formal non-Gaussian data model – specifically, a Poisson 
model to accommodate count data. This is the first analog method 
that accounts explicitly for non-Gaussian data within a statistical 
framework. The model is applied to the problem of producing one-
year-ahead forecasts of waterfowl settling patterns given the state 
of the Pacific Ocean sea surface temperature (SST). Because spatio-
temporal analog forecasting can quickly become prohibitive for high-
dimensional processes, we introduce an approach for spatiotemporal 
dimension reduction in count data known as nonnegative matrix fac-
torization (Lee & Seung, 2001).

2  | MATERIALS AND METHODS

2.1 | Waterfowl and sea surface temperature data

Migratory waterfowl settling patterns, productivity, and survival have 
been shown to depend strongly on climate-related habitat condi-
tions (e.g., Feldman, Anderson, Howerter, & Murray, 2015; Hansen 
& McKnight, 1964; Herter, 2012). Settling patterns of waterfowl are 
of substantial importance to wildlife ecologists. From a management 
perspective, knowledge of settling patterns aids in establishing appro-
priate harvest regulations across management units and in determin-
ing the efficacy of habitat treatments designed to improve habitat for 
waterfowl (i.e., Lavretsky, Miller, Bahn, & Peters, 2014). Further, given 
the migratory nature of waterfowl and ongoing theoretical interests in 
understanding factors affecting the distribution and habitat selection 
of migratory species, predicting settling patterns has broad relevance. 
It is known that changes to habitat conditions can lead to more flex-
ible settling patterns along a latitudinal gradient that can mitigate site 
philopatry, and possibly decrease productivity or recruitment (e.g., 
Becker, 2015; Johnson & Grier, 1988; Karanth, Nichols, Sauer, Hines, 
& Yackulic, 2014). Given the well-known relationships between Pacific 
Ocean (particularly the tropical ocean) SSTs and North American cli-
mate conditions (e.g., Philander, 1990) and the potential for these 
conditions to affect waterfowl settling patterns (Sorenson, Goldberg, 
Root, & Anderson, 1998), it is reasonable to use Pacific Ocean SST as 
a proxy for future habitat conditions. In addition, the impact of Pacific 
SSTs is typically nonlinear (Hoerling, Kumar, & Zhong, 1997), suggest-
ing nonlinear evolution models are appropriate. Although others (e.g., 
Wu, Holan, & Wikle, 2013) have successfully forecast Mallard duck 
(Anas platyrhyncho) settling patterns using a drought severity index, 
we provide a one-year forecast given the Pacific SSTs through the 
previous May.



792  |     McDERMOTT et al.

Since 1955, the U.S. Fisheries and Wildlife Service (USFWS) and 
Canadian Wildlife Service (CWS) have jointly conducted a Breeding 
Population Survey (BPS) in the northern United States and Canada. 
A purpose of these surveys was to provide data that can be used in 
developing waterfowl harvest regulations. In addition to estimating 
status and trends of waterfowl populations, these data also aid in un-
derstanding waterfowl distributions. The BPS is the most expansive 
survey of waterfowl distributions in North America covering about 
3.4 million square kilometers of land each year. Often, the U.S. Fish 
and Wildlife Service discusses waterfowl distribution results as they 
relate to climate data (e.g., temperatures and timing of precipitation), 
but there is rarely formal consideration of how these factors influence 
settling patterns. Each spring (mid- to late May) crew consisting of one 
pilot and one observer flies transect lines and records counts of var-
ious waterfowl species. For selected areas, ground crews also record 
counts to develop visibility correction factors. Each 400 m wide tran-
sect is divided into a series of segments measuring 29 km in length. 
The analysis conducted here consists of the 1,067 locations between 
96–115°W longitude and 43–54°N latitude from 1970 through 2014. 
The majority of survey locations north of 54° latitude have little tem-
poral variability, with zero counts in most years and are not consid-
ered. Although the BPS survey records counts for several species, we 
focus on raw indicator pair counts (i.e., counts of paired ducks and lone 
drakes) for mallards. The raw indicated pair counts are publicly avail-
able through the FWS Division of Migratory Management (https://
migbirdapps.fws.gov/).

Monthly SST from 1970 to 2014 was obtained from the publicly 
available National Oceanic and Atmospheric Administration (NOAA) 
Extended Reconstruction Sea Surface Temperature (ERSST) data 
(http://www.esrl.noaa.gov/psd/). A subset of 3,132 locations from the 
ERSST data, between 30.5°S–60.5°N latitude and 123.5–290.5°E lon-
gitude with a spatial resolution of 2 × 2°, form the SST data. We follow 
the common procedure from the climate science literature by creating 
anomalies through the subtraction of location specific monthly means 
calculated from a climatological average spanning the period 1970–
1999 (e.g., Wilks, 2011).

2.2 | Spatiotemporal variables

Let Yt(si) be a component of a dynamical system at time t with 
spatial locations {si, i=1,… , ny}. Suppose we have access to data 
from the system for time periods {t=1,… , T}. The set of data at 
all ny locations for time period t is defined as, Yt≡ (Yt(s1),… ,Yt(sny ))

�.  
Here, we consider count-valued data for Yt. Further, we consider 
the use of some spatiotemporal forcing (predictor) variable, defined 
as, xt� = (xt� (r1),… , xt� (rnx ))

�, for spatial locations, {r1,… , rnx} and time 
t′, to help forecast the process of interest (i.e., Yt). Note that the 
time indices t and t′ are separated by τ period(s) (i.e., τ=0, 1, 2,…),  
with potentially different time scales. As discussed in more detail 
below, in our application, τ represents the number of periods the 
response variable is forecasted into the future. Thus, the goal here 
is to forecast the value of YT+τ given values of Yt for t ≤ T and for xt′ 
for t′≤T. This is performed by weighting the past values of Yt based 

on how well corresponding past sequences of xt′ match the most 
recent sequence of xt′ (i.e., the most recent sequence up to time T), 
as described below.

Many spatiotemporal dynamical processes can be challenging 
to model due to the high-dimensional nature of the spatial com-
ponent. Both the BPS waterfowl settling pattern data and SST data 
described above can be considered high dimensional. To efficiently 
model such spatiotemporal processes, some form of dimension re-
duction is usually performed (e.g., see Chapter 7 of Cressie & Wikle, 
2011). Common methods such as empirical orthogonal functions 
(EOFs) are not ideal for noncontinuous responses such as count data 
because it is difficult to impose constraints (e.g., such as nonnega-
tivity). Although more general ordination methods such as principal 
coordinate analysis and multidimensional scaling can be useful for 
noncontinuous data (e.g., Ellison & Gotelli, 2004), these methods 
also do not guarantee, in general, that after dimension reduction 
and projection back into physical space, the resulting process has 
the same support as the original data.

2.3 | Response vector dimension reduction

Consider the case where we have ny spatial locations and the  
ny-dimensional response vector at time t, Yt. We seek a nβ-dimensional 
expansion coefficient vector, �t, associated with a set of nβ basis func-
tions {�j, j=1,… , nβ}, where �j≡ (ψj(s1),… ,ψj(sny ))

�. In particular, we 
seek a reduced dimension representation such that nβ<<ny. When 
considering a linear basis expansion, then, we seek Yt ≈ ��t, where 
�≡ [ψ1,… ,ψnβ

] is a ny × nβ matrix. Then, the ordinary least squares 
estimate of the expansion coefficients is �̃t= (���)−1��Yt, assuming 
(�′�) is invertible. In situations where � is orthogonal, this simplifies 
to �̃t=��Yt. As an example, � derived from the scaled left singular 
vectors of a full data matrix, Y≡ [Y1,… ,YT], are the EOF basis func-
tions, and are orthogonal. A reduced rank representation of the re-
sponse vectors in phase space is given by Ỹt=��̃t. Typically, one then 
considers the expansion coefficients, �̃t, as the time-varying variable 
of interest.

When Yt has a constrained support, as with the count data of 
interest here, there is no guarantee that this back transformation 
(Ỹt=��̃t) will result in appropriate support for the elements of Ỹt (e.g., 
nonnegative values). This issue can be important in some applications, 
such as the analog forecasting problem of interest here, as we specify 
the �t’s in a hierarchical model and require nonnegative values upon 
transformation back to physical space.

We employ nonnegative matrix factorization (NMF) (e.g., Lee & 
Seung, 2001) to enforce nonnegativity in the dimension reduction in 
the count data matrix. Given the ny × T data matrix Y, NMF gives: 

where � is a ny × nβ basis function matrix and the nβ × T matrix 
B≡ [�1,… ,�T] contains (random) projection coefficients. In reference 
to (1), the notation W ≥ 0 for some matrix W, implies that each ele-
ment of W is nonnegative. NMF has been applied in a variety of dis-
ciplines because of its ability to provide efficient dimension reduction 

(1)Y ≈ �B � ≥ 0,B ≥ 0,
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while creating nonnegative basis functions. A number of different al-
gorithms to conduct NMF have been proposed in the literature (e.g., 
Berry, Browne, Langville, Plemmons, & Paul Pauca, 2007), all with the 
goal of solving the following minimization problem: 

where D(Y,�,B) is a loss function and R(�,B) is some regularization 
function. Unfortunately, these NMF algorithms do not produce a 
unique factorization. Instead, they converge to a local minimum, thus 
producing different factorizations for different starting values (e.g., 
Boutsidis & Gallopoulos, 2008). To alleviate this nonuniqueness prob-
lem in our methodology, we use the Nonnegative Double Singular 
Value Decomposition (NNSVD) approach of Boutsidis and Gallopoulos 
(2008) to obtain starting values. Note that NNSVD was designed to 
produce fast convergence for sparse data structures (i.e., when Y con-
tains a large number of zeros, as is the case with our BPS settling pat-
tern data). The application to follow uses the so-called off-set NMF 
algorithm of Badea (2008).

2.4 | Forcing vector dimension reduction

The purpose of the forcing variables, {xt� }, is to identify analogs 
to help predict the response variable. Further, the success of any 
analog forecasting model is largely determined by its ability to find 
robust analogs. If nx is large, we typically must reduce the dimension 
of the process using spatial basis functions, �≡ [�1,… ,�nα

], where 
�k= (ϕk(r1),… ,ϕk(rnx ))

�. As with the response vector, if we assume lin-
ear projections, we can get projection coefficients by �t� = (���)−1��xt�. 
McDermott and Wikle (2016) show that these projection coefficients 
can be combined to form time lagged embedding matrices. That is, let q 
represent the number of periods lagged back in time, then for period t, 
we can define the following nα × q embedding matrix: 

These embedding matrices are critical to the success of the analog 
forecasting model outlined below. For example, suppose we wanted to 
investigate whether the response variable at period t−1 was a robust 
analog for the response at period t. One could construct an embedding 
matrix At corresponding to period t and another matrix At−1 for period 
t−1. We could assess the quality of Yt−1 as an analog for the response 
at period t, by examining the “distance” between At and At−1.

The selection of basis functions to obtain �t′ can be flexible here 
and different choices of � could potentially produce different sets of 
analogs. For example, EOFs would be an obvious choice if linearity 
was assumed. However, there is scientific evidence of a nonlinear re-
lationship between precipitation (which could potentially affect hab-
itat conditions) and SST anomalies (e.g., Hoerling et al., 1997), so we 
investigated several nonlinear dimension reduction techniques for the 
waterfowl settling pattern application.

2.5 | Hierarchical analog forecasting model

We now discuss the specifics of the spatiotemporal hierarchical 
Bayesian analog (HBA) forecasting model for count data. All of the 
stages of the presented HBA model are summarized in Table 1 below. 
As our responses {Yt : t=1,… , T} are count valued, we model the data 
with a Poisson distribution conditional on a spatiotemporal intensity 
process as: 

where {�t : t=1,… , T} is the ny-dimensional intensity process at loca-
tions {s1,… , sny}. Using the basis functions from the NMF approxima-
tion (1), let �t = ��t. Recall, the NMF guarantees � ≥ 0 and thus, for 
�t to be nonnegative, the distribution for �t should have nonnegative 
support. If we denote the model parameters by �̃ (see below), then 
for period t, the process model on �t is given by the truncated normal 
distribution: 

where, for period t, we define B−t ≡ [�1,… ,�t−1,�t+1,… ,�T] as 
the matrix of possible analogs and �t= (ω(At,A1, �),… ,ω(At,At−1, �),

ω(At, At+1, �),… ,ω(At, AT, �))
�, as the weight associated with each of 

the potential analogs. Thus, a weighted prediction of the new �t is based 
on the linear combination of past �t values, B−t�t. Due to the form of (5), 
in particular the weighted averaged (i.e., B−t�t), we found that using a 
log-Gaussian formulation in (5) failed to preserve the correct scale of the 
analogs.

Further, as described in Cangelosi and Hooten (2009), for a nor-
mal density left-truncated at zero, the mean is biased and this bias 
increases for values close to zero (which is the case for many elements 
of �t) as the left tail of the distribution has been distorted from the 
truncation at zero. In equation (5), h( ⋅ ) is the bias correction function 

(2)
min
�,B≥0

D(Y,�,B) + R(�,B),

(3)At= [�t�, �t�−1,… ,�t�−(q−1)].

(4)Yt ∣�t∼Poi(�t),

(5)�t ∣B−t, Θ̃∼TN[0,∞)(max{h(B−t�t, σ
2
η
), ϵ}, σ2

η
I),

Hierarchical Bayesian Analog Model

Data model: Yt ∣�t ∼Poi(�t) 

Process model: �t|B−t , Θ̃∼TN[0,∞)

(
max{h(B−t�t , σ

2
η
), ϵ} σ2

η
I

)
 

where B−t≡ [�1,… , �t−1, �t+1, … , �T] 

�t≡ (ω(At , A1, �),… , ω(At , At−1, �), ω(At , At+1, �),… , ω(At , AT , �))
�

Parameter model: q∼DU(qmin, qmax) m∼DU(mmin,mmax) 

θ1 ∼ IG(a1, b1) σ2η ∼ IG(a2, b2)

Hyperparameters: ϵ, qmin, qmax, mmin, mmax, a1, b1, a2, b2, θ2

TABLE  1 Hierarchical model summary
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presented in Cangelosi and Hooten (2009). The need for the constant 
ϵ arises since as B−t �t → 0, we have h(B−t �t, σ

2
η
)→−∞. Thus, ϵ is set 

to an arbitrarily small value for computational purposes. The weights 
(�t) in (5) are critical to the success of the analog forecasting model 
presented here. For example, during the training of the model, these 
weights determine how much each potential analog in B−t is weighted 
in order to predict �t. We describe our choice of weights in the next 
section. It is important to note that, although the weights are applied 
to the potential analogs in a linear fashion (i.e., B−t �t), the resulting 
prediction for �t can be considered nonlinear as the weights are deter-
mined by a nonlinear function (i.e., the Gaussian kernel).

The choice of analog weights and the analog “neighborhood’’ is 
closely connected and important considerations in analog forecasting. 
Let m(At) denote the neighborhood of the analog At for period t, 
where the number of nearest neighbors considered is represented by 
m. Defining d( ⋅ ) as a distance metric and θ={θ1,θ2} as a set of kernel-
dependent parameters, we have the following kernel weight function: 

for �≠ t, where θ1 is a kernel smoothing parameter and θ2 is a pa-
rameter associated with the distance function (see the Appendix). 
Let, ω(At, A�

, θ) be the normalized version of ω̃(At, A�
, θ), where the 

normalization is accomplished by dividing by the sum of ω̃(At, A�
, θ) 

across all T−1 potential analogs for period t. Any valid distance metric 
d( ⋅ ) can be applied here; for example, analog forecasting methods tra-
ditionally use Euclidean distance. However, analog forecasting relies 
on identifying analogs that not only resemble the current state of the 
system but also move forward in a similar manner. For this reason, 
analogs that share a similar trajectory in phase space as the current 
trajectory of the system will produce the most successful forecasts. 
Procrustes distance (e.g., see Hastie, Tibshirani, & Friedman, 2013) is a 
multivariate distance metric that transforms a comparison object (i.e., 
A

�
) to a target object (i.e., At), before calculating the Frobenius matrix 

norm between the target object and the transformed comparison ob-
ject. Therefore, by defining d(At,A�

; θ2) as the Procrustes distance (see 
the Appendix for the full details, including the specification of θ2), we 
are able to compare the shape, and thus, the trajectory, between two 
embedding matrices (see Figure 1 for a visual example). In the defini-
tion of At, we let q represent the number of lagged time periods when 
forming At. As different values of q will lead to different embedding 
matrices, and thus potentially different analogs, we estimate q and 
give it a discrete uniform prior such that, q∼DU(qmin, qmax). We also 
assign a discrete uniform prior to the number of neighbors parameter, 
m∼DU(mmin,mmax). Finally, θ1 and σ2

η
 are both assigned inverse-gamma 

priors, θ1∼ IG(a1, b1) and σ2
η
∼ IG(a2, b2).

Sampling from the posterior distribution is accomplished with 
Markov chain Monte Carlo (MCMC) methods (e.g., Robert & Casella, 
2004). Due to the lack of conjugacy, all parameters are updated with 
a Metropolis—Hastings step (see the outline in the Appendix). During 
each iteration of the MCMC sampler, parameters are sampled using 
data from training periods, t=1,… , T. At this stage, all prediction is 

“in-sample.” For period T + 1, out-of-sample forecasts are then drawn 
from the posterior prediction distribution, Y(�)

T+1
∼ Poi(��

(�)

T+1
), after 

each iteration, �, of the sampler. By defining, B(�)

T+1
= [�

(�)

1
, … , �

(�)

T
] 

and �(�)

T+1
= (ω(AT+1, A1, �

(�)),… ,ω(AT+1, AT, �
(�)))�, the projection co-

efficients for period T+1 can be forecasted for the �th iteration as, 
�
(�)

T+1
=B

(�)

T+1
�
(�)

T+1
. In this example, AT+1 is the initial condition for which 

we seek matching past analogs. Then, from the definition of (3), the 
first element of AT+1 is �T�+1, which is lagged τ periods behind the fore-
cast target time, T+1, thus leading to a τ-period ahead forecast of YT+1 
(see Figure 1 for an illustrative example).

2.6 | Model setup

We evaluate the predictive ability of the model by considering fore-
casts of waterfowl counts in 2009 and 2014, while also producing 
hindcasts for 1999. The year 2009 was chosen due to the relative lack 
of correlation between the mallard counts in 2009 and the prior year. 
Further, we choose to consider 1999 because it was a strong La Niña 
year, which allows us to demonstrate how the model can effectively 
forecast years where waterfowl patterns may change due to alternat-
ing habitat conditions. All of the data prior to the respective year is 
used for training 2009 and 2014, while the hindcast is implemented 
by training on all of the data except the counts for 1999. We make 
one-year-ahead forecasts for all time periods by setting τ=12.

We compare the forecasting skill of the HBA model with a fairly 
state-of-the art hierarchical Bayesian Poisson space–time model 
(referred to as the PST model). The PST model is comprised of a 
Poisson data model, Yt ∣�t∼Poi(�t), and process model defined as, 
log(�t)∼Gau(�+��t, σ

2
ϵ
I). Here, � is a spatially indexed mean (modeled 

with spatial covariates), and �t are projection coefficients formed from 
kernel principal component analysis. The projection coefficients are 
modeled with a reduced rank vector-autoregressive (VAR) structure 
such that, �t∼Gau(H�t−1,�γ) (e.g., see Chapter 7 of Cressie & Wikle, 
2011). Specification of the process model for the PST model can be 
thought of as a linear version of the regime-dependent nonlinear 
model presented in Wu et al. (2013). Comparison of the posterior pre-
dictions for the HBA and PST model is carried out using mean squared 
prediction error (MSPE) and the correlation between the forecasted 
and observed values as in McDermott and Wikle (2016).

The HBA model was implemented for all forecasted years with the 
same tuning parameters and prior distributions. Note, as nβ increases, 
the NMF basis function approximation in (1) generally becomes more 
accurate. Because there is a computational cost to using higher values 
of nβ, we found that nβ =14 appropriately balanced computational ef-
ficiency with the accuracy of the approximation.

Regarding the SST basis functions, in addition to the more tradi-
tional empirical orthogonal function (EOFs; i.e., spatiotemporal prin-
cipal components) linear dimension reduction, we implemented the 
following nonlinear dimension reduction methods: local linear embed-
dings (e.g., Roweis & Saul, 2000), diffusion maps (e.g., Coifman & Lafon, 
2006), kernel principal component analysis (KPCA) (e.g., Scholkopf, 
Smola, & Muller, 1998), and Laplacian eigenmaps (e.g., Belkin & Niyogi, 
2001). Our analysis found Laplacian eigenmaps to be the most helpful 

(6)ω̃(At,A�
, θ)=

{
exp

(
−d(At ,A�

;θ2)
2

2θ1

)
, if A

�
∈m(At)

0, if A
�
∉m(At),
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of these nonlinear methods for identifying robust analogs. Therefore 
separate models, one with EOF basis functions (HBA1) and a second 
model with Laplacian eigenmap basis functions (HBA2), were imple-
mented. Approximately 82% of the variation in the SST data was ac-
counted for by the first 16 EOFs (i.e., nα =16). Laplacian eigenmaps 
are calculated through an eigenvector decomposition of a Laplacian 
matrix, whose construction involves an adjacency matrix formed 
through either a kernel or a nearest neighbor approach (e.g., Belkin & 

Niyogi, 2001). We implemented the nearest neighbor approach, with 
nα =16 again, by sampling the number of neighbors as a parameter in  
the MCMC sampler over the following grid: {6+3 × d : d=0,…10}. 
Although we are applying Takens’ embedding theorem (Takens, 1981) 
with a relatively short temporal span (i.e., approximately 40 years) 
using 16 state variables to represent the SST data, we seem to be able 
to counterbalance the effects of a shorter temporal span. A further 
examination of this trade-off between the temporal span and number 

F IGURE  1 Example illustrating analog forecasting of waterfowl counts for 2014. Attractor manifold plots on the left are examples of 
embedding matrices (see (3)), where nα =3 and q = 50 (months). The three plots below the plot starting in May 2013 (left column) are examples 
of nearest neighbor analogs. These three neighbors are selected based on their similarity in shape (Procrustes distance) to the attractor time 
series for May 2013 (i.e., the initial condition for a one-year-ahead forecast for May 2014). Each of the three nearest neighbors is associated 
with a corresponding waterfowl pattern (right column). The three waterfowl patterns for the nearest neighbors are each then appropriately 
weighted to form a forecast for 2014
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of state variables is beyond the scope of this study, but should be in-
vestigated elsewhere. This span is short enough that potential nonsta-
tionarities in the SST data are not a major concern.

We used a value of 10−6 for the ϵ parameter in (5); the model did not 
seem overly sensitive to this choice. For q and m, we assigned priors 
q∼DU(30, 60) and m∼DU(1, 15), respectively. The kernel and process 
error parameters are given inverse-gamma priors: θ1∼ IG(2.02, 0.102) 
(which is only moderately informative in comparison with the small 
scale of the Gaussian kernel in (6)) and σ2

η
∼ IG(0.001, 0.001). All models 

were run for 20,000 iterations with the first 2,000 considered burn-in.

3  | RESULTS

Prediction skill of the HBA and PST models was evaluated through 
calculation of the MSPE, defined as the mean of the squared dif-
ferences between the posterior predicted means and the observed 
counts averaged across all spatial locations. The correlation between 
the observed counts and the mean of the posterior predictions was 
also used to evaluate the forecasting models, as is often considered 
for spatiotemporal prediction (e.g., Wilks, 2006). As displayed in 
Table 2, the HBA model outperformed the PST model in both 2009 
and 2014, in that the HBA models had higher correlations and lower 
MSPE values for the two forecasted years. For 1999 and 2009, the 
EOF-based analog model (HBA1) produced the most accurate results 
and the Laplacian eigenmaps model (HBA2) outperformed the EOF 
model in 2014. The correlation and MSPE for the hindcast appear to 
align with the results for the two forecasted years. We applied the 
model to several other holdout years (not shown here) and found simi-
lar results, with the HBA always performing as well or better than the 
PST model and with the HBA1 generally, but not always, outperform-
ing HBA2. To examine the model performance with a shorter time 
period, we also ran HBA1 for 2009 over a 15-year period (i.e., we 
only trained the model on data from the 15 years prior to 2009). With 
fewer potential analogs, the model performed slightly worse over the 
shorter temporal span (i.e., the MSPE was 69.941 and the correlation 
was 66.176%).

The hindcast and prediction maps (observed, forecasted mean, 
site-specific lower 2.5th, and upper 2.5th percentiles) demonstrate 
that the pattern of forecasted counts captures the overall pattern of 
the observed counts (Figure 2). Close examination of the uncertainty 
maps show that a majority of the observed counts fall within the 

displayed 95% credible intervals. The 1999 hindcast correctly predicts 
a pattern of mallards settling more heavily in the northern region of 
the domain, a year when the mallard population was estimated to be 
10.8 million, which was the second largest population size estimated 
for the species since 1955 (U.S. Fish and Wildlife Service, 1999). There 
is often substantial variation in settling patterns of waterfowl which 
are typically tied to climate conditions and the 2009 and 2014 wa-
terfowl counts demonstrate that variability. In both 2009 and 2014, 
waterfowl settled in greater densities in the southeast region of the 
area with some of the highest densities of waterfowl settling in North 
and South Dakota. In 2009, above-average moisture was observed 
in these areas with a 62% increase in mallard numbers in eastern 
North and South Dakota compared with 2008 (U.S. Fish and Wildlife 
Service, 2009). Similarly, above-average precipitation was observed in 
2014, but estimated mallard numbers were reduced by 28% in North 
and South Dakota when compared with 2013 (U.S. Fish and Wildlife 
Service, 2014). Thus, there can be substantial changes in population 
estimates and settling patterns, yet our predictions demonstrate the 
ability of our model to accurately reflect settling patterns for mallards 
during these time periods.

4  | DISCUSSION

Overall, many of the aspects of analog forecasting that originally made 
it appealing to ecologists are retained by the HBA model. The model 
has few parameters and performs well with data from a relatively 
short temporal span. Unlike other analog forecasting methods, the 
HBA allows users to properly quantify uncertainty in a rigorous frame-
work. With the growing number of high-dimensional spatial–temporal 
ecological datasets, analog forecasting in a hierarchical framework 
can provide ecologists with a rich framework for making accurate 
forecasts with principled uncertainty quantification. The count-based 
spatiotemporal hierarchical Bayesian analog model methodology de-
veloped here was successful in that it produced forecasts that had 
high correlations with observed counts, along with outperforming a 
hierarchical Bayesian Poisson space–time model (in terms of MSE and 
correlation).

The result that waterfowl settled more consistently in the northern 
half of the region of interest in 1999 despite the lack of correlation 
with patterns from the previous year was promising. We suspect that 
poor habitat conditions due to drought (e.g., Wu et al., 2013), possibly 

TABLE  2 Results based on the posterior predictive distribution for the two HBA models, and the PST model. Models are compared via mean 
squared prediction error (MSPE) and correlation (Corr) of the forecasted values with observed values. The two HBA models are implemented 
across 3 holdout years, while the PST model is only evaluated for 2009 and 2014

Model

1999 2009 2014

MSPE Corr MSPE Corr MSPE Corr 

HBA1 58.822 83.031% 63.056 70.307% 59.694 78.699% 

HBA2 62.575 82.856% 70.085 66.808% 57.799 79.446% 

PST – – 73.435 66.103% 69.975 77.780% 
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linked to the tropical Pacific La Niña anomaly (e.g, Philander, 1990; 
Hoerling et al., 1997), could help explain why many waterfowl overflew 
the southern region in 1999 (e.g, Hansen & McKnight, 1964; Sorenson 
et al., 1998). The distribution of migratory birds is notoriously affected 
by climatic factors. For example, the timing of waterfowl migrations 
might be affected by climate as can the use of stopover sites, the 
distance travelled, and the ultimate location for settling (Schummer, 
Cohen, Kaminski, Brown, & Wax, 2014). In fact, several studies de-
scribe how migratory birds, including waterfowl, adjust their migration 
strategy depending on various weather conditions (McEvoy, Roshier, 
Ribot, & Bennett, 2015). In the presence of climate change, the abil-
ity to effectively model migratory bird migration patterns becomes 
even more important to wildlife managers. For waterfowl, modeling 
how traditional waterfowl migratory routes might change, and the 

fidelity of waterfowl to specific routes, becomes paramount to effec-
tive management because those routes are used to delineate harvest 
management boundaries. Our model has demonstrated the capacity 
to be responsive to such changes, and to our knowledge, it is the only 
existing spatiotemporal nonlinear analog model that quantifies fore-
cast uncertainty.

These models provide wildlife managers accurate forecasts and 
informative intervals which would allow them to make more informed 
harvest management decisions, better understand the reasons for the 
settling patterns observed, and assess how waterfowl are responding 
to habitat treatments. For example, a huge emphasis of some federal 
government and nongovernmental organizations has involved the 
conservation and restoration of critical wetland habitats for the ben-
efit of waterfowl. During their 80 years of existence, Ducks Unlimited 

F IGURE  2 Summary of the posterior predictive results for the HBA1 model. (a) Observed waterfowl counts for 1999, 2009, and 2014 (left to 
right), (b) means of the posterior predictive distribution for each year, (c) lower 2.5th percentile from the posterior predictive distribution, and (d) 
upper 2.5th percentile form the posterior predictive distribution for each year
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has improved 13 million acres of wetland habitat. Through application 
of our modeling results, managers could assess whether waterfowl re-
spond favorably to habitat manipulations by settling in those environ-
ments. Also, these results can help highlight regions and locales that 
should be prioritized based on duck settlement patterns (i.e., water-
fowl hotspots). In that way, managers can be strategic and effective in 
prioritizing their habitat management plans (e.g., Bonnot, Thompson, 
Millspaugh, & Jones-Farrand, 2013). In this context, the concept of 
“Strategic Habitat Conservation” has been promoted by the U.S. Fish 
and Wildlife Service as a means of integrating research, management 
objectives, monitoring, and habitat design strategies for making deci-
sions about habitat (US Fish and Wildlife Service and others, 2006). 
Our work provides proof of concept for application of hierarchical spa-
tiotemporal forecasting models to aid in prioritizing habitat manage-
ment decisions based on waterfowl settling patterns.

Due to the preponderance of zeros present in the waterfowl 
data, the assumption of equidispersion implicit in the data model (i.e., 
equation (4)) is likely violated. Wu et al. (2013) attempted to deal with 
the potential underdispersion in such data using a Conway-Maxwell 
Poisson data model. Here, we deal with this potential problem using 
NMF to reduce the overall underdispersion. However, a more rigorous 
way to deal with the underdispersion is to use a zero-inflated Poisson 
(ZIP) data model (e.g., Ver Hoef & Jansen, 2007; Wikle & Anderson, 
2003). Importantly, any of the various methods throughout the liter-
ature that account for underdispersion could be integrated into the 
presented model by adjusting the data model.

By placing analog forecasting within a hierarchical Bayesian para-
digm, there are a multitude of ways in which the methodology could 
be extended. It should be noted that differences in the forecasts be-
tween the HBA1 and HBA2 model can be attributed to a difference 
in the selection of analogs. This suggests that allowing the model to 
simultaneously consider multiple types of basis functions is an obvi-
ous extension of the model. Through the use of a mixture model, one 
could potentially jointly model two or more types of basis functions. 
Such an approach may be useful for forecasting seasonal or yearly set-
tling patterns that are influenced both linearly and nonlinearly by some 
high-dimensional variable.

Count data in ecology are ubiquitous and the model we developed 
is an ideal alternative to currently available quantitative methods. 
Ecologists routinely collect count data through visual surveys, such as 
the waterfowl dataset used herein, or through use of other remote 
technologies. For example, rapid advancement of radio-tracking tech-
nology (e.g, Kays, Crofoot, Jetz, & Wikelski, 2015) and remote-sensed 
cameras (e.g, He et al., 2016) has transformed the way ecologists col-
lect count data. These widely used technologies have also changed 
the type of data obtained both in terms of amount and structure of 
resulting data. In particular, these technologies result in large data 
structures with spatial and temporal dependencies and our model pro-
vides an appropriate way to address these complexities while quan-
tifying uncertainty in a rigorous manner. Often, these count data are 
used by ecologists to assess settling patterns, habitat relationships, or 
impacts of weather conditions and predict future states. For example, 
migration routes of terrestrial mammals are imperiled (e.g, Berger & 

Cain, 2014) and there is much effort to identify and predict use of 
important migration corridors. However, timing and use of migration 
corridors are affected by weather and other factors such as human dis-
turbance. Our model provides an alternative to model and project use 
of these important areas while revealing factors affecting their use. 
Indeed, although analog methods typically require quite a bit of data 
to develop the analog libraries, it does not necessarily require histor-
ical data over long time spans. So, processes operating on faster time 
scales, for which relatively high-frequency observations are available, 
can be considered within this framework and used to develop predic-
tions. Such results would have important policy decisions in wildlife 
management. Thus, we envision numerous applications of this model 
and its extensions.
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