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Abstract

High-frequency oscillations (above 30 Hz) have been observed in sensory and higher-order brain areas, and are believed to
constitute a general hallmark of functional neuronal activation. Fast inhibition in interneuronal networks has been
suggested as a general mechanism for the generation of high-frequency oscillations. Certain classes of interneurons exhibit
subthreshold oscillations, but the effect of this intrinsic neuronal property on the population rhythm is not completely
understood. We study the influence of intrinsic damped subthreshold oscillations in the emergence of collective high-
frequency oscillations, and elucidate the dynamical mechanisms that underlie this phenomenon. We simulate neuronal
networks composed of either Integrate-and-Fire (IF) or Generalized Integrate-and-Fire (GIF) neurons. The IF model displays
purely passive subthreshold dynamics, while the GIF model exhibits subthreshold damped oscillations. Individual neurons
receive inhibitory synaptic currents mediated by spiking activity in their neighbors as well as noisy synaptic bombardment,
and fire irregularly at a lower rate than population frequency. We identify three factors that affect the influence of single-
neuron properties on synchronization mediated by inhibition: i) the firing rate response to the noisy background input, ii)
the membrane potential distribution, and iii) the shape of Inhibitory Post-Synaptic Potentials (IPSPs). For hyperpolarizing
inhibition, the GIF IPSP profile (factor iii)) exhibits post-inhibitory rebound, which induces a coherent spike-mediated
depolarization across cells that greatly facilitates synchronous oscillations. This effect dominates the network dynamics,
hence GIF networks display stronger oscillations than IF networks. However, the restorative current in the GIF neuron lowers
firing rates and narrows the membrane potential distribution (factors i) and ii), respectively), which tend to decrease
synchrony. If inhibition is shunting instead of hyperpolarizing, post-inhibitory rebound is not elicited and factors i) and ii)
dominate, yielding lower synchrony in GIF networks than in IF networks.
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Introduction

Fast oscillations (30–100 Hz and higher) have been observed in

several brain areas, and have been proposed as a general substrate

of neural computation [1–4]. Several decades of intense investi-

gations, using both experimental [5,6] and theoretical [7–13]

approaches, have provided a detailed picture of how high-

frequency oscillations are generated and modulated in the brain.

Nevertheless, how intrinsic, single-cell dynamical properties affect

high-frequency oscillations, and through which mechanisms, is

only partially understood. In particular, most theoretical studies

have focused on the mechanisms of collective synchronization in

the regime where individual neurons fire regularly and can be

considered as quasi-periodic oscillators [14–17]. However, cortical

neurons in vivo generally exhibit highly variable spiking activity

[18]. As we show in this study, the intrinsic neuronal properties

that are more important for the generation of collective oscillations

depend critically on the dynamical regime where individual

neurons operate.

Experimental and theoretical work demonstrated a key role for

inhibitory interneurons in the generation of high-frequency

oscillations [19]. In particular, application of metabotropic

glutamate agonists in vitro in appropriate doses can elicit gamma

oscillations which are robust to pharmacological suppression of

fast glutamate-dependent excitation, but not of fast GABAA

inhibition [6] (note, however, that some level of phasic excitation is

generally required for gamma rhythmicity elicited by cholinergic

or kainate agonists; see for example [20,21]). Even more direct

evidence comes from optogenetic experiments, where selective

activation of fast-spiking interneurons has been shown to enhance

gamma oscillations in vivo [22,23].

Interneurons in the cortex and hippocampus are present in

several subtypes, characterized by specific molecular, electrophys-

iological and dynamical properties, as well as postsynaptic cellular
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and subcellular targets [24,25]. In particular, parvalbumin-positive

fast-spiking basket cells have been shown to be causally related to

the emergence of gamma oscillations [22]. These neurons are

endowed with specific synaptic and intrinsic mechanisms that

make them especially suitable for eliciting the temporally precise

trains of Inhibitory Post-Synaptic Potentials (IPSPs) that are

required for the generation of gamma oscillations [26]. Remark-

ably, they often exhibit intrinsic subthreshold oscillations or

resonance in the gamma range, which have been attributed to the

interplay between a persistent sodium conductance and a delayed-

rectifier potassium conductance [27].

Intrinsic, single-cell oscillations have been observed in a variety

of cell types [28,29], including several types of inhibitory

interneurons [27,30–34]. Subthreshold oscillations have been

proposed as a dynamical substrate for several computations at

the single neuron level, including band-pass filtering [35,36],

recognition of temporally precise sequences of inputs [37,38] and

differential regulation of incoming connection strengths through

spike timing-dependent plasticity rules [39].

Like pacemaker neurons in central pattern generators, it has

been suggested that neurons with subthreshold oscillations play a

key role in rhythmogenesis [40]. Being endowed with an intrinsic

rhythm, just a few of these neurons can entrain a population of

(mostly) passive cells to oscillate coherently through synaptic and/

or ephaptic coupling. However, it has long been known that

network oscillations can be produced even if individual neurons

lack any oscillatory property, as a result of chemical and/or

electrical synaptic interactions [41,42].

Previous work has assessed the influence of single-cell intrinsic

dynamics on network activity in the regular firing regime, where

each neuron fires repetitively with little variation across cycles [14–

17]. In this regime, Phase Response Curve (PRC) theory provides

a suitable framework for the prediction of network activity from

the dynamical characteristics of constituent neurons [43,44]. The

PRC of a regularly spiking neuron quantifies the phase shift that

results from an infinitesimal perturbation as a function of the

phase of the cycle at which the perturbation is applied. The shape

of the PRC depends on the geometry of the limit cycle

corresponding to tonic, regular spiking. However, cortical neurons

in vivo generally exhibit highly variable spiking activity [18]. They

dwell most of the time in the subthreshold regime and are driven

beyond threshold by random fluctuations in their inputs. This

variable activity at the single-cell level can nevertheless result in

coherent, regular oscillations at the collective level [9,10]. Features

of the collective oscillations can be quantitatively predicted from

the phase response of the neuronal and synaptic dynamics in the

case of sinusoidal oscillations [9,10] and also in the case of fully-

developed, non-linear oscillations in networks of IF neurons driven

by heterogeneous levels of DC currents [45].

The dynamical mechanisms by which intrinsic oscillations at the

single-cell level affect global network oscillations are very different

depending on the dynamical regime in which individual neurons

operate. If individual neurons fire in each cycle of the collective

oscillation (i.e., in the mean-driven regime), the geometry of the

single-cell periodic attractor corresponding to the regular spiking

regime enables one to predict and understand the population

rhythm, as exemplified by the important insights provided by

Phase Response Curve theory. However, if individual neurons fire

irregularly (i.e., in the fluctuation-driven regime), and only take

part in a subset of population cycles, the geometry of the regular

spiking regime becomes less relevant, as neurons dwell most of the

time in the subthreshold range.

In this study, we show how intrinsic neuronal oscillations at the

subthreshold level affect the generation and properties of collective

high-frequency oscillations. We focus on a regime where

individual neurons fire irregularly at a rate that is considerably

lower than the frequency of network oscillations. For simplicity,

and considering the key role of synaptic inhibition in gamma

rhythmogenesis, we consider purely interneuronal networks.

Individual units receive spatially independent and noisy background

inputs, thus mimicking an activated state of neuronal processing

[46]. This is a key difference with respect to previous theoretical

investigations on this topic, which poised individual neurons in the

regular firing regime and neglected the effects of the strong barrages

of background synaptic activity, which are expected to be

prominent in vivo. As we will soon make clear, the influence of

single-cell dynamics on network activity in a realistic context can

only be thoroughly understood if the interplay with extrinsic inputs

from other brain regions is taken into account.

Our network models can exhibit sinusoidal oscillations, as well

as fully-blown, non-linear oscillations with highly synchronous

firing. While we have studied a broad parameter space, our main

focus is on the latter regime, as it more closely resembles the highly

synchronous firing of basket interneurons during gamma-activated

states in the cerebral cortex [19].

The presence of subthreshold oscillations affect several dimen-

sions of single-cell dynamics. In response to a synaptic background

bombardment, the restorative effect of a resonant current lowers

firing rates and narrows the membrane potential distribution

around the resting potential. Importantly, subthreshold oscillations

change the functional coupling between neurons, i.e. the shape of

post-synaptic potentials, and can result in post-inhibitory rebound

depolarization. Some of these effects tend to enhance collective

oscillations, while others tend to impair them. The adoption of

neuron models with a fixed voltage threshold for spike generation

enables us to disentangle these different effects. By independently

varying the statistics of background inputs and the voltage

threshold for spike generation, we can compare neuronal models

that only differ along a single dimension of neuronal dynamics

(e.g., in the presence of subthreshold damped oscillations, in

conditions of equal firing rate response to the noisy background),

hence elucidating the specific contribution of different features of

single-cell dynamics that affect collective rhythmogenesis.

Author Summary

Neurons in the brain engage in collective oscillations at
different frequencies. Gamma and high-gamma oscilla-
tions (30–100 Hz and higher) have been associated with
cognitive functions, and are altered in psychiatric disorders
such as schizophrenia and autism. Our understanding of
how high-frequency oscillations are orchestrated in the
brain is still limited, but it is necessary for the development
of effective clinical approaches to the treatment of these
disorders. Some neuron types exhibit dynamical properties
that can favour synchronization. The theory of weakly
coupled oscillators showed how the phase response of
individual neurons can predict the patterns of phase
relationships that are observed at the network level.
However, neurons in vivo do not behave like regular
oscillators, but fire irregularly in a regime dominated by
fluctuations. Hence, which intrinsic dynamical properties
matter for synchronization, and in which regime, is still an
open question. Here, we show how single-cell damped
subthreshold oscillations enhance synchrony in interneu-
ronal networks by introducing a depolarizing component,
mediated by post-inhibitory rebound, that is correlated
among neurons due to common inhibitory input.

Intrinsic Properties and Network Oscillations
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In this work, we adopt neuron models that linearly describe the

subthreshold dynamics, where action potential generation is

implemented via a voltage threshold-crossing reset: the Integrate

and Fire (IF) and the Generalized Integrate and Fire (GIF). These

neuron models only differ in their subthreshold dynamics, which is

purely passive in the IF, while it exhibits subthreshold damped

oscillations in the GIF. Importantly, they both exhibit type I PRC

(inhibitory perturbations always result in phase delay) if made to

fire regularly via the injection of a constant depolarizing curve (see

section ‘‘Phase Response Curves in the IF and GIF neuron’’ and

Figure S1 in Text S1). Correspondingly, when these neurons are

coupled in a network by inhibition, the emerging collective

dynamics only differ consistently when neurons are poised in the

irregular, fluctuation-driven regime, but not when they are made

to fire regularly in a mean-driven regime.

While GABAA signalling is traditionally considered to be

hyperpolarizing in the adult brain, it can be shunting or slightly

depolarizing in some brain regions and neuron types [47,48].

Shunting inhibition precludes post-inhibitory rebound depolariza-

tion. In these conditions the effects of firing rate and de-

polarization responses dominate the dynamics, yielding stronger

oscillations in networks of purely passive neurons.

Synchrony and oscillations are dissociable concepts. Collective

oscillations are possible in the absence of synchrony; for example,

they can emerge as sinusoidal oscillations in the vicinity of a Hopf

bifurcation [9]. In addition, synchronous firing can be observed

in the absence of network oscillations, when neurons take part

in population spikes that occur non-periodically [49]. In the

networks considered in this study, synchronous collective oscilla-

tions are produced; hence, the two terminologies are used

interchangeably.

Methods

Network Models
We consider a network of Ninh inhibitory neurons with all-to-all

connectivity and equal weights. Neurons are placed on the vertices

of a 2D uniform grid of size 1 mm2 with periodic boundaries (a

torus). Hence, every neuron is associated with a pair of values

(x,y), included in the unit square, denoting its relative spatial

position. The distance d between a pair of neurons located at

(xi,yi) and (xj ,yj) is calculated as

d~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2

xzd2
y

q
ð1Þ

where dx~min(Dxi{xj D,1{Dxi{xj D) and dy~min(Dyi{yj D,
1{Dyi{yj D). As opposed to excitatory connections, which decay

with distance in probability and strength, inhibitory connections

have been shown to be independent of distance in a small cortical

patch [50]. Hence, in our models, synaptic weights ĝgsyn are equal

for each pair of cells, and the topology is enforced by distance-

dependent delays alone. Neuronal signals propagate with a

conduction speed of 0.141 m/s, in accordance with experimental

results in unmyelinated fibers supporting local, horizontal synaptic

connections in cats and monkeys [51,52]. Ninh is taken to be equal

to 400, which constitutes approximately 10% of the number of

basket cells (an interneuronal type critically involved with high-

frequency oscillations) in the dorsal hippocampus of the rat [53].

The adoption of a toroidal topology with all-to-all connectivity and

equal synaptic strengths enables us to exploit the symmetry of the

network and average the bivariate measures we consider over pairs

of neurons separated by the same distance (see subsection

‘‘Measures’’). This enables us to obtain precise estimates with

reasonable computational cost. At the same time, both theoretical

considerations as well as our own numerical simulations suggest

that a network with sparse connectivity would yield the same

qualitative results, because sparsity does not change the dynamic

behavior of the network but just increases the level of finite-size

effects (see, for example, [42]).

Neuron Models
Individual neurons are described either as Integrate and Fire

(IF) or Generalized Integrate and Fire (GIF). Both models adopt a

linear description of the subthreshold dynamics, which is one-

dimensional for the IF and two-dimensional for the GIF, and a

threshold-based spike generation mechanism. The subthreshold

dynamics are based on analogies with linear electric circuits (RC

for the IF, RLC for the GIF), a formalism with a long and

successful history in the phenomenological characterization of

neuronal dynamics (for some early examples, see [54–57]; for a

recent review, see [58,59]). In the case of the IF, the voltage

variable v, which measures the membrane potential deviation from

the leak reversal potential, evolves according to the differential

equation

C
dv(t)

dt
~{gv(t)zIsyn(t)zIbg(t), ð2Þ

where C is the membrane capacitance and g is the leak

conductance. Isyn represents the inhibitory synaptic current

resulting from action potential generation in other neurons of

the network, and Ibg is a background term representing synaptic

inputs from other brain areas not explicitly modelled. The

subthreshold dynamics in the GIF includes an additional

dynamical variable w, which represents the linearized effect of

voltage-gated ion currents:

C
dv(t)

dt
~{gv(t){gww(t)zIsyn(t)zIbg(t),

tw
dw(t)

dt
~v(t){w(t),

ð3Þ

where gw and tw are the conductance and time constant

associated with the w variable, respectively. The models are

endowed with an after-spike reset mechanism, so that when v

crosses a threshold vthr from below a spike is emitted, the

membrane potential is reset to a value vreset, and kept there for a

refractory time trefr. We set vreset below the leak reversal potential,

in accordance with the observation of after-hyperpolarization in

PV basket cells [27]. Our canonical parameter set corresponds to a

membrane time constant of 10 ms in both models, and a period of

intrinsic subthreshold oscillations of ,31 ms (,32 Hz) in the GIF

neuron, in accordance with the frequency of intrinsic subthreshold

oscillations measured in fast-spiking inhibitory interneurons in the

mammalian cortex and hippocampus (10–50 Hz [27,30]). In the

absence of external inputs, the IF responds to an instantaneous

perturbation with an exponential relaxation to rest with rate g.

Hence, it provides a simple description of purely passive

subthreshold dynamics. In a certain parameter subspace (which

includes the parameter set used here), the system (3) is

characterized by a pair of complex conjugate eigenvalues (see

the Appendix in Text S1). Therefore, the GIF neuron responds to

perturbations with damped oscillations, and constitutes an

analytically amenable model for the description of neuronal

intrinsic oscillations, i.e., oscillations generated by intrinsic ionic

mechanisms as the activation of a resonant current or the

Intrinsic Properties and Network Oscillations
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inactivation of an amplifying current [29]. These phenomenolog-

ical models can be considered as linear approximations (one-

dimensional in the case of the IF neuron, two-dimensional in the

case of the GIF neuron) of more general neuronal models (see, for

example, [35]). In fact, the only requirement that a detailed

neuron model must satisfy for this approximation to be valid is the

presence of a stable fixed point, where the Jacobian of the whole

system is evaluated in order to obtain the coefficients of the

corresponding IF or GIF description. This linear approximation is

guaranteed to be valid in a small neighborhood of the stable fixed

point. Isyn and Ibg represent the synaptic current from other

interneurons in the network, and the background input from other

brain regions and other interneuronal types that are not explicitly

modelled (e.g., somatostatin-positive Martinotti cells) and are

described below. Parameter values and descriptions are provided

in Table 1.

Synapse Models
Synaptic coupling is described as

Isyn(t)~gsyn(t)(Einh{v(t)) ð4Þ

dgsyn(t)

dt
~{

1

tinh

gsyn(t)z
XNinh

i~1

X
t
sp
i

ĝgsynd(t{t
sp
i {ts{di=s), ð5Þ

where gsyn(t) is the global inhibitory conductance impinging on

the current neuron and t
sp
i is the sequence of spike times generated

by neuron i. Synaptic transmission is delayed by distance-

dependent and distance-independent components di=s and ts,

where di is the distance between the current neuron and neuron i

(calculated according to (1)), s is the axonal propagation speed, and

ts accounts for non-instantaneous processes at synaptic contacts.

When a presynaptic pulse reaches the postsynaptic neuron, the

synaptic conductance gsyn(t) increases instantaneously by a value

ĝgsyn, and then decreases exponentially to zero with time constant

tinh. The corresponding synaptic current Isyn is then obtained by

multiplication with the difference between the voltage variable and

the reversal potential for inhibition Einh. Unless stated otherwise,

simulations are performed with the parameter values reported in

Table 1.

Background Noise
Every neuron receives a spatially independent background term

Ibg, which is composed of an excitatory and an inhibitory

component with associated reversal potentials Eexc and Einh:

Ibg(t)~ginh(t)(Einh{v(t))zgexc(t)(Eexc{v(t)): ð6Þ

The background time-varying conductances are described as

rectified Ornstein-Uhlenbeck processes with mean �ggx, standard de-

viation (SD) sx, and autocorrelation time constant tx (x = inh, exc):

dĝgx(t)

dt
~{

1

tx
(ĝgx(t){�ggx)z

ffiffiffiffiffiffiffi
2s2

x

tx

s
jx(t) ð7Þ

gx(t)~max(ĝgx(t),0), x~inh,exc, ð8Þ

where jx(t) is Gaussian white noise with zero mean and unit

standard deviation. We maintain a fixed ratio between the

background inhibitory and excitatory conductance, both in terms

of mean values and variability (unless stated otherwise). That is,

�gginh~k�ggexc and sinh~kssexc. We choose k = 5 and ks = 2.5 as

canonical values, in accordance with in vivo estimates [60]. Isolated

neurons respond to the synaptic bombardment with irregular firing

at relatively high rates (GIF: 74 Hz, Inter-Spike Interval coefficient

of variation (ISI CV) = 0.78; IF: 90 Hz, ISI CV = 0.81). Table 1

reports descriptions and canonical values for all parameters.

Numerical Methods
Model equations (2) and (3) are integrated with a sixth-order,

fixed step-size Runge-Kutta algorithm, with time step

Dt = 0.01 ms. The threshold-crossing and refractoriness conditions

are evaluated only once per time step, as well as the calculation of

synaptic currents according to equations (4) and (5). The

background conductances ginh and gexc are updated at each time

step using the properties of Ornstein-Uhlenbeck processes. That is,

ĝgx(tzDt) is normally distributed with mean ĝgx(t)e{Dt=txz

�gg(1{e{Dt=tx ) and standard deviation sx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1{e{2Dt=tx

p
. We

initialize the networks randomly and discard the initial transient.

We focus on the steady-state dynamics, that is, on the regime in

which the statistical properties of network dynamics are time-

invariant. This regime is typically reached within a few tens of

milliseconds. However, transients can be longer for certain

parameter sets that are close to the onset of collective oscillations.

Hence, we discard the first 2 s of simulation time to ensure that

any initial transient is excluded from the analysis.

Table 1. Parameter descriptions and canonical values used
throughout this study, unless otherwise stated.

Description
Parameter symbol
and value

Intrinsic parameters

membrane capacitance C = 10 nF

leak conductance g = 1 mS

conductance associated with the w variable gw = 4 mS

time constant of the w variable tw = 10 ms

threshold voltage vthr = 6.3 mV

reset voltage vreset = 3 mV

refractory period trefr = 3 ms

Coupling parameters

peak synaptic conductance ĝgsyn = 0.25 mS

synaptic delay ts = 1 ms

propagation speed s = 0.141 m/s

Background input parameters

inhibitory reversal potential Einh = 210 mV

excitatory reversal potential Eexc = 70 mV

inhibitory time constant tinh = 1 ms

excitatory time constant texc = 1 ms

mean BG excitatory conductance �ggexc = 0.5 mS

inh/exc mean conductance ratio k = 5

BG excitatory conductance SD sexc = 0.6 mS

inh/exc BG conductance SD ratio ks = 2.5

doi:10.1371/journal.pcbi.1003574.t001

Intrinsic Properties and Network Oscillations
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Measures
Neuronal network activities are quantified using several

measures at the individual, pairwise and collective levels.

Single cell measures. The level of mean activation at the

single neuron level is quantified with the firing rate rs, defined as

the inverse of the mean Inter-Spike Interval (ISI). ISIs are

obtained from the time ordered series of spike event times

t1,t2,:::tn as ISIi~tiz1{ti, i~1,:::,n{1. Spiking irregularity is

measured with the coefficient of variation (CV) of ISIs, defined as

the ratio between the standard deviation (SD) of ISIs and their

mean value. Subthreshold activity is characterized by estimating

the probability density function (pdf) of the membrane potential

variable v and its mean value.

Mean phase coherence. We quantify phase relationships

between firing activity in different cells by calculating the Mean

Phase Coherence (RMPC) between every pair of neurons [61]. The

Mean Phase Coherence between neurons A and B is a complex

number defined as

RMPC(A,B)~
1

S

XS

j~1

eiW(A,B)j , ð9Þ

where S is the number of spike events in neuron A that occur

within an ISI in neuron B, and W(A,B)j is the phase of spike tA,j in

neuron A with respect to the smallest ISI in neuron B that contains

tA,j . That is, if tB,k is the largest spike time in B smaller than tA,j ,

and tB,kz1 is the smallest spike time in B greater than tA,j ,

W(A,B)j~2p(tA,j{tB,k)=(tB,kz1{tB,k). Because of toroidal sym-

metry, there is no reason for a given neuron to lead ahead or lag

behind another neuron on average. The only non-trivial phase

relationships that can be established are in-phase or anti-phase.

Hence, RMPC(A,B) is a real number, positive (negative) if in-phase

(anti-phase) firing is preferred. However, its numerical estimation

is complex valued. In order to reduce the error in the estimation of

the Mean Phase Coherence, we exploit the toroidal symmetry of

the network and average RMPC(A,B) over neuron pairs with a

given distance. In order to yield the same number of pairs

for every value of d, only values of d that are multiple of the

distance between adjacent neurons in the x or y direction are

considered:

RMPC(d)~<(
1

4
ffiffiffiffiffiffiffiffiffi
Ninh

p
X

A,B,d(A,B)~d

RMPC(A,B)): ð10Þ

The global level of phase coherence is quantified by

�RRMPC~
1

t
ffiffiffiffiffiffiffiffiffi
Ninh

p
=2s

Xt
ffiffiffiffiffiffiffiffi
Ninh

p
=2s

d~1

DRMPC(d)D: ð11Þ

Population measures. The global, time-varying level of

spiking activity in the network is measured by counting the

number of spikes occurring in 10 ms time bins. We refer to this

measure as Population Rate (Rp).

In order to assess the state of the network at the subthreshold

level, we calculate, in each 100 ms time bin, the mean value across

neurons of the membrane potential v, the intrinsic current Iin

({gv{gww for the GIF, {gv for the IF), and the synaptic current

Isyn. We divide the time series into non-overlapping windows of

20 ms duration (corresponding to approximately two oscillation

cycles), and independently fit each short series with a sinusoidal

function AX sin(vXtzwX)zDX, X~v,Iin,Isyn. Histograms of the

root mean squared error (for each variable) and of the angular

frequency (pooling the three variables together) show inflection

points, which are used to select only those time windows where the

time evolution of the mean v, Isyn, and Iin could be properly

described by a sinusoid. Fitted traces are further inspected visually

to ensure stationarity and proper fitting in each time window.

Time windows that do not comply with these requirements are

excluded from the analysis. This procedure removes a different

number of time windows for each network considered, ranging

from 9% to none.

Phase values for the intrinsic and synaptic mean currents with

respect to the voltage oscillation are calculated in each time window

as 2p{vv (̂ttX,kX
{t̂tv,kv

), where t̂tv,kv
~(p=2z2kvp{wv)=vv

(kv~q(t0vvzwv{p=2)=(2p)r) is the time of the first peak of the

sinusoidal fit to the membrane potential in the current time window,

which starts at t~t0, and t̂tX,kX
~(p=2z2kXp{wX)=vX (kX~

q(̂ttv,kv
vXzwX{p=2)=(2p)r) is the time of the first peak of the

sinusoidal fit to the current X which follows t̂tv,kv
(X~Iin,Isyn), and

mean phase relationships are calculated. In order to investigate the

relationships between oscillation strength and the phase of intrinsic

and synaptic currents in each time window, we calculate circular-

linear correlations, namely between phase values (circular variables)

and corresponding Av values (linear variables). The amplitude of the

sinusoidal fit to the mean membrane potential oscillation Av can be

considered as a temporally local measure of synchrony. We also

calculate p-values of the null hypothesis of no correlation, using

standard circular statistics [62] as implemented in the CircStat

toolbox for MATLAB [63].

Further information is obtained by estimating the full proba-

bility density function (pdf) of the intrinsic current Iin. Time

windows corresponding to refractory periods are removed, and

probability densities are estimated using either all remaining data

points (unconditional pdfs), or only those that fall around the peaks

or troughs of the oscillation (phase conditioned pdfs, half-

width = p=8 radians), as identified by sinusoidal fits to short traces

of the average Iin across neurons. Bivariate probability densities

P(Iin,i,Iin,j) are estimated with symmetric Gaussian kernels for

pairs (i,j) of adjacent neurons. The deviation from independence

of the (Iin,i,Iin,j) distribution is measured as the difference between

the estimated bivariate pdf and the pdf that would be expected if

Iin,i(t) and Iin,j(t) were independent processes: D(Iin,i,Iin,j)~

P(Iin,i,Iin,j){P2(Iin). As in the univariate case, bivariate pdfs and

corresponding deviations from independence are measured both

unconditionally and conditioning on the phase of the average Iin

across neurons.

We also estimate bivariate probability densities of the mean and

standard deviation (across neurons) of the membrane potential

variable. In this case, the variances along the two dimensions are

not expected to be equal, hence an adaptive kernel density

estimator based on linear diffusion processes is used [64]. We use a

perceptually balanced colormap with cubic-law luminance values

in order to avoid perceptual biases induced by standard rainbow

colormaps (pmkmp.m, available from http://www.mathworks.

com/matlabcentral/fileexchange/28982-perceptually-improved-

colormaps, last accessed March 2013).

Spectral analysis. We used the Chronux data analysis

toolbox (http://chronux.org) for the spectral analysis of model

data [65]. We estimated the collective oscillations produced by our

networks by computing the power-spectra of Rp. The frequency of

network oscillations rn is quantified as the maximum of a Gaussian

function fitted to the power spectrum of Rp.
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Results

Single Neuron Dynamics
Before we consider the dynamics of networks of neurons

coupled by inhibitory conductances, it is instructive to characterize

how individual neurons respond to the background noisy input

alone, which represents input from other brain areas and is the

main source of depolarization and variability in the model. Hence,

we performed a linear analysis of the eigenvalues of the model

neurons with fixed external conductances (with sinh~sexc~0).

Figure 1 shows the effect of the background conductance gexc on

the resting potential, effective membrane time constant and

effective intrinsic frequency for the canonical ratio between

background inhibition and excitation (k = 5), and the effect of

the background inhibition-to-excitation ratio k for the canonical

value of the background excitatory conductance (gexc~0:5mS) on

these same quantities. The resting potential is defined as the

voltage satisfying dv=dt~0 in equations (2) (IF) or (3) (GIF), while

the effective membrane time constant teff and the effective

intrinsic frequency feff are defined from the eigenvalues l1,2 of the

systems (2) or (3) as teff~{1=<(l1) and feff~=(l1)=2p,

respectively. Full expressions are reported in the Appendix, Text

S1.

When background inhibition and excitation are balanced at the

canonical ratio k = 5, the resting potential is above zero but below

threshold even for very large values of the background conduc-

tance gexc (Figure 1A). In this regime, spiking is irregular and is

induced by random fluctuations in the background conductances.

The injection of background noisy conductances mimics an

activated state of the neuronal microcircuit, and decreases the

effective membrane time constant, as previously reported [66,67]

(Figure 1B). In addition to this, we observe a decrease in the

resonant frequency with increasing background drive in the GIF,

which eventually results in a purely passive dynamics for

gexc§gcrit
exc (Figure 1C) as the canonical GIF eigenvalues coalesce

onto the real axis.

Varying the background inhibition-to-excitation ratio k shifts

the resting potential and the membrane potential distribution

(Figure 1A, see also Figure 5A). The shift is greater in the IF

neuron because the additional dynamical variable in the GIF

Figure 1. Linear analysis of the neuron models. Linear analysis of the model neurons with fixed external conductances. A: Resting potential as a
function of the background inhibition-to-excitation ratio k for the canonical value of gexc (solid lines), and as a function of the background synaptic
excitation gexc for the canonical value of k (dashed lines). Solid lines refer to the bottom axis; dashed lines to the top axis. Circles show the canonical
values of the corresponding parameters. B: Effective membrane time constant as a function of k and gexc. Line styles, colors and symbols as in A. C:
Effective intrinsic frequency as a function of k and gexc. Line styles, colors and symbols as in A. D: IPSPs in response to a single presynaptic pulse
delivered at time t = 0, in the presence (dashed lines) or absence (solid lines) of fixed background conductances. Inset shows the membrane potential
response to an instantaneous perturbation.
doi:10.1371/journal.pcbi.1003574.g001
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counteracts voltage changes away from zero. If all the other

parameters are held fixed, the depolarization of the membrane

potential distribution induced by a decrease in k also translates to

an increase in the mean firing rate. However, the adoption of

neuron models with a fixed voltage threshold for spike generation

enables one to adjust the threshold in order to maintain a desired

rate of firing for each value of k and for both neuron models

considered.

As a consequence of the changes in membrane time constant

and oscillation frequency, Inhibitory Post-Synaptic Potentials

(IPSPs) in the presence of constant background conductances are

smaller and narrower (Figure 1D). In the case of the GIF, intrinsic

oscillations are more strongly damped and exhibit a lower

frequency.

Network Dynamics
We consider the activity generated by a network of identical

spiking neurons with all-to-all inhibitory connectivity. Coupling is

delayed by a distance-dependent component, mimicking axonal

propagation delays, and a distance-independent component that

accounts for non-instantaneous dynamics at synaptic contacts. In

addition to inhibitory conductances elicited by action potentials

generated in their peers, individual neurons also receive random

and spatially independent background synaptic conductances. In

the absence of coupling, the background synaptic bombardment

sets the neurons in an irregular firing regime.

In a broad range of parameter space, network oscillations are

produced at high frequency (,100 Hz). As inhibitory coupling

and background inhibition-to-excitation ratio are varied, oscilla-

tion strength and single-cell firing rates are modulated. However,

the frequency of network oscillations is only slightly affected, with

stronger coupling and lower depolarization resulting in slower

collective oscillations, as previously reported in modelling and

experimental studies [7,68].

While we have varied most parameters in ranges that are in

accordance with physiological data, we choose a representative

parameter set that corresponds to fully developed, yet unsaturated,

oscillations in the GIF network. The results we report in this

section refer to the canonical parameter set, while the effects of

variations in the inhibitory coupling and/or in the background

inhibition-to-excitation ratio k are reported in section ‘‘Effects of

rate, membrane potential distribution and coupling on synchro-

ny’’.

Figure 2 shows representative activities generated by a network

composed of GIF neurons (left panels), or IF neurons (right

panels). It is apparent from both the Rp traces (top rows) and the

raster plots (middle row) that the GIF network exhibits more

prominent oscillations (quantified in Table 2). In this network,

oscillations are fully developed and there are narrow temporal

windows in between volleys of activity during which almost no

spike is produced. The IF network also produces oscillations, but

in this case, the firing probability in between peaks of activation

does not completely vanish. Membrane potential trajectories of

individual neurons are also more strongly correlated in the GIF

network, with downward deflections corresponding to peaks of

inhibitory drive showing greater correspondence across cells.

Individual neurons fire irregularly at a rate that is much lower

than the frequency of collective oscillations. As shown in Figure 2C

and D, single-neuron ISI histograms are multipeaked. The first

peak corresponds to the population period, and lumps the

contribution of pairs of spikes emitted by the same cell in adjacent

cycles. Subsequent peaks are gradually smaller and occur at

integer multiples of the population period. The mean ISI is about

4 times greater than the population period. The envelope of the

distribution resembles an exponential distribution, a signature of

irregular, Poisson-like spiking.

The periodic modulation of excitability is more prominent in

the GIF network, where the ISI probability vanishes almost

completely in between peaks. A small peak is discernible at very

short ISIs, just longer than the refractory period. This peak lumps

the contribution of spike doublets emitted by the same cell in the

same cycle. These events are much more likely in the IF network,

where oscillations are not fully developed and inhibitory volleys

are not strong enough to completely preclude spiking during the

inactive phase of the oscillation.

The higher synchrony exhibited by the GIF network corre-

sponds to higher firing rates: just before the onset of a population

spike, inhibition vanishes almost completely, and this allows for a

greater number of neurons to reach threshold and take part in the

population spike. Conversely, in the IF network, there is a residual

amount of inhibition that is present even at the trough of

inhibitory volleys. This tonic component results in a smaller

number of cells taking part in the population spike.

The inclusion of an additional dynamical variable w in the GIF

model, which implements a restorative force on the membrane

potential dynamics, induces several changes in the neuronal

response to background synaptic bombardment or isolated

synaptic potentials. The dynamical variable w counteracts voltage

changes, hence the GIF neuron exhibits a narrower membrane

potential distribution, lower firing rates and lower firing variability.

Firing rates have a strong influence on the level of synchronization

that can be achieved in the coupled network, as higher firing rates

induce inhibitory conductances of greater amplitude that more

effectively drive the membrane potential near the reversal

potential of inhibition at each inhibitory peak of the oscillation.

In order to elucidate the influence of firing rate changes in the

observed differences in synchronization between GIF and IF

networks, we considered an additional pair of models: r-matched

GIF and r-matched IF. The r-matched GIF (r-matched IF) neuron is

equal to the GIF (IF) neuron, except for the voltage threshold for

action potential generation, which has been adjusted in order to

yield the same firing rate response as the IF (GIF) neuron to the

synaptic background bombardment.

As shown by a power spectrum analysis of population activity

(Figure 3), GIF neurons synchronize more in spite of the lower firing

rate response to the noisy background exhibited by this model. In

fact, the r-matched GIF, which displays the same firing rate

response to the background as the IF, exhibits even stronger

oscillations. Likewise, the r-matched IF neuron, whose firing rate

response has been decreased to match the GIF, synchronizes more

weakly than the canonical IF. Oscillation frequency depends only

weakly on the synchronization level, with higher synchrony

corresponding with faster oscillations.

Single-cell firing statistics and network oscillation measures for

the four model networks considered are reported in Table 2.

Distance Modulates Firing Synchrony and
Subthreshold Correlations

The adoption of a network model with spatial extension enables

one to study the spatial modulation of synchrony in the network

activity. From a theoretical perspective, we expect that spatial

modulation will be affected by two opposing influences. Neurons

that are located nearby will experience similar patterns of

incoming PSPs, because the coupling delays from any other

neuron in the network will be similar. This is expected to increase

synchrony among local pairs of neurons. However, nearby

neurons are connected by rapid inhibition with short propagation
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delays. Hence, if the propagation delays among adjacent neurons

are shorter than the temporal width of a population spike, this will

tend to decrease synchrony among local pairs of neurons. In order

to quantify the spatial structure of correlations in the inputs that

neurons receive, in their internal states, and in the outputs they

emit, we calculate average Pearson correlations between synaptic

inputs, membrane potential variables, and mean phase coherence

among neuron pairs as a function of their distance in the cortical

sheet.

As shown in Figure 4A, the correlation between synaptic

currents to neuron pairs decreases as a function of distance. This is

a result that we expect from the topological structure of the

network. However, at the level of the membrane potential,

correlations between neuron pairs are independent of distance

(Figure 4B). This apparent incongruence is resolved if one takes

into account the de-synchronizing effect of short-latency mutual

inhibition between neurons. In fact, at the suprathreshold level,

the synchronous firing of neuron pairs (as measured by RMPC)

decreases at short distances (Figure 4C).

This phenomenon highlights a novel aspect of pattern

decorrelation by inhibitory feedback [69], namely that rhythmic

mutual inhibition with topologically structured delays can offset

the spatial bias of incoming synaptic inputs and yield a flat profile

of membrane potential correlations. Strong interneuronal oscilla-

tions drive the membrane potential of all neurons to a narrow

Figure 2. Sample activity in the canonical GIF and IF networks. A: Population rate (top), spike raster plot (middle), and v trajectories of
selected neurons (bottom) in the GIF network for a representative parameter set. C: Single-cell ISI histogram for the GIF network. The red arrow
indicates the period of network oscillations. The black arrow indicates the mean single-cell ISI. B, D: The same as A and C, for the IF network.
Oscillations are more prominent in the GIF network.
doi:10.1371/journal.pcbi.1003574.g002

Table 2. Single-neuron and network statistics for the IF and
GIF models considered.

IF GIF
IF
r-matched

GIF
r-matched

vthr 6.3 6.3 7.3 5.5

rs (Hz, Ibg only) 90.3 73.7 73.8 89.5

ISI CV (Ibg only) 0.81 0.78 0.83 0.76

rs (Hz) 23.3 27.4 19.7 32.9

ISI CV 0.94 0.84 0.95 0.8

rn (Hz) 103.1 103.6 101.4 104.5

RMPC 12.8:10{3 25.4:10{3 7.3:10{3 40.4:10{3

The first row shows the voltage threshold for spike generation vthr , which has
been adjusted to yield approximately the same firing rate response to the
background synaptic bombardment in canonical and r-matched neurons. The
second and third rows show the single-neuron statistics to the background
synaptic bombardment alone. The fourth and subsequent rows show single-
neuron and ensemble statistics measured in network simulations. rs , single-
neuron firing rate; ISI CV, coefficient of variation of inter-spike intervals; rn ,
frequency of network oscillations; RMPC , mean phase coherence.
doi:10.1371/journal.pcbi.1003574.t002
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range near Einh at the peak of the inhibitory drive in each cycle, so

that the identity of the neurons that will be active in each cycle will

faithfully represent the spatial pattern of inputs and will not be

significantly biased by topological aspects. This property allows

network activity to closely follow cycle-to-cycle variations in the

spatial patterns of incoming stimuli [70].

Effects of Rate, Membrane Potential Distribution
and Coupling on Synchrony

In previous sections, we showed that intrinsic subthreshold

oscillations enhance high-frequency oscillations, and that this

effect occurs in spite of the reduction in firing rate due to resonant

intrinsic dynamics. If the voltage threshold for spike generation vthr

is differentially adjusted in order to yield the same mean rate

response to synaptic background inputs in the passive and

resonant neuron, the oscillatory advantage of GIF networks is

even more prominent.

Other factors being equal, an increase in firing rates is expected

to enhance collective oscillations. The more cells take part in the

active phase of the oscillation, the greater the inhibitory synaptic

conductance impinging on each neuron will be, thus driving the

membrane potential to a more narrow range near the inhibitory

reversal potential Einh. This effect has been described previously

by others (e.g., [9]). However, most previous studies on high-

frequency oscillations that adopted the IF formalism considered

current-based coupling (but see [10]). This approximation is

convenient for obtaining analytical results that relate the amount

of synchronization to microscopic quantities such as single-cell

firing rates, but can result in artificial dynamics where the

membrane potential of individual neurons can fall to unrealisti-

cally hyperpolarized values.

The inclusion of more realistic conductance-based coupling

reveals an additional factor that modulates the strength of

oscillations produced by an interneuronal network: the relation-

ship between the membrane potential distribution and the

inhibitory reversal potential Einh. As the difference between the

membrane potential distribution and the inhibitory reversal

potential increases, the driving force of inhibition (i.e., v{Einh)

will increase. Hence, inhibition will be more effective at driving the

membrane potential of individual neurons to a small region near

Einh at each peak of the inhibitory drive, thus delivering a more

efficient reset and strengthening the overall coherence of emerging

oscillations.

Figure 4. Correlation between synaptic inputs, membrane
potential trajectories and RMPC among pairs of neurons as a
function of distance. A: Average Pearson correlation between
incoming synaptic currents to neuron pairs as a function of their
distance. Note the high correlation for nearby neurons, which decreases
with distance. B: Average Pearson correlation between the membrane
potential of neuron pairs as a function of their distance. The modulation
with distance is negligible. C: RMPC between firing patterns of neuron
pairs as a function of their distance. RMPC decreases at short distances
due to short-latency mutual inhibition. Line styles and colors as in
Figure 3.
doi:10.1371/journal.pcbi.1003574.g004

Figure 3. Power spectrum of population activity. Power spectrum
of the population rate Rp for the four model networks considered.
Population activity exhibits a peak at ,100 Hz, with higher synchrony
corresponding with slightly higher population frequency. Note the tall,
non-Gaussian peaks in the GIF networks, corresponding to non-linear,
fully developed oscillations. In contrast, power spectrum peaks in the IF
networks are bell-shaped, a signature of sinusoidal oscillations.
doi:10.1371/journal.pcbi.1003574.g003
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Figure 5. Effects of membrane potential depolarization and coupling on network dynamics. A: Membrane potential distributions of GIF
and r-matched IF neurons in response to the background input alone, for different values of the background inhibition-to-excitation ratio k. In all
cases, the voltage threshold for spike generation vthr has been adjusted in order to match the rate response of the canonical GIF (73.7 Hz). Color and
line style code as indicated. Inset shows the mean membrane potential as a function of k for the four model networks shown in Figure 3 (same line
colors and styles). B, D: Synchrony (as assessed by RMPC, B) and firing rates (D) as a function of coupling strength ĝgsyn. C: Enlarged view of B for low
values of coupling strength. E: Ratio between corresponding curves in C. Solid lines show ratios between canonical models (RMPC(GIF)/RMPC(IF)),
while dashed lines show ratios between models that have been adjusted in order to exhibit the same rate response to the background input (purple,
blue and light blue, RMPC(GIF)/RMPC(r-matched IF); brown, red and orange, RMPC(r-matched GIF)/RMPC(IF)). Dots in B–E indicate simulated points,
lines are drawn to guide the eye.
doi:10.1371/journal.pcbi.1003574.g005
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In this section, we vary the background inhibition-to-excitation

ratio k, and consider a depolarized set of networks (k~4, purple

curves for the GIF, brown curves for the IF in Figure 5), a

hyperpolarized set of networks (k~6, light blue curves for the

GIF, orange for the IF), along with the canonical set of networks

(k~5, blue curves for the GIF, red for the IF). In all networks,

single-cell firing rate responses to the background input have been

adjusted to be equal (up to 61% tolerance) to the canonical GIF

rate response (74 Hz, GIF and r-matched IF) or to the canonical

IF rate response (90 Hz, IF and r-matched GIF). Figure 5B–D

shows the degree of synchronization and firing rates in these

networks as the inhibitory coupling ĝgsyn is varied.

As coupling is increased from zero, the network dynamics shift

from asynchronous activity (RMPC*0) to fully developed oscilla-

tions, which saturate at ĝgsyn*0:4 mS. In this regime, neurons are

reliably driven to a narrow range near Einh at each peak of the

inhibitory drive. Further increases in ĝgsyn do not result in

enhanced synchrony; on the contrary, they can result in a residual

amount of inhibition during the active phase of the oscillations,

which decreases firing rates and slightly decreases synchrony

(Figure 5D and B). These effects are stronger in IF networks, as

post-inhibitory rebound in GIF neurons diminishes the silencing

effect of inhibition.

For all values of coupling, GIF neurons synchronize more, and

that happens in spite of the reduction in rate response to the

background input. In fact, r-matched GIF networks exhibit even

stronger synchronization (purple, blue and light blue dashed lines

in Figure 5B and C), while r-matched IF networks synchronize

even less than canonical IF networks (brown, red and orange

dashed lines).

Not surprisingly, increased inhibitory coupling decreases single-

cell firing rates (Figure 5D). Even if GIF and r-matched IF neurons

have been adjusted to exhibit the same firing rate response to the

background input, the collective dynamics they exhibit as a

population when connected through inhibition is the dominant

effect on the resulting firing rates, even at low coupling values.

Higher synchrony (r-matched GIF, GIF) corresponds with higher

firing rates, as phasic inhibition allows for ‘‘windows of opportu-

nity’’ for spiking activity. Conversely, in lower synchrony networks

(r-matched IF, IF), inhibition has a tonic component that only

allows action potential generation in those few cells that receive

strong depolarization.

While the firing rate during network simulations depends on

recurrent interactions within the local network, the firing rate in

response to the noisy background is an intrinsic property of the

neuron (given the statistics of the noisy background), and can be

considered equivalent to the excitability or propensity to fire of the

neuron. The relationship between synchrony and firing rate

during network simulations is circular: higher synchrony results in

phasic inhibition, allowing for greater ‘‘windows of opportunity’’

for spiking activity, while at the same time higher firing rates

induce inhibitory conductances of greater amplitude that more

effectively drive the membrane potential near the reversal

potential of inhibition at each inhibitory peak of the oscillation.

Conversely, higher firing rate responses to the noisy background

causally result in higher synchrony for a given neuron type and

inhibition-to-excitation ratio k (Figure 5B and C, compare solid

and dash lines of the same color. Dash lines correspond to higher

firing rate response to the noisy background for the GIF neuron,

while the opposite holds for the IF neuron, as explained when

introducing the r-matched models in section ‘‘Network dynamics’’).

Importantly, the measure of synchrony that we use, Mean Phase

Coherence (RMPC, defined by equation (9)), does not have a built-

in dependency on firing rate. In fact, RMPC measures the level of

phase (rather than time) coherence. Hence, an increase in firing

rate results in lower values of RMPC for the same level of coherence

in time. Therefore, the relationship we describe between

synchrony and firing rates during network simulations is, a priori,

unexpected, and derives from the mutual dependence between

single-neuron activity and network dynamics.

As expected from the argument exposed above, membrane

potential depolarization is an additional factor in determining the

strength of collective oscillations. More depolarized networks

(purple for the GIF, brown for the IF) synchronize more effectively

than their hyperpolarized counterparts (light blue for the GIF,

orange for the IF).

As shown in Figure 5C and E, the oscillatory advantage of GIF

networks is more prominent at intermediate values of the

inhibitory coupling, with the RMPC ratio between GIF and IF

networks that peaks at ĝgsyn*0:2 mS. Here, the canonical GIF

networks synchronize ,3 times stronger than the canonical IF

networks (as assessed by RMPC), with that ratio increasing to ,7 if

networks with the same rate response to the background input are

compared. The non-monotonic dependence of the RMPC ratio on

coupling shows that the synchronizing effect of inhibition becomes

effective at much lower values of ĝgsyn in GIF networks.

Intrinsic Mechanisms that Enhance Collective Oscillations
We have shown that neurons with subthreshold oscillations

synchronize more strongly than passive neurons when coupled by

inhibition. However, they also exhibit lower firing rates and less

depolarization in response to the background input, and both

effects weaken collective oscillations. Hence, the question arises as

to what are the intrinsic dynamical mechanisms that enhance

oscillations in GIF neurons, in spite of the relative disadvantage

resulting from their lower rate and depolarization responses.

In this section, we perform a detailed analysis of the intrinsic

and synaptic currents flowing through the neuronal membrane at

different phases of the oscillation cycle, and show that the

synchronization advantage of GIF neurons can be understood as a

result of the strong and coherent activation of inward intrinsic

currents near the trough of membrane potential oscillations.

Figure 6 shows the GIF population rate Rp, along with the

membrane potential v, the synaptic current Isyn, and the intrinsic

current Iin, averaged across neurons, for a few oscillation cycles.

The intrinsic current is equal to {gv{gww for the GIF, and to

{gv for the IF (see equations (3) and (2)). In each cycle, the

average membrane potential reaches a peak near the end of the

population spike. About a third of a cycle later, the average

inhibitory synaptic current reaches a minimum, which then results

in a minimum of the average membrane potential as neurons are

driven to a small range near the reversal potential of inhibition.

After a small lag corresponding to the time scale of subthreshold

neuronal dynamics, intrinsic currents peak, facilitating the

recovery from inhibition of the average membrane potential,

which in turn leads to the next active phase of the oscillation.

We reasoned that if inward currents are stronger in GIF

neurons near the trough of the membrane potential oscillation,

that would constitute a depolarizing force, coherent across

neurons, that acts selectively in the later portion of the inactive

phase of the oscillation, hence constituting a candidate for a

synchronization mechanism. In order to assess the contribution of

intrinsic currents to the generation of synchronized oscillations, we

estimate the probability density P of the intrinsic currents in the

GIF and IF networks (Figure 7). We estimate P by using either all

available data points (solid traces), or only those data points that

fall around the peaks or troughs of the oscillation, as identified by
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sinusoidal fits to short traces of the average Iin across neurons

(dashed and dotted lines, respectively).

Figure 7 shows that the distribution of intrinsic currents is

broader and more depolarized in the GIF network, and it is more

strongly modulated by the population rhythm. Furthermore, the

bivariate probability density P(Iin,i,Iin,j) for the GIF network

shows a positive deviation from independence for Iin,i*Iin,j*
12 nA, which indicates that GIF neurons receive a strong

depolarizing current which is coherent across pairs (Figure 8A).

The main contribution to this depolarizing current comes from the

term {gww. As inhibitory synaptic currents peak, individual

neurons are brought to a narrow range close to the reversal

potential Einh, which activates the restorative variable w providing

a post-inhibitory rebound. A positive deviation from independence

is also observed in the IF network, albeit for lower (less

depolarizing) values of the intrinsic currents. If probability

densities are conditioned on the oscillation phase, no deviation

from independence is observed, suggesting that there are no

additional correlations in the intrinsic currents to cell pairs beyond

those induced by the population rhythm (Figure 8C–F).

Intrinsic currents are more strongly activated in GIF neurons,

and they provide a depolarizing force, coherent across neurons,

that acts near the end of the inactive phase and greatly fosters

oscillations. In addition to this, it is important to recognize that

GIF neurons are endowed with an additional dynamical variable

w, which actively opposes voltage changes and constitutes a single-

cell memory trace of the inmediate past [38]. In IF networks,

intrinsic currents only depend on the current value of the

membrane potential. This results in a fixed phase relationship

between the mean membrane potential and the mean intrinsic

current, which are precisely in anti-phase. Conversely, the

additional dynamical variable w in the GIF homeostatically

Figure 6. Intrinsic and synaptic currents. Population rate Rp (A), along with the mean membrane potential v (B), the mean synaptic current Isyn

(C), and the mean intrinsic current Iin (D) across neurons for the GIF network in a short representative time window. Blue lines show simulation
results, black lines are least-squares sinusoidal fits. The red vertical lines indicate the peak of the sinusoidal fit to the corresponding traces, the green
vertical line indicates the trough of the sinusoidal fit to the mean membrane potential. Phase leads (W, in radians) with respect to the mean
membrane potential oscillation are shown for the mean synaptic current Isyn and the mean intrinsic current Iin.
doi:10.1371/journal.pcbi.1003574.g006

Figure 7. Distribution of intrinsic currents conditioned on the
phase of the population rhythm. Probability density functions of
intrinsic currents Iin in the GIF (blue) and IF (red) networks. Solid lines
indicate unconditional probability densities, dashed (dotted) lines
indicate probability densities conditioned on the peak (trough) of the
mean Iin oscillation.
doi:10.1371/journal.pcbi.1003574.g007
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adjusts intrinsic currents individually in each neuron on a cycle-by-

cycle basis, compensating for transient variations in the input and

resulting in more robust and stable oscillations.

Figure 9A shows the relative phase of the mean synaptic current

with respect to the mean voltage, computed in 20 ms time

windows, as a function of the amplitude of the oscillation in the

Figure 8. Deviation from independence of intrinsic currents for adjacent neurons. A: Deviation from independence

D(Iin,i ,Iin,j)~P(Iin,i ,Iin,j){P2(Iin) of intrinsic currents (Iin,i ,Iin,j) flowing through the membrane of pairs (i,j) of adjacent neurons in the GIF
network. Shades of red (blue) indicate (Iin,i,Iin,j) values that occur more (less) often than what expected under the assumption of independence. C, E:
The same as A, but the probability density functions P(Iin,i ,Iin,j) and P(Iin) are conditioned on the peak (C) or trough (E) of the mean Iin oscillation. B,
D and F: The same as A, C and E, for the IF network.
doi:10.1371/journal.pcbi.1003574.g008
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mean voltage in the same window (see Methods for details). The

amplitude of the oscillation in the mean voltage Av can be

interpreted as a measure of oscillation strength, and it is strongly

correlated to both the amplitude of the oscillation in the mean

synaptic current Asyn and the amplitude of the oscillation in the

mean intrinsic current Ain. While GIF networks exhibit high

oscillation strength and small variability in the phase of the mean

synaptic current, IF networks exhibit lower oscillation strength and

higher Isyn phase variability, which increases with poorer

synchrony. Phase values for the synaptic current are much more

variable in IF than in GIF networks, but their mean values are

very similar (1 for the GIF, 1.02 for the IF). Circular-linear

correlation analysis reveals that the phase of the mean synaptic

current advances with higher synchrony for all networks (p,0.01),

albeit less clearly in the case of the r-matched IF network

(p = 0.012). Circular-linear correlation values r for the four

networks considered are reported in Table 3, along with the

corresponding p-values of the null hypothesis of no correlation.

A more striking effect of the different intrinsic neuronal

properties is observed in the distribution of the relative phase of

the mean intrinsic current (Figure 9B). In IF networks, intrinsic

currents only depend on the current value of the membrane

potential, hence their phase relationship is fixed and equal to p. In

GIF networks, conversely, intrinsic currents are adjusted on a

cycle-by-cycle basis as a function of the recent input history, and

peak later in the cycle, when inhibition has waned almost

completely and neurons are driven by background inputs and

intrinsic currents only. Depending on the background input that is

received in the inactive phase of the oscillation, and in particular in

its late portion, when the synaptic drive wanes, the intrinsic

current will be differentially adjusted in each neuron. Since the

intrinsic current in GIF neurons is restorative and tends to oppose

voltage changes, its net effect will be a reduction of the variability

across neurons in the membrane potential trajectories, which

results in a narrower population spike, i.e. enhanced synchrony.

The phase mismatch between synaptic and intrinsic currents is a

significant indicator of oscillation strength, as shown in Figure 9C.

In the IF networks, the mean intrinsic current depends on the

mean voltage variable only; hence, the phase mismatch between

synaptic and intrinsic currents exhibits the same level of

correlation with oscillation strength as the phase of synaptic

current. Conversely, in the GIF networks, the phase difference

Win{Wsyn shows a stronger and more significant correlation with

local synchronization (as assessed by the amplitude of the

sinusoidal fit to the mean membrane potential Av) than Wsyn,

even though the phase of the mean intrinsic current Win is itself

independent of synchrony (Figure 9B and Table 3, second row). As

Win{Wsyn decreases, intrinsic currents peak later with respect to

synaptic currents, and are more effective in bringing together the

trajectories of individual neurons in the critical portion of the

oscillation cycle that just precedes a population spike.

Figure 10 shows the covariation of the mean membrane

potential and the mean intrinsic current (panel A), and the

covariation of the mean membrane potential and its standard

deviation (panel B, GIF; panel C, IF). In the IF neuron (red line in

Figure 10A), the intrinsic current only depends on the current

value of the membrane potential (Iin~{gv). In the GIF neuron

(blue line), the additional dynamical variable w implements a

cellular memory of the inmediate past. The subthreshold dynamics

of the GIF neuron is mathematically equivalent to a damped linear

oscillator; hence, the trajectory in the phase plane (vvw,vIinw)
has an elliptical shape, as expected from a linear oscillator driven

by noisy inputs (mediated by synaptic background inputs) with an

oscillatory component (mediated by inhibitory currents originated

within the network). Intrinsic currents are always greater in the

GIF neuron, especially for hyperpolarized values of the membrane

potential. As the inhibitory synaptic current peaks, the average

membrane potential is driven close to Einh, which strongly

activates intrinsic inward currents. These act as a coherent

depolarizing force across neurons, as the trajectory evolves

clockwise in the (vvw,vIinw) plane and the network approach-

es a new active phase of the oscillation.

Figure 9. Phase relationships of synaptic and intrinsic currents and their effect on synchrony A: Phase of the sinusoidal fit to the mean
synaptic current Isyn plotted against the local level of synchrony (as assessed by the amplitude of the sinusoidal fit to the mean membrane potential
Av). GIF: blue; IF: red. Crosses: canonical models; circles: r-matched models. B: As in A, for the mean intrinsic current Iin. Only GIF networks are shown,
as Win is always equal to p in IF networks. C: As in A, for Win{Wsyn.
doi:10.1371/journal.pcbi.1003574.g009

Table 3. Circular-linear correlation analysis corresponding to
the data plotted in Figure 9.

IF GIF
IF
r-matched

GIF
r-matched

Wsyn - Av 0.38 (0.0008) 0.35 (0.004) 0.32 (0.012) 0.32 (0.006)

Win - Av 0.15 (0.33) 0.29 (0.02) 0.2 (0.16) 0.19 (0.17)

(Win{Wsyn) - Av 0.38 (0.0008) 0.41 (0.0006) 0.32 (0.012) 0.34 (0.004)

Circular-linear correlation has been computed between phase values of the
mean synaptic current and Av (first row, corresponding to data shown in
Figure 9A), between phase values of the mean intrinsic current and Av (second
row, corresponding to Figure 9B), and between the phase mismatch between
synaptic and intrinsic currents and Av (third row, corresponding to Figure 9C).
Correlation values r are shown for each of the four networks considered, with
the p-values of the null hypothesis of no correlation shown in parenthesis.
doi:10.1371/journal.pcbi.1003574.t003
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The upward phase of the oscillation, between the trough of the

membrane potential oscillation and the subsequent population

spike, is a critical time window for the regulation of synchrony, as

neurons are progressively released from inhibition and evolve on

the basis of the background input and their intrinsic dynamics,

with little influence from the local network. In this time frame, GIF

neurons experience a particularly strong depolarizing drive from

their intrinsic currents mediating post-inhibitory rebound, as the

mean intrinsic current in the upper portion of the (vvw,vIinw)
trajectory is greater than in the lower portion for equal values of

the mean membrane potential. This, in turn, results in lower

values for the standard deviation of the membrane potential across

neurons (Figure 10, compare B and C), that is, the membrane

potential trajectories of individual neurons are closer together;

hence, they will cross the threshold for spike generation in a briefer

time window, ultimately resulting in higher synchrony.

It is worth noting that this synchronization mechanism is

different from the resonant synchronization reported for networks

of coupled oscillators, where individual neurons fire regularly in

each cycle. In the low-noise, mean-driven regime, the amplitude

and frequency of collective oscillations strongly depend on the

intrinsic frequency of individual oscillators [15]. However, if

neurons are poised in the noise-driven, irregular firing regime, the

intrinsic frequency of subthreshold damped oscillations have very

little effect on the amplitude and frequency of collective

oscillations. Rather, it is the amount of damping that most

strongly affects oscillation strength, with the more underdamped

subthreshold dynamics resulting in stronger oscillations (see section

‘‘Effects of variations in the intrinsic neuronal parameters and in

the connection delays on synchrony’’ and Figure S2 in Text S1).

More underdamped subthreshold dynamics imply stronger

rebound from inhibition. Hence, this result further highlights the

key role played by post-inhibitory rebound as the main dynamical

mechanism underlying enhanced synchrony in GIF networks.

Hyperpolarizing vs. Shunting Inhibition
In some brain regions and neuron types, especially in early

stages of development, GABAA signalling has been shown to be

shunting or depolarizing, rather than hyperpolarizing. That is,

GABA reversal potential can be above the leak reversal potential.

In particular, GABAA mediated inhibition has been shown to be

strongly depolarizing in the developing brain [71], and remains

shunting in some interneuron types of the amygdala, cerebellum,

CA3 and dentate gyrus even in mature animals [47,48,72,73].

Intriguingly, the polarity of GABA effects could also differ among

distinct subcellular compartments [74], and be modulated on short

time scales by activity-dependent mechanisms of chloride homeo-

stasis [75,76]. Shunting inhibition has been shown to strengthen

collective oscillations in the gamma range in the presence of

heterogeneity in the level of excitability across neurons [48].

However, it has been reported that neurons near a Hopf

bifurcation are poorly reset by shunting inhibitory pulses [77].

In this section, we investigate how the polarity of inhibitory

synaptic potentials affect the mechanisms of gamma rhythmogen-

esis, and whether subthreshold intrinsic oscillations are expected to

enhance collective oscillations if inhibition is shunting.

Changes in the reversal potential of synaptic conductances do

not affect neuronal eigenvalues, since the systems (2) and (3) are

linear, but do affect the resting potential in response to constant

background input (see equation (A-1) in the Appendix, Text S1),

and hence the distribution of the membrane potential in response

to noisy synaptic bombardment. In particular, the resting potential

in response to constant background conductances is considerably

more depolarized in the IF neuron, as expected from the

restorative character of the resonant variable in the GIF neuron

(Figure 11A, compare with the analogous results for hyperpolar-

izing inhibition shown in Figure 1A).

As expected from the theoretical considerations and numerical

simulations presented above, this difference in membrane poten-

tial distribution responses confers a synchronization advantage to

the IF neuron, which indeed exhibits stronger synchronization in a

broad range of parameter space if inhibition is shunting

(Figure 11B). In fact, for the canonical coupling value

ĝgsyn = 0.25 mV, only IF networks exhibit a noticeable level of

synchronization (brown solid curve), and only for low values of k,

which corresponds to greater depolarization and consequently

higher firing rates. Stronger coupling results in higher synchrony

in canonical IF networks, which saturates and eventually slightly

decreases, as previously observed in the case of hyperpolarizing

inhibition (Figure 5B). Conversely, GIF networks exhibit appre-

ciable oscillations only for medium to high values of the coupling

strength, and only if the voltage threshold vthr has been adjusted to

increase their firing rate responses to background inputs to the IF

level (r-matched GIF, blue and light blue dashed lines). Even in

these conditions, the level of synchrony observed in IF networks is

only reached for high values of the coupling strength.

This effect is reminiscent of the phenomenon reported by

Börgers et al. [77], who showed that neurons with subthreshold

oscillations are poorly reset by shunting inhibitory pulses. The

main difference between their approach and ours is that they

Figure 10. Mean and standard deviation of the membrane potential across neurons. A: Covariation of the mean membrane potential and
the mean intrinsic current across neurons in the GIF (blue) and IF (red) networks. B, C: Bivariate probability density function of the mean and standard
deviation of the membrane potential variable across neurons for the GIF (B) and IF (C) networks. Brighter colors indicate higher probabilities.
doi:10.1371/journal.pcbi.1003574.g010
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considered a mean-driven, tonic spiking regime, while we

considered a fluctuation-driven regime. In their model, as in ours,

volleys of inhibition bring neurons close to the reversal potential of

inhibition, which has a synchronizing effect. However, in their

model, as inhibition wanes the fixed point (which is a focus for a

neuron with subthreshold damped oscillations) becomes weakly

repelling. As the focus undergoes a bifurcation from weakly

attracting to weakly repelling, a ‘‘ghost’’ attractor dominates the

dynamics in its vicinity. Hence, small differences in initial

conditions between different neurons are amplified, as different

neurons might make a different number of turns around the

weakly repelling focus before leaving its vicinity and start a new

spiking trajectory. This effect is more pronounced in the absence

of external noisy inputs, since strong background conductances

would move the state variables away from the bifurcating focus,

into regions of phase-space with stronger and more directive field.

In our model, a slightly depolarized reversal potential for

inhibition abolishes post-inhibitory rebound excitation, and

actually results in post-excitatory rebound inhibition for those

cells with vvEinh. This situation is observed even if the resting

potential (defined as in section ‘‘Single neuron dynamics’’ as the

membrane potential v that satisfies dv=dt~0 in systems (2) and (3)

with constant background input) is above Einh, due to the

fluctuating nature of background conductances. The hyperpolar-

izing current resulting from post-excitatory rebound inhibition

pushes neurons away from the spiking threshold and enhances the

desynchronizing effect of the noisy background input, by

lengthening the time window during which cells evolve free from

inhibition, driven solely by the incoherent background input.

This phenomenon gives GIF networks a synchronization disad-

vantage with respect to IF networks, in addition to the

synchronization disadvantage resulting from smaller firing rate

and membrane potential distribution responses to the noisy

background input, the latter effects being due to the presence of

a restorative current.

Discussion

Oscillations in the gamma range (30–100 Hz and higher) have

been the focus of intense experimental and theoretical work for

more than two decades (reviewed in [1–4]). Synchronization in

that frequency range has been proposed as a physiological

substrate of perceptual binding, whereby individual neurons

selective to different features that coactivate in the same gamma

cycle would signal the coherent perception of those features, i.e.,

when those features belong to an object that is perceived as a single

entity [78]. Gamma band oscillations are not exclusive to sensory

cortices, but have also been observed in high-level decision areas

such as the medial prefrontal cortex, in areas related to working

memory maintainance such as the lateral intraparietal area, and in

non-cortical regions such as the hippocampus, some subcortical

nuclei, and the spinal cord. More recently, gamma-band

synchronization has been recognized as a general process of

neuronal processing, which might enable selective, dynamic and

flexible routing of information across brain regions [79,80]. In

accordance with its putative role in cognition, alterations of

neuronal coherence in the gamma band have been associated with

several psychiatric disorders, including autism and schizophrenia

(see [81] for a recent review).

In spite of the recognized key role of high-frequency oscillations

in neuronal processing, the biophysical mechanisms that underlie

their generation are still incompletely understood. In particular,

the role of intrinsic subthreshold oscillations, which have been

observed in several interneuronal types critically involved in the

emergence of gamma oscillations, is still unclear.

Here, we show that intrinsic subthreshold oscillations enhance

the synchrony induced by hyperpolarizing inhibitory coupling in

networks of irregularly firing interneurons. As inhibitory synaptic

currents peak, neurons are brought together to a narrow range

close to the reversal potential Einh. If neurons are endowed with

damped subthreshold oscillations, hyperpolarization activates

Figure 11. Neuronal dynamics if inhibition is shunting, rather than hyperpolarizing. A: Resting potential as a function of the background
inhibition-to-excitation ratio k for the canonical value of gexc (solid lines), and as a function of the background synaptic excitation gexc for the
canonical value of k (dashed lines). Solid lines refer to the bottom axis; dashed lines to the top axis. Circles show the canonical values of the
corresponding parameters. All parameters as in Table 1, except Einh = 4 mV. Compare with analogous results for hyperpolarizing inhibition shown in
Figure 1A. B: Synchrony (as assessed by RMPC) as a function of the background inhibition-to-excitation ratio k for different values of the coupling
strength ĝgsyn. Voltage threshold for spike generation vthr has been increased to 15 mV in the canonical models, in order to compensate for the
depolarization of the resting potential and to keep the models in the fluctuation-driven regime. Voltage thresholds for r-matched models have been
scaled accordingly for each value of k. GIF: purple, weak coupling (ĝgsyn~0:25mS); blue, medium coupling (ĝgsyn~0:6 mS); light blue, strong coupling
(ĝgsyn~1:2mS). IF: brown, weak coupling; red, medium coupling; orange, strong coupling. All other parameters as in Table 1, except Einh = 4 mV,
vreset = 4 mV. Dots indicate simulated points, lines are drawn to guide the eye.
doi:10.1371/journal.pcbi.1003574.g011
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inward currents and results in post-inhibitory rebound, which in

turn induces a depolarization of the membrane potential that is

coherent across neurons due to common inhibitory input. This

translates to a higher synchrony of spiking activity.

Intrinsic subthreshold oscillations can result from delayed

restorative currents, and are enhanced by the additional presence

of amplifying currents [29]. Llinás et al. described a mechanism

based on the interplay between a persistent sodium conductance

and a delayed-rectifier potassium conductance [27]. Another

current that often results in oscillatory properties is the h current, a

hyperpolarization-activated inward current which has been

proposed to control rythmogenesis in neurons and cardiac cells

[82–85], and is also expressed in fast-spiking interneurons of the

hippocampus [86]. Activation of Ih in response to IPSPs might

induce the post-inhibitory rebound that is the key mechanism

underlying enhanced synchrony in GIF networks. Deinactivation

of the low-threshold inward calcium current IT might play a

similar role. In fact, several biophysical mechanisms can yield

equivalent neuronal dynamics [87]. The adoption of phenome-

nological models like the IF and GIF neurons enables us to assess

the role of subthreshold damped oscillations in a general

framework, abstracting from the specific biophysical mechanisms

that are responsible for their generation.

The heterogeneity of neuronal types is a phenomenon observed

in many brain regions, and especially in those that are

phylogenetically more recent and thus posited to be involved with

higher brain functions, such as the hippocampus and the

neocortex [24,25]. The functional significance of neuronal

heterogeneity is an important, yet barely explored question that

can greatly benefit from theoretical and computational approach-

es. As a step toward understanding the functional relevance of the

complex distribution of intrinsic neuronal properties observed in

the brain, we need to develop a better understanding of the effects

of intrinsic neuronal properties in collective network dynamics in

simplified settings. In general, the modification of a specific

intrinsic neuronal property (e.g., modifying the subthreshold

dynamics from purely passive to exhibiting damped oscillations)

results in changes in several other intrinsic properties (e.g., firing

rate and depolarization responses to noisy synaptic bombard-

ment). The latter changes can have substantial effects on the

resultant network dynamics, which could be of the same or greater

magnitude than the effects of the specific property under

investigation. Hence, it is crucial to develop methods that enable

a selective modification of a specific neuronal property, in the

absence of changes in other neuronal properties that could also

have a significant effect on the resultant network dynamics. This

aim motivates our modelling choice of using IF and GIF neurons,

because these models enable precise tuning of the firing rate

response to noisy inputs by changes in the voltage threshold for

spike generation, without affecting the subthreshold dynamics. In

principle, the same aim could also be accomplished using more

complex and realistic models, appropriately chosen from a large

population generated with a database approach [88]. However,

the highly non-linear dependency of neuronal activity on model

parameters and initial conditions, which generally increases with

model complexity, will have to be taken into account [89].

We identified three factors, conceptually independent but

related through subthreshold intrinsic dynamics, that affect the

influence of single-neuron properties on synchronization mediated

by inhibition: i) the firing rate response, ii) the membrane potential

distribution, in particular its relationship with the reversal

potential of inhibition, and iii) the shape of IPSPs, in particular

the presence of a sign inversion (post-inhibitory rebound

depolarization or post-excitatory rebound inhibition). Importantly,

the adoption of phenomenological models with a fixed voltage

threshold for spike generation enabled us to disentangle the

contribution to synchronization of these different factors.

We presented some illustrative examples that expose each of

these factors separately. By adjusting the firing threshold in order

to keep the firing rate response equal for different values of the

membrane potential distribution, we could isolate the influence of

the membrane potential distribution on synchronization, and show

that a more depolarized membrane potential distribution results in

higher synchrony because of a stronger electrochemical driving

force, independently of firing rate (Figure 5B and C, compare

curves corresponding to the same neuron type and different

background inhibition-to-excitation ratio k).

By comparing the synchronization properties of networks with

different inhibition-to-excitation ratios k, with or without the

additional calibration of the voltage threshold vthr in order to

match the firing rate response, we showed that higher firing rates

increase synchronization regardless of the membrane potential

distribution (Figure 5B and C, compare solid and dash lines of the

same color. Dash lines correspond to higher firing rate response to

the noisy background for the GIF neuron, while the opposite holds

for the IF neuron). Higher firing rates result in stronger inhibitory

currents in each cycle of the oscillation which more effectively reset

the membrane potential to a narrow range near the inhibitory

reversal potential Einh.

By comparing the synchronization properties of networks of

GIF and IF neurons, with or without the additional calibration of

vthr in order to match the firing rate response to the noisy

background, we exposed the additional synchronizing effect due to

the IPSP shape, in particular to the post-inhibitory rebound

associated with hyperpolarizing IPSP in the GIF neuron (Figure 5B

and C, compare curves corresponding to the same firing rate

response to the noisy background and inhibition-to-excitation ratio

k, and different subthreshold dynamics, such as the solid blue line

for the GIF and the dash red line for the IF). If the reversal

potential is slightly above the leak reversal potential (shunting

inhibition), IPSPs are slightly depolarizing. In this scenario, the

presence of intrinsic subthreshold oscillations in the GIF neuron

results in IPSP-mediated post-excitatory rebound inhibition,

effectively diminishing the strength of oscillations in GIF networks

(Figure 11B).

While subthreshold damped oscillations and post-inhibitory

rebound always coexist in the GIF neuron, due to the linear

description of the subthreshold dynamics, real neurons and non-

linear neuron models can display post-inhibitory rebound while

still responding passively to weak inputs. For example, a neuron

can display real eigenvalues in the linearization of its subthreshold

dynamics around its resting potential, while still being endowed

with a hyperpolarization-activated inward current that only

activates at membrane potentials considerably lower than its

resting potential. In this case, weak hyperpolarizing inputs will

elicit purely passive responses, while strong inputs will elicit post-

inhibitory rebound and the neuron will return to baseline with a

trajectory that overshoots its resting potential. Our results suggest

that this class of neurons will also display enhanced propensity

towards collective oscillations when coupled by hyperpolarizing

inhibition. In this case, we would predict a non-linear increase in

synchrony as a function of coupling strength, with a boost in

synchrony as neurons switch from linear, passive responses to

hyperpolarization to non-linear responses mediated by post-

inhibitory rebound.

The adoption of a network model with spatial extension enables

one to assess the distance-dependent modulation of synchrony

(Figure 4). Distance-dependent delays do not introduce a strong
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bias in the synchronization properties of cell pairs across short

distances (up to ,1 mm), as higher input correlations to adjacent

neuron pairs are counterbalanced by the desynchronizing effect of

short-latency inhibition, resulting in a flat profile at the level of

membrane potential correlation. As a result, firing synchrony only

shows a modest decrease at short distances, but is otherwise

distance-independent. Hence, the spatial profile of network

synchronization does not exhibit a consistent topological structure,

unless such a structure is present in the input. This is a desirable

property, since spurious correlations would disrupt an efficient

representation of information. The mechanism we describe is

different from the recently proposed decorrelation by cofluctua-

tions in excitation and inhibition [69,90], and is crucially

dependent on the spatial dimension of the network, in particular

on distance-dependent propagation delays.

As background input to individual neurons, we consider noisy

conductances without any spatial correlation, and with only

rapid temporal correlations consistent with filtering by fast

AMPA and GABAA synapses. Spatio-temporal correlations in

the input, either induced by the statistics of sensory stimuli or

generated by neuronal dynamics in other brain areas, are

expected to affect our results significantly. In fact, input

temporal correlations affect neuronal processing in a cell-specific

way [91,92] and spatial correlations shape the activity of

recurrent networks [93]. Hence, we predict that the inclusion of

more complex and realistic patterns of spatio-temporal correla-

tions in the background input will enhance the cell-type de-

pendent effects reported here.

The study of how intrinsic neuronal properties affect the

dynamics of networks receiving spatio-temporally structured

inputs is an important topic for future research. In particular,

some areas of the brain that are known to form allocentric maps of

space, such as the hippocampus and entorhinal cortex, display a

broad variety of interneuronal types. In some cases, intrinsic

neuronal properties correlate with neurometric features of the

maps, as in the case of the correlation between Ih time constant,

intrinsic oscillation frequency and grid field spacing in the dorsal

region of the entorhinal cortex [94–96]. An extension of the

current approach that includes spatio-temporally structured inputs

and synaptic plasticity rules could be highly valuable to our

understanding of how intrinsic properties and plasticity processes

interact with the statistics of external inputs in the formation,

access and manipulation of maps in the brain.

In this work, we consider inhibitory networks with all-to-all

connectivity and equal weights. This choice is convenient to assess

the effects of propagation delays in the absence of additional

spatial structure, which might dominate the dynamics in more

realistic conditions. Our aim is to characterize the dynamical

constraints enforced by delayed inhibitory coupling, while keeping

all other parameters as unspecific as possible. Even if inhibitory

connectivity in the neocortex might be very dense, almost

approaching the all-to-all connectivity considered here (see

[97,98] and references therein), the heterogeneity of synaptic

weights is expected to be significant. In our model, higher input

correlations for nearby neurons interact with short latency

inhibition, resulting in a flat spatial profile of output correlations.

In a more realistic scenario, we expect that neurons that share a

higher number of presynaptic partners will be more likely to

synchronize [99], especially if they are not connected or if they are

located at a distance greater than required for short latency mutual

inhibition. It should be noted that heterogeneous connectivity

would break the toroidal symmetry of the network, and would

greatly complicate an exhaustive characterization of the resultant

dynamics.

Likewise, interactions between excitatory and inhibitory neu-

rons can also have a great impact on the population activity. If the

connections from the excitatory to the inhibitory population are

weak, or if excitatory neurons fire at low rates, the network would

still operate in the ING (Interneuron Network Gamma) regime,

and we would expect modest deviations from the results reported

here. However, in the case of PING (Pyramidal - Interneuron

Network Gamma) oscillations, excitatory neurons are active and

they project to the inhibitory population. The dynamic interplay

between excitatory and inhibitory populations could give rise to a

qualitatively different collective dynamics, which could diverge

substantially from the purely interneuronal network dynamics we

described. The closed-loop interaction between excitatory and

inhibitory populations greatly complicates the dynamics and the

mechanistic analysis of the effects of subthreshold intrinsic

oscillations in either, or both, neuronal populations, in the

emergent collective rhythm. While the current study builds a

useful foundation for pursing these investigations, the analysis of

this case is beyond the scope of this manuscript and will be

presented in a separate article.

It is worth highlighting that the ING mechanism is not only of

theoretical interest, but has also been supported by experimental

data (see, for example, [6]). In fact, the extent to which excitatory

neurons contribute to the establishment and regulation of high-

frequency oscillations is still a matter of debate [100]. Conversely,

the necessary role of inhibition has long been established [6,7,68].

The role of inhibitory interneurons in the generation and

modulation of high-frequency oscillations deserves special atten-

tion, since several neuropsychiatric disorders are associated with

disruption of gamma band coherence and corresponding alter-

ations in interneuron properties [101]. In fact, the key role played

by interneuronal dysfunctions in the etiology of several neurolog-

ical and psychiatric diseases has led to the introduction of the word

‘‘interneuronopathies’’, which hints to underlying commonalities

in genes and developmental mechanisms specific to GABA-ergic

signalling (in particular, those related to the fine tuning of

excitatory/inhibitory balance along the course of development)

shared by several disorders with vastly different phenomenology,

such as autism, epilepsy and schizophrenia [102–106].

In this work, we have focused on the influence of intrinsic

subthreshold oscillations in the generation of high-frequency

oscillations in interneuronal networks. In our approach, the

desynchronizing effect is provided by the incoherent background

input. Post-inhibitory rebound enhances synchrony by providing a

depolarizing current which is coherent across cells due to common

inhibitory input (Figure 10A), and hence can counteract the

desynchronizing effect of the incoherent background input. Other

authors have identified several other factors that can either impair

or promote high-frequency oscillations. Neuronal heterogeneity,

either due to heterogeneity in the excitability of individual

neurons, in their connections, or due to small network size or

local coupling, is well known to have a desynchronizing effect [11–

13,17,107]. Conversely, gap-junctional coupling among interneu-

rons [108] and shunting inhibition [48] have been shown to

increase synchrony by homogenizing firing rates across neurons

with heterogeneous excitatory drive poised in the regular firing

regime. In particular, gap-junctional coupling seems to bear a

close resemblance to the synchronization mechanisms we

described here, since both post-inhibitory rebound and gap-

junctions can evoke depolarizing currents in the target cell, in the

absence of excitatory chemical synaptic connections. However, the

two mechanisms are markedly different. While gap-junctions tend

to diminish the distance between the membrane potential

trajectories of coupled neurons regardless of spiking activity,
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post-inhibitory rebound is spike-mediated. The investigation of

how these different factors interact in realistic neuronal networks is

an important topic for future research.

Fast spiking basket interneurons exhibit several dynamical

properties that have been suggested to facilitate gamma

oscillations. For example, they can sustain high-frequency spiking

with little or no adaptation [109], display fast synaptic kinetics of

both incoming and outgoing synapses [19,26,110], and are

endowed with specific intrinsic properties that boost the

transmission of fast and synchronous EPSPs through their

dendrites [111]. Fast spiking interneurons have also been shown

to exhibit membrane resonance [30], type II fI curves [34], and

type II Phase Response Curves [112]. Our modeling effort does

not aim to reproduce all the dynamical features that have been

reported in these cells. Rather, our aim is to elucidate the

influence of a specific and commonly observed intrinsic neuronal

characteristic, subthreshold damped oscillations, in the emer-

gence and properties of high-frequency oscillations. In accor-

dance with this intention, we adopted the simplest phenomeno-

logical model that can capture this dynamical property.

Importantly, the IF and GIF models we considered in this study

differ in their subthreshold dynamics (passive in the IF, with

subthreshold damped oscillations in the GIF), but they both

exhibit type I Phase Response Curves.

Recently, Moca et al. studied the effect of interneuronal

membrane resonance in the gamma frequency synchronization

of networks of excitatory and inhibitory neurons [16], and

reported more stable oscillations in networks with resonant

interneurons, in general agreement with our results. However,

our approach differs in two fundamental aspects. In our model,

individual neurons are driven by strong barrages of background

excitatory and inhibitory noisy conductances, mimicking neuronal

activation in vivo; hence, neurons are poised in the irregular firing

regime. As we have shown, the interaction between intrinsic

neuronal properties and background synaptic conductances is a

key factor in the resulting network activity. Conversely, Moca et al.

included only a modest level of noise in their simulations, whose

main effect is the generation of variability across trials. More

importantly, their study considered collective oscillations generat-

ed in the regular firing regime, in which every neuron takes part in

every cycle of the population rhythm (see, for example, Figure 4B

in [16]). If individual neurons are poised in the regular firing

regime, the synchronization properties of the network will depend

on the geometry of the limit cycle or chaotic attractor

corresponding to tonic spiking, rather than on subthreshold

dynamics themselves. Membrane resonance often results in a

bifurcation to tonic spiking where firing period depends only

weakly on input parameters, such as an Andronov-Hopf bifurca-

tion. However, resonant subthreshold dynamics do not always

correspond to a tonic spiking attractor with stable periodicity. For

example, a neuron model characterized by a saddle node

bifurcation off invariant circle will exhibit stable firing frequency

in the tonic spiking regime, but passive subthreshold dynamics

[87]. The correspondence between subthreshold dynamics and

tonic spiking activity is expected to be even less accurate as more

realistic neuronal models, and real living cells, are considered

[112]. In particular, the neuron models we considered in this study

behave similarly in the regular firing regime (see section ‘‘Phase

Response Curves in the IF and GIF neuron’’ and Figure S1 in

Text S1). Correspondingly, their synchronization properties do

not differ consistently if neurons fire regularly in each cycle (not

shown).

During network oscillations, pyramidal cells fire sparsely, while

interneurons are thought to emit action potentials in every cycle.

However, most experimental evidence on interneuron dense firing

comes from in vitro studies where strong oscillations are induced by

application of a glutamatergic agonist [6] or manipulation of the

ionic environment [113]. Furthermore, most of these studies

employed extracellular recordings, which are biased towards

neurons with strong firing activity. In fact, an experimental study

in rats engaged in running and exploration reported selective and

sparse firing also in interneurons ([114], see in particular their

Figure 1C). Other studies in rats reported sparse interneuronal

firing during sensory-evoked gamma responses in the olfactory

bulb in vitro [115], and very sparse interneuronal firing during

isoflurane anesthesia [116]. Intracellular recordings from inter-

neurons in hippocampal slices activated by the cholinergic agonist

carbachol also reported single-cell firing rates that are two or three

times lower than collective gamma frequency [117]. We believe

that this regime of partial synchronization might be, at least, as

relevant to natural neuronal computation as the strongly

synchronous bouts of gamma activity observed in response to

the presentation of ‘‘favorite’’ stimuli in early sensory cortexes [5].

In fact, the level of synchrony can be modulated by physical

properties of the stimulus, such as contrast [118]. Furthermore,

weakly synchronous states are both information-rich (in terms of

the output they can convey to other brain regions) as well as

information-sensitive (in terms of the representation capabilities

they offer when stimulated by temporally structured inputs [119]).

Hence, while the presentation of optimal stimuli in laboratory

settings might induce strong gamma oscillations, neuronal

information processing in naturalistic conditions might operate

in an intermediate regime of information-rich weakly synchro-

nized oscillations.

Certain neuromodulators can affect the intrinsic properties of

neurons. In particular, acetylcholine (ACh) changes the PRCs of

cortical neurons by down-regulating the M-current, a slow

potassium current which is also related to subthreshold oscillations

[120]. Since subthreshold oscillations enhance oscillation strength

in networks of interneurons coupled by hyperpolarizing, but not

shunting, inhibition, our results suggest the intriguing possibility

that ACh could differentially regulate the level of synchrony in

different brain regions, depending on the nature of local coupling.

For example, GABAergic input onto interneurons is shunting in

the amygdala, CA3 and dentate gyrus [47,48,72], but can be

either shunting or hyperpolarizing in the cerebellum [73], and is

hyperpolarizing in the neocortex [97]. These region-specific effects

could induce a bias in the synchronization properties of local

networks and hence in the effective coupling between brain

regions, under neuromodulatory control [80]. Experimental efforts

in this direction would greatly benefit from theoretical investiga-

tions aiming to elucidate the properties and communication

mechanisms of interacting networks [119,121].

Experimental data in the hippocampus and other areas revealed

that distinct interneuronal populations are active at different

phases of ongoing network oscillations, innervate specific postsyn-

aptic types and subcellular domains, and might contribute to

different aspects of information processing [24,116,122]. Reduc-

tionist modelling approaches combined with optogenetic experi-

mental techniques will be needed in order to gain a mechanicistic

understanding of the complex interaction between single-cell

morphology, physiology and the emerging function of neuronal

microcircuits.

Supporting Information

Text S1 This file includes sections ‘‘Phase Response Curves in

the IF and GIF neuron’’, ‘‘Effects of variations in the intrinsic
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and ‘‘Appendix’’; and Figures S1 and S2.

(PDF)

Acknowledgments

FB would like to thank Dr. Thomas Nowotny for his involvement in initial

stages of this project, and for useful comments on a previous version of the

manuscript, and Dr. Pablo Varona for useful comments and for allowing

the use of the computing facilities at GNB-UAM.

Author Contributions

Conceived and designed the experiments: FB ANB DBG. Performed the

experiments: FB. Analyzed the data: FB. Contributed reagents/materials/

analysis tools: FB. Wrote the paper: FB ANB DBG.

References
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52. González-Burgos G, Barrionuevo G, Lewis DA (2000) Horizontal synaptic
connections in monkey prefrontal cortex: an in vitro electrophysiological study.

Cereb Cortex 10: 82–92.

53. Freund TF, Antal M (1988) GABA-containing neurons in the septum control

inhibitory interneurons in the hippocampus. Nature 336: 170–173.

54. Lapicque L (1907) Recherches quantitatives sur l’excitation electrique des nerfs
traitee comme une polarization. J Physiol Pathol Gen 9: 620–635.

Intrinsic Properties and Network Oscillations

PLOS Computational Biology | www.ploscompbiol.org 20 May 2014 | Volume 10 | Issue 5 | e1003574



55. Hill AV (1936) Excitation and accommodation in nerve. Proc R Soc
Lond B Biol Sci 119: 305–355.

56. Cole KS (1932) Electric phase angle of cell membranes. J Gen Physiol 15: 641–

649.

57. Cole KS (1941) Rectification and inductance in the squid giant axon. J Gen

Physiol 25: 29–51.

58. Burkitt A (2006) A review of the integrate-and-fire neuron model: I.
Homogeneous synaptic input. Biol Cybern 95: 1–19.

59. Burkitt AN (2006) A review of the integrate-and-fire neuron model: II.

Inhomogeneous synaptic input and network properties. Biol Cybern 95: 97–

112.

60. Fellous JMM, Rudolph M, Destexhe A, Sejnowski TJ (2003) Synaptic

background noise controls the input/output characteristics of single cells in

an in vitro model of in vivo activity. Neuroscience 122: 811–829.

61. Mormann F, Lehnertz K, David P, E(2000) Mean phase coherence as a

measure for phase synchronization and its application to the EEG of epilepsy

patients. Physica D 144: 358–369.

62. Zar JH (2010) Biostatistical analysis. Pearson, 5th edition.

63. Berens P (2009) CircStat: a MATLAB toolbox for circular statistics. J Stat

Softw 31: 1–21.

64. Botev ZI, Grotowski JF, Kroese DP (2010) Kernel density estimation via

diffusion. Ann Stat 38: 2916–2957.

65. Mitra P, Bokil H (2007) Observed brain dynamics. Oxford University Press,
USA, 1st edition.
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