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Abstract: This paper presents a supervised feature extraction method called weighted kernel
entropy component analysis (WKECA) for fault diagnosis of rolling bearings. The method is
developed based on kernel entropy component analysis (KECA) which attempts to preserve the
Renyi entropy of the data set after dimension reduction. It makes full use of the labeled information
and introduces a weight strategy in the feature extraction. The class-related weights are introduced
to denote differences among the samples from different patterns, and genetic algorithm (GA) is
implemented to seek out appropriate weights for optimizing the classification results. The features
based on wavelet packet decomposition are derived from the original signals. Then the intrinsic
geometric features extracted by WKECA are fed into the support vector machine (SVM) classifier to
recognize different operating conditions of bearings, and we obtain the overall accuracy (97%) for the
experimental samples. The experimental results demonstrated the feasibility and effectiveness of the
proposed method.

Keywords: fault diagnosis; weighted kernel entropy component analysis; dimensional reduction;
Renyi entropy; feature extraction

1. Introduction

Rolling element bearings are widely used in rotating machines in modern industry, and bearing
failure is one of the most common reasons for machine breakdown. Unexpected failures may cause
huge economic losses and even lead to casualties [1–3]. Therefore, it is important to accurately diagnose
bearing faults at the early stage [4,5]. Vibration-based fault diagnosis has been extensively studied to
improve existing techniques toward the goal of more accurately dealing with various problems, such as
varying load effect and noise contamination [3–8]. Especially, the sensitivity of diagnostic features from
the vibration signals may vary with different load conditions due to nonlinear effect and non-stationary
noise, of which no single-domain processing methods can comprehensively extract the fault features
to reflect the condition [9]. High-dimensional feature sets constructed with mix-domain features are
often used for diagnosis [10,11]. Although more features can obviously provide more information,
they contain a lot of redundant and disturbed information which will increase computation time and
reduce recognition accuracy. More effective feature extraction and dimensionality reduction methods
are needed to obtain higher diagnostic accuracy [12,13].
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Principal component analysis (PCA) is one typical method for dimensionality reduction and
has been widely used for fault diagnosis [14–17], since it can extract representative features from
high-dimensionality, noisy and linear correlated data. PCA is an unsupervised method that projects
the original dataset onto a lower-dimensional space meanwhile minimizes the mean square error [15].
It can guarantee that the linear features can be extracted while some useful nonlinear features may
be lost, as the most of industrial systems are non-linearity and non-stationary. Therefore, nonlinear
methods are required to handle the nonlinear data, among which kernel principal component analysis
(KPCA) [18] is the most prominent one. KPCA is an extension of traditional linear PCA by using
kernel trick, implicitly mapping the original features into a high-dimensional feature space in which
the mapped data are linearly separable and then the linear PCA can be conducted [15]. Both PCA and
KPCA are typical spectral dimensionality reduction methods which extract features by selecting the top
eigenvalues and corresponding eigenvectors of the specially constructed feature matrixes [19]. Hence,
the extraction may select uninformative eigenvectors from the information theory standpoint [20].

Kernel entropy component analysis (KECA) is a newly developed information-theory-based
dimensionality reduction method, first proposed and employed in pattern recognition by Robert
Jenssen [21]. This method attempts to maintain the maximum estimated Renyi quadratic entropy of
the input data set via a kernel-based estimator. It is fundamentally different from other methods in
two ways: on the one hand, the selection of top eigenvalues and corresponding eigenvectors is not
necessary; on the other hand, the dimension reduction reveals the intrinsic structure related to the
Renyi entropy of the input data [21–25]. Moreover, KECA typically generates a transformed dataset
with a distinct angular structure, implying that even nonlinearly related input data sets are distributed
in different angular directions with respect to the high-dimensional kernel feature space [21–25].
KECA has been applied to feature extraction and pattern recognition successfully, showing superior
performance over PCA and KPCA [21–24]. However, KECA is unsupervised, ignoring the label
information of the input data, which may discard discriminant classification information and weaken
recognition accuracy [25]. And the projections in PCA, KPCA and KECA are theoretically optimal
for reconstruction from a low-dimensional basis, while they may not be optimal from the viewpoint
of discrimination. Many previous studies attempt to extract discriminative features to express the
original clusters [25,26], and meanwhile to find a trade-off between maximizing the testing accuracy
and minimizing the training error [20,26,27].

In this study, we propose a supervised feature extraction method called weight kernel entropy
component analysis (WKECA) based on KECA, in which a modified Fisher criterion is applied to
represent class separability. The class-related weights are introduced to denote differences among the
samples from different patterns, and genetic algorithm (GA) is applied to seek out appropriate weights
for optimizing the classification results. Experimental investigation is conducted to demonstrate the
feasibility and effectiveness of the proposed method for fault diagnosis.

2. The Theoretical Background of WKECA for Fault Diagnosis

2.1. Brief Review of KECA

Assuming that p(x) is the probability density function of a given sample X = x1, . . . , xN,
its Renyi entropy of the order α is expressed as Hα(X) = 1

1−α lg(
∫

pα(x)dx) [28], where α ≥ 1.
In KECA, Renyi quadratic entropy (α = 2) is employed, because the entropy value can be elegantly
estimated by Parzen window density estimator [29]. Renyi quadratic entropy can be expressed by
H(X) = −lg

(∫
p2(x)dx

)
. Since the monotonicity property of logarithmic function, only the integral

function V(p) =
∫

p2(x)dx = E{p(x)} needs to be considered [21,22,30]. To estimate V(p), a Parzen
window density estimator p(x) = 1

N ∑
xi⊂D

Kσ(x, xi) is applied [21,29], where Kσ(x, xi) is the estimator

or kernel function centered at xi and σ is the smoothing width or the kernel size. According to the
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convolution theorem, the convolution of two Gaussian functions is another Gaussian function with
σ =

√
σ1

2 + σ22. Substituted Kσ(x, xi) and p(x) into V(p), the following estimation can be obtained:

V(p) =
∫

p2(x)dx = 1
N2

N
∑

i=1

N
∑

j=1

∫
Kσ(x, xi)Kσ

(
x, xj

)
dx

= 1
N2

N
∑

i=1

N
∑

j=1
K√2σ

(
xi, xj

)
= 1

N2 1K1T
(1)

where K is a N × N kernel matrix, the element (i, j) of K is Kσ(xi, xj), and 1 is a N × 1 vector (all
elements are one). Therefore, the Renyi entropy can be estimated by the corresponding kernel matrix
that can be decomposed as K = EDET, where D = diag(λ1, λ2,..., λN) and E = [α1, α2,...,αN]. Here λi

and αi are the eigenvalues and corresponding eigenvectors, respectively. Then:

V(p) =
1

N2 1K1T =
1

N2 1EDET1T =
1

N2

N

∑
i=1

(√
λiαi

T1
)2

(2)

This expression is the so-called entropy values, and each term
√

λiαi
T contributes to the entropy

estimation. The eigenvectors and corresponding eigenvalues are ranked in decreasing order of the
entropies. KECA selects certain eigenvalues and corresponding eigenvectors according to the d
largest entropies [21], different from PCA and KPCA that select largest eigenvalues. Therefore, the
resulting KECA expression is Φkeca = Dd

1
2 Ed

T, where Dd and Ed store the top d eigenvalues and
corresponding eigenvectors.

2.2. Introduction of WKECA

Given a set of c-class training sample patterns xi ∈ RN (i = 1, 2, ..., N), and each sample xi belongs
to one of c-class. Defined that the weight vector is [u1, u2, ..., uN] and the label values are {l1, l2, ..., lc}.
Each sample has the corresponding label value based on its own class properties. Thus, ui = lj if xi ∈
j-th class, where i = 1, 2, ..., N and j = 1,2, ..., c. Here the weights are depended on the class so that they
can represent the class information. The weighted matrix that has the same dimension as the original
kernel matrix K(xi, xj) is defined as:

W(i, j) =
〈
Φ(ui), Φ

(
uj
)〉

= exp

(
−
‖ui − uj‖2

2σ2

)
(3)

We constructed the new weighted kernel matrix Kw with KW(i, j) = K(i, j)W(i, j) as:

KW(i, j) = K(i, j)W(i, j) = exp

−‖xi − xj‖2 exp
(
−
(
‖ui − uj‖2

)
/2σ2

)
2σ2

 (4)

The effects of the weights under two conditions can be analyzed: (1) If ui = uj, the samples xi and xj

belong to the same class and W(i, j) = 1. As observed, the weighted kernel matrix KW will be equal
to the original kernel matrix K. (2) If ui 6= uj, the W(i, j) will be a positive value, in which the label
information can be embedded in the weighted kernel matrix.

Eigen-decomposed KW: KW = EWDWEW
T, the eigenvalues λw1, λw2, ..., λwN of the weighted

kernel matrix are ranked in decreasing order of the entropies, and αw1, αw2, ..., αwN are the
corresponding eigenvectors. The subspace is defined as UW spanned by the principal axes that
contribute most to the Renyi entropy estimation. Requiring ||uwi ||2 = 1, thus uwi = λwiΦαwi can be
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obtained. We can project both training and testing samples onto UW to extract the intrinsic features.
For the out-of-sample data set xt, the extracted features can be calculated:

y(xt)= uwi
TΦ(xt) = 〈UW, Φ(xt)〉 =

〈
λwi
− 1

2
N
∑

i=1
αwiΦ(xi), Φ(xt)

〉
= λwi

− 1
2

N
∑

i=1
αwikσ(xi, xt) = DW

− 1
2 EW

TK′
T

(5)

Let Φ′ refer to a collection of the out-of-sample data sets, K′ = Φ′T
Φ is the inner product matrix.

Then we can extract the first d nonlinear principal components which contribute most to Renyi
entropies of the input data by using the weighted kernel matrix. The number, d, of the projection

vectors is determined in terms of
d
∑

i=1

(√
λiαi

T1
)2/

N
∑

j=1
(
√

λjαj
T1)2 ≥ α (set to 0.95 here for both KECA

and WKECA).

2.3. Selecting Optimal Weights for Weighted Kernel Entropy Component Analysis by Genetic Algorithm

The relevance of different classes leads to diversified generalization performances. Therefore,
weights are important to the recognition system, and determination of weights can be considered as
an optimization problem. GA is a search and optimization process inspired by the laws of nature
evolution and selection [31], which is a powerful intelligent optimization tool based on a group of
independent computations controlled by the probabilistic strategy. GA has been widely used in various
applications because of its excellent global search ability [31,32]. In this study, we use GA to find the
most suitable weights for WKECA where the optimality is defined regarding the recognition accuracy
and class separability. The main optimization process can be described as follows:

(1) Individual encoding: defined the individual is a set of weights l1, l2, ..., lc, the encoding method
based on binary for each weight is used.

(2) Population initialization: an initial population with nr individuals (set to 20) is randomly created.
(3) Fitness calculation: the individual selection for the next generation is done based on the

fitness. Taking advantage of Liu and Wang’s work [19], the fitness function is defined as
f (X) = CA + kRBW, where CA is the training accuracy which can represent the performance
of extracted features, k is a positive constant, and RBW is the Fisher criterion which can indicate
the class separability. RBW is the ratio of between-class distance Sb and within-class distance
Sw [33]. High classification accuracy and large class separability can be obtained by maximizing
the fitness function, which results in evolving more discriminate information than KECA with a
proper k. Therefore, good generalization performance for WKECA is possible to be acquired on
both training and testing samples.

(4) Genetic operators: new chromosomes are generated to update and optimize population
continuously by genetic operators including selection, cross-over and mutation. The crossover
probability and mutation probability are set to 0.7 and 0.01, respectively. The selected probability
of every individual is pm = f (wm)

nr
∑
m

f (wm)
, m = 1,... , nr, where f (wm) is the individual’ fitness value.

(5) Terminating conditions: when the value of fitness does not change again during the iteration
procedure or the number of iterations has reached the maximum value (50 in this study) the
program will terminate.

2.4. Fault Diagnosis Based on WKECA

The high-dimensional feature set, which can represent well the operating condition of machines,
should be first extracted from the raw vibration signals. Generally, the vibration signals of fault
bearings are non-stationary, and wavelet packet decomposition (WPD) that can provide a more
meticulous analysis is a powerful tool in dealing with non-stationary signals [34]. WPD is effective
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for decomposing both high- and mid-frequency information from a signal into the corresponding
frequency regions, widely used for fault diagnosis of bearings now [34–38]. In this study, WPD is
performed to extract the fault features including the relative energy in a wavelet packet node (REWPN)
and the entropy in a wavelet packet node (EWPN). The REWPN indicates the normalized energy of
the wavelet packets node, and the EWPN represents the uncertainty of the normalized coefficients of
the wavelet packets node [39]. For a given sample x(n), the jth wavelet packet coefficients of the i-th
wavelet packet node is defined as Ci

j, and then REWPN and EWPN can be expressed as follows:

REWPN(i) =

K
∑

j=1

(
Ci

j)2

N
∑

m=1

K
∑

j=1

(
Cm j

)2
(6)

EWPN(i) = −
K

∑
j=1

pi
j log2

(
pi

j
)

(7)

where pi
j =

(
Ci

j)2/∑K
j=1
(
Ci

j)2, N is the total number of wavelet packet nodes, and K is the total
number of wavelet packet coefficients in each wavelet packet node.

The REWPNs and EWPNs can truly reflect the diversity among different fault patterns of bearings.
They are used as the high-dimensional input vector to WKECA for dimensionality reduction, which
can be written as xi = [REWPN (1), ..., REWPN (p), EWPN (1), ..., EWPN (p)]T. Here, p is the number
of wavelet packet node. The implementation process of the proposed fault diagnosis method using
WKECA for bearings is detailed as shown in Figure 1:

(1) Decomposing the vibration signals into different frequency bands by using WPD, and then we
can acquire the high dimensional feature set X = [x1, ..., xN]T including REWPNs and EWPNs,
where N is the number of the signal samples.

(2) Carrying out feature extraction to the high-dimensional dataset obtained from vibration signals
with WKECA algorithm, capturing their intrinsic manifold structure, and then we can obtain
the low-dimensional features by projecting the original high-dimensional observed space into
low-dimensional feature space. Meanwhile, the optimal mapping direction can be acquired so
that new testing samples can be mapped into the low-dimensional feature space.

(3) Implementing pattern classification of the datasets in the low-dimensional feature space with
support vector machine (SVM) classifier.

(4) Determining the type of failures by the classification results, and we can put forward the
corresponding decisions or control measures.
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Figure 1. Implementation process of the proposed fault diagnosis method.

3. Experimental Results and Analysis

3.1. Experimental Description

To evaluate the effectiveness of the WKECA, an experimental study on fault diagnosis of rolling
bearings was performed. As shown in Figure 2, the tested bearings were delivered through the
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automatic machinery system which contained the preset mechanism, the measuring mechanism, the
sorting mechanism, and the feeding mechanism [40,41]. The radial vibration signals on one point
of the tested bearings were detected by a piezoelectric acceleration sensor (YD-1, Far East Vibration
(Beijing) System Engineering Technology Co., Ltd., Beijing, China) located on the top of the bearings,
and amplified by a charge amplifier (DHF-2, same company as the sensor). The charge sensitivity
and frequency response of the sensor are 6–10 pC/ms−2 and 1–10,000 Hz ± 1 dB, respectively, and
the frequency range of the amplifier is 0.3 Hz–100 kHz. Then the signals were converted to voltage
signals by an A/D converter (PCI-9114) (ADLINK Technology, Inc., Taiwan) and sent to a computer
for further processing. The sampling frequency was 25 kHz, and the rotational speed of the driving
motor was set to 1500 rpm.
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Figure 2. The test rig.

Deep groove ball bearings (6328-2RZ) (Changjiang bearing co., LTD, Chongqing, China) were
used as the tested bearings, and four different operating conditions (i.e., inner race fault, outer race
fault, ball fault, and normal condition) were simulated in this experiment. Single point defects were
introduced to the tested bearings by electric engraving pen, where the widths of the scratch defects
were 65 ± 22 µm, 70 ± 20 µm, and 70 ± 20 µm for the inner race, outer race and ball, respectively, and
the depths of the scratch defects were 0.2 ± 0.05 mm. The characteristic bearing defect frequencies can
be calculated by [42]:

Defect on inner race (BPI) =
Z fr

2

(
1 +

d
D

cos α

)
(8)

Defect on outer race (BPO) =
Z fr

2

(
1− d

D
cos α

)
(9)

Defect on ball (BS) =
frD
2d

(
1− d2

D2 cos2 α

)
(10)

where Z is the number of rolling elements, fr is the rotational frequency, d is the diameter of the rolling
element, D is the pitch diameter, and α is the contact angle. According to the kinematic parameters
of the tested bearings and the rotational speed, the characteristic bearing defect frequencies of the
inner race, outer race and ball are 121.75 Hz, 78.25 Hz and 55 Hz, respectively. Figure 3 indicates the
four different vibration signal waveforms in the time-domain together with the amplitude spectrums.
The peak values of the accelerations are obtained at 24.42 Hz which is closed to the rotational frequency
25 Hz. As observed, it is difficult to distinguish different faults only from Figure 3 due to the effects of
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the noise. The vibration signals under those four conditions are selected as samples, and 100 bearings
for each state were tested. Thus, 400 data can be obtained, and the length of each data set is 25,000.
The training data set is half samples of the original data set in the experiment.Sensors 2017, 17, 625  7 of 13 
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Figure 3. The time domain and frequency domain figures of vibration signals for the four bearing
conditions: (a) normal condition, (b) inner race fault, (c) outer race fault, and (d) ball fault.
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3.2. Dimensionality Reduction and Pattern Classification

The high dimensional feature set containing REWNs and EWPNs are first constructed.
The wavelet packet node energy features obtained by Daubechies2 (db2) wavelet packet decomposition
were found to achieve the best classification performance for bearing fault diagnosis after many
experiments on a serials of Daubechies wavelets [43]. Here the Daubechies2 (db2) is selected as
the mother wavelet function to implement binary WPD for vibration signals, where the maximum
decomposition level is set to 4. The normalized wavelet packet energy and wavelet packets node
entropy spectrums of the bearing vibration signals are shown in Figure 4. Obviously, different bearing
faults have different amplitude in different frequency bands. 32 fault features in total including
16 REWPNs and 16 EWPNs are used for fault diagnosis of bearings.
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Figure 4. The normalized wavelet packet energy and entropy spectrums of the bearing vibration signals
under four conditions: (a) normal condition, (b) inner race fault, (c) ball fault, (d) outer race fault.

After the high-dimensional feature set is constructed, it is input into WKECA for non-linear
dimension reduction, where the parameter k of the fitness function is set to 0.001. The first d most
significant component vectors contributing most to the Renyi entropy are extracted by WKECA,
and similar methods including PCA, KPCA and KECA are conducted for comparison. The target
dimensionality for every method is set to a certain number so that the cumulative variance contribution
rate is more than 95%. For visualization, the plots of the first three principal components of their
projection results are shown in Figures 5–8, where Figures 5a, 6a, 7a and 8a represent the training
results, and Figure 5b, Figure 6b, Figure 7b, and Figure 8b represent the testing results. It is evident that
PCA, KPCA and KECA are not well separated those four classes because some samples are overlapped,
which will lead to low recognition accuracy. By contrast, WKECA has little misjudgment samples:
the testing points are consistent with the training points in WKECA, and the WKECA algorithm can
obviously identify different classes both for the training samples and the testing samples. It proves that
WKECA has better clustering performance than PCA, KPCA and KECA, because WKECA introduces
the fault class label information and a weight strategy into feature extraction, which is conductive to
pattern recognition.
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Figure 5. Feature extraction with PCA: (a) training samples, (b) testing samples.
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Figure 6. Feature extraction with KPCA: (a) training samples, (b) testing samples.
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Figure 7. Feature extraction with KECA: (a) training samples, (b) testing samples.
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Figure 8. Feature extraction with WKECA: (a) training samples, (b) testing samples.

3.3. Results and Discussion

Within the fault diagnosis related to pattern recognition in conjunction with feature extraction
techniques that find low-dimensional representation for samples, classifiers are needed to identify those
different bearing faults. Support vector machine (SVM) is adopted for its well-developed statistical
learning theory. 50 data from inner race fault, outer race fault, ball fault, and normal condition
were selected randomly for SVM training and the others were used for testing. The quantitative
evaluation procedure for SVM, PCA-SVM, KPCA-SVM, KECA-SVM, and WKECA-SVM were repeated
for 10 times. In order to highlight the effectiveness of the proposed WKECA-SVM method, the fault
detection rate of the method was compared with the results of the other four methods. The testing
average results are summarized in Table 1, and the classification accuracies are 77.5%, 83%, 89.5%, 93%
and 97%. The results demonstrate that satisfactory overall classification results have been achieved
by means of the dimension reduction, and the classification accuracy is significantly improved
by introducing WKECA. WKECA performs better than the other methods in terms of extracting
discriminative features which can lead to high classification rates. Therefore, WKECA is suitable as a
feature extraction step prior to classification, and functions well for fault patterns recognition.

Table 1. The classification accuracies of different methods to the bearing sets with support vector
machine (SVM) classifier.

Operating
Condition

Normal
(%)

Inner Race
Fault (%)

Outer Race
Fault (%)

Ball Fault
(%)

Average
Accuracy (%)

Original 68 86 76 80 77.5
PCA 72 90 88 82 83

KPCA 92 92 84 90 89.5
KECA 96 98 82 96 93

WKECA 100 100 92 96 97

To obtain discriminative representations through GA, a suitable fitness function is important to
the whole recognition procedure. Therefore, it is necessary to know the effects of the parameter k in
fitness function. Table 2 presents the results of evolutionary process with different k, where CAtest

is the testing accuracy. It is obvious that RBW increases with the raising of k while CAtest decreases
accordingly. This observation reflects that k can adjust the contribution of class separability to the
fitness function, and a proper k can lead to larger RBW as well as good classification performance.
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Table 2. The results of evolutionary process with different values of parameter k.

Performance k = 0.001 k = 0.01 k = 0.1 k = 1

f (X) 0.9702 0.9939 1.0236 1.2328
RBW 1.4506 1.4875 1.7913 2.0828

CAtest 0.97 0.965 0.935 0.905

In order to investigate the performance of WKECA in handling the Small Sample Size (SSS)
problem with different training sample sizes, PCA, KPCA and KECA were conducted for comparison.
Figure 9 presents the recognition rates of the four feature extraction methods and the original features
with different numbers of labeled samples. It is obvious that the classification accuracy increases
with the raising of training sample sizes. This reveals that the feature extraction based on manifold
learning can improve the recognition performance, and WKECA performs better than other methods
in achieving high classification accuracy. The effects of SSS problem are obvious in other methods
when only ten samples are used for training, while WKECA is less sensitive to the training sample
size. This proves that WKECA can capture the intrinsic geometric structure embedded in the data and
achieve efficient performance in feature extraction and classification.
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Figure 9. Classification accuracy of SVM based on different feature extraction methods for different
labeled samples.

4. Conclusions

In this study, a new feature extraction method called weighted entropy component analysis
(WKECA) is proposed for fault diagnosis of rolling bearings. It makes the most of the labeled
information and introduces a weight strategy in feature extraction, and GA is performed to find optimal
weights for achieving high training classification results. The original high-dimensional feature sets
are first constructed based on WPD which can provide a more meticulous analysis for signals. WKECA
is then used to extract the intrinsic independent features among the multiple manifolds to reflect the
states of the rolling bearings. Finally, the extracted intrinsic geometric features are fed into SVM to
recognize different operating conditions of bearings. WKECA outperforms PCA, KPCA and KECA in
terms of achieving higher testing accuracies. The results demonstrate the feasibility and effectiveness
of the proposed method for fault diagnosis of rolling bearings. Next, we are trying to extend our
approach to diagnose different faults magnitudes in different machines. The challenge is the great
time consumption for training, which is inevitable confronted by almost all evolutionary processes for
pattern recognition. Therefore, fast optimal strategies are deserved for further investigation.
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