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Abstract: Sporadic Alzheimer’s disease (AD) is a severe disorder of unknown etiology with no
definite time frame of onset. Recent studies suggest that middle age is a critical period for the
relevant pathological processes of AD. Nonetheless, sufficient data have accumulated supporting
the hypothesis of “neurodevelopmental origin of neurodegenerative disorders”: prerequisites for
neurodegeneration may occur during early brain development. Therefore, we investigated the
development of the most AD-affected brain structures (hippocampus and prefrontal cortex) using an
immunohistochemical approach in senescence-accelerated OXYS rats, which are considered a suitable
model of the most common—sporadic—type of AD. We noticed an additional peak of neurogenesis,
which coincides in time with the peak of apoptosis in the hippocampus of OXYS rats on postnatal
day three. Besides, we showed signs of delayed migration of neurons to the prefrontal cortex as well
as disturbances in astrocytic and microglial support of the hippocampus and prefrontal cortex during
the first postnatal week. Altogether, our results point to dysmaturation during early development of
the brain—especially insufficient glial support—as a possible “first hit” leading to neurodegenerative
processes and AD pathology manifestation later in life.

Keywords: neurogenesis; neuron; glia; postnatal development; hippocampus; prefrontal cortex;
Alzheimer’s disease; OXYS rats

1. Introduction

The most common type of Alzheimer’s disease (AD) (∼95% of cases) is sporadic
AD, which is a progressive neurodegenerative disorder of middle-aged-to-old individuals.
The pathological changes associated with AD are thought to begin many years before
the emergence of clinical symptoms. Accumulating data indicate that middle age is a
critical period for the relevant pathological processes. Moreover, it is theorized that the
prerequisites for subsequent development of neurodegenerative disorders are formed
during completion of brain maturation [1–3]: the so-called neurodevelopmental hypothesis
of neurodegenerative disorders [4,5]. The third trimester of pregnancy in humans is
a crucial period when proper cytoarchitecture of the brain and functional connections
among neurons are formed. Additionally, the peak of gliogenesis corresponds to the third
trimester; moreover, the blood–brain barrier arises, and the immune system develops and
consolidates at this time [6–8]. Disturbances of brain development in the third trimester
of pregnancy may cause cognitive and behavioral disorders, e.g., encephalopathy, or fetal
alcohol syndrome [9,10]. Nevertheless, to date, little is known about the long-lasting effects
of developmental alterations on adult brain function and about a possible contribution
and role of these alterations in the development of the neurodegenerative processes that
lead to such conditions as AD, Parkinson’s disease, or others. Thus, the first step in the
investigation of these effects may be made by studying the early phenotype of model
organisms of neurodegenerative disorders.
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Although neurons are the most characteristic cells of the nervous system and are
primarily responsible for information transmission, they are dependent on, interact with,
and are surrounded by glial cells [6]. The two main glial subsets in the central nervous
system are macroglia, including astrocytes and oligodendrocytes, and microglia. Although
astrocytes and microglia are fundamentally different in origin and function, they affect the
same developmental processes: neuronal survival, synaptic development and remodeling,
axonal development and guidance, neural-circuit formation, oligodendrocyte differentia-
tion and myelination, angiogenesis, and vascularization [10–12]. Furthermore, astrocytes
take part in the construction of the blood–brain barrier [13]. Due to their important role in
brain development, dysfunction of astrocytes or microglia in this period may contribute to
neurodevelopmental disorders and potentially even late-onset neuropathology [14].

To study the long-lasting consequences of early alterations of brain development
and a possible contribution of these alterations to the pathogenesis of neurodegenerative
processes, animal models can be used. It is generally accepted that the developmental
events occurring in the third trimester of pregnancy in humans match those taking place
from birth to postnatal day 7 (PND7) in rodents [15]. The first postnatal week appears
to be a critical period for the maturation of prefrontal–hippocampal networks in rodents:
directed prefrontal–hippocampal communication is initiated at PND3 and lasts until the
beginning of the second postnatal week [16,17]. Prefrontal–hippocampal networks are
important for associative learning in adult animals [18]. Thus, alterations of these networks’
maturation during the critical developmental period may result in altered associative
learning in adulthood.

Previously, we have reported that senescence-accelerated OXYS rats may be regarded
as a suitable model of the most common, sporadic, type of AD [19]. Indeed, already at
3 months of age, OXYS rats demonstrate the first signs of neurodegeneration: neuronal cell
death, synaptic dysfunction, hyperphosphorylation of tau protein, and mitochondrial dys-
function, all of which together lead to behavioral alterations and memory deterioration [20].
By 18 months of age, the neurodegenerative processes intensify against the background of
amyloid β (Aβ) accumulation and the formation of Aβ plaques [21]. More recently [22,23],
we showed that the duration of gestation is shorter in OXYS rats than in a control strain
(Wistar rats); furthermore, we observed signs of retardation of brain development in the
second decade of life (from PND10 to PND20). Current work continues our previous
researches of early development of OXYS rats. We hypothesized that the developmental
features occurring during the period critical for the maturation of prefrontal–hippocampal
networks (i.e., the first postnatal week) may contribute to the neurodegenerative processes
and behavioral alterations taking place late in life in OXYS rats. To test the hypothesis, we
examined neuronal and glial-cell density as well as some functional parameters of cells in
the prefrontal cortex (PFC) and hippocampus of OXYS rats from birth to PND7. However,
future studies are needed to demonstrate the direct link between the early phenotype and
age-related neurodegenerative changes in OXYS rats.

2. Materials and Methods
2.1. Animals

The OXYS rat strain was developed at the Institute of Cytology and Genetics (ICG), SB
RAS (Novosibirsk, Russia), from a Wistar stock as described earlier [19]. This senescence-
accelerated strain of age-matched male Wistar rats was obtained from the Breeding Ex-
perimental Animal Laboratory of the ICG SB RAS (Novosibirsk, Russia). The animals
were kept under standard laboratory conditions (22 ± 2 ◦C, 60% relative humidity, and
12 h light/12 h dark cycle) and had ad libitum access to standard rodent feed (PK-120-1,
Laboratorsnab, Ltd., Moscow, Russia) and water.
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2.2. Examination of Body and Brain Weights

We assessed the body weight, brain weight, and brain-to-body weight ratio [meaning
(brain weight ÷ body weight) × 100%] of male pups of OXYS and Wistar strains on PND1,
PND3, PND5, and PND7 (n = 8 to 10 per strain and age).

2.3. Tissue Preparation

Male pups of OXYS and Wistar strains were decapitated at PND0, PND1, PND3,
PND5, and PND7; the brains were carefully excised, and the hemispheres were separated
and immediately fixed in 4% paraformaldehyde in phosphate-buffered saline (PBS) at
room temperature (RT) for 48 h, followed by cryoprotection in 30% sucrose in PBS at 4 ◦C
for 48 h. Then, the brains were frozen and stored at −70 ◦C until further processing.

2.4. Immunohistochemistry

Brain sagittal sections (20 µm thick) of OXYS and Wistar rats (n = 4 to 6 per strain
and age) were prepared on a Microm HM-505 N cryostat (Microm, Walldorf, Germany)
at −20 ◦C and transferred onto polysine-glass slides (Menzel-Glaser, Braunschweig, Ger-
many). After serial washes with PBS, the slices were incubated at RT for 15 min in PBS-plus
(PBS with 0.1% of Triton X-100) and for 1 h in 3% bovine serum albumin (BSA; cat. # A3294,
Sigma-Aldrich, St. Louis, MO, USA) in PBS to permeabilize the tissues and to block non-
specific binding sites and then were incubated overnight with primary antibodies at 4 ◦C.
The primary antibodies were all diluted 1:250 with 3% BSA in PBS; these were antibodies
to Ki67, nestin, vimentin, glial fibrillary acid protein (GFAP), doublecortin (DCX), Fox-3
(NeuN), Iba1, and CD68 (cat. ## ab15580, ab6142, ab24525, ab7260, ab54739, ab177487,
ab5076, and ab31630, respectively, Abcam, Cambridge, MA, USA). After several washes
with PBS, the slices were probed with secondary antibodies conjugated with Alexa Fluor
488, 568, or 555 (cat. ## ab150073, ab175472, and ab150170, respectively, Abcam) in PBS
(1:250) for 1 h at RT and next were washed in PBS. The slices were coverslipped with the
Fluoroshield mounting medium containing 4′,6-diamidino-2-phenylindole (DAPI; cat. #
ab104139, Abcam). Negative controls were processed in an identical manner except that a
primary antibody was not included. The Ki67, nestin, vimentin, GFAP, DCX, NeuN, Iba1,
and CD68 signals were detected under a microscope with a 40× objective lens (Axioskop
2 plus, Zeiss, Oberkochen, Germany). The microscopy was conducted at the Multi-Access
Center for Microscopy of Biological Objects (ICG SB RAS, Novosibirsk, Russia). Identi-
fication of brain structures (PFC and CA1, CA3, and dentate gyrus [DG] regions of the
hippocampus) was performed according to Paxinos and Watson (Lateral 0.40 to Lateral
0.90 mm) [24]. Identification of cell types was carried out according to protein markers
described by Encinas and colleagues [25].

2.5. Calculation of Cell Density and Other Parameters

Total numbers of proliferating (Ki67-positive) cells, quiescent (nestin-positive and
vimentin-positive) neural progenitors (QNPs), amplifying (nestin-positive) neural progen-
itors (ANPs), neuroblasts (DCX-positive), immature (DCX-positive and NeuN-positive)
and mature (NeuN-positive) neurons as well as astrocyte progenitors (vimentin-positive
and GFAP-positive) and astrocytes (GFAP-positive), resting (Iba1-positive) and activated
(Iba1-positive and CD68-positive) microglia were determined by means of the ZEN soft-
ware (Zeiss). To evaluate the density of proliferating cells, QNPs, and ANPs, the total
number of counted cells was divided by DG area, then averaged in each group of 2–3 slices
per animal, and presented as the number of cells per 1 mm2. To assess the density of
neuroblasts, immature and mature neurons, astrocytes and their progenitors as well as
resting and activated microglia, the total number of counted cells was divided by the area
of the hippocampus and PFC, then averaged in each group of 2–3 slices per animal, and
presented as the number of cells per 1 mm2. To evaluate the sizes of neuronal nuclei, we
measured and averaged the diameters of 40 randomly selected neurons’ nuclei per section
for the hippocampus (neurons were chosen from pyramidal layers of CA1 and CA3 regions
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and from the granular layer of the DG) and the PFC, then computed the size of the nuclei
via the formula (nuclear size = π × (nuclear diameter/2)2). To determine the number of
radial glial-cell processes, we counted radially oriented vimentin-positive processes that
permeated all cortical layers of the PFC. The area of microglia in molecular layers of DG,
CA1, and CA3 regions of the hippocampus as well as in cortical layer I was calculated in
the ImageJ software (NIH, Bethesda, MD, USA). To determine the percentage of dying cells
consumed by microglia, we counted all pyknotic nuclei and the pyknotic nuclei covered by
microglial cytoplasm.

2.6. A Terminal Deoxynucleotidyl Transferase-Mediated Deoxyuridine Triphosphate Nick End
Labeling (TUNEL) Assay

Apoptosis was analyzed by a TUNEL assay by means of a DeadEnd Fluorometric
TUNEL System (cat. # G3250, Promega, Madison, WI, USA). Tissue slices were coverslipped
with the Fluoroshield mounting medium containing DAPI (cat. # ab104139, Abcam).
TUNEL signals were counted under the microscope with the 40× objective lens (Axioskop
2 plus, Zeiss) and then averaged in each group of three slices per animal.

2.7. Statistics

The data were subjected to two-way analysis of variance (ANOVA) in Statistica
8.0 software (TIBCO Software Inc., Palo Alto, CA, USA). The genotype (strain) and age
were chosen as independent variables. The Newman–Keuls post hoc test was applied
to significant main effects and interactions in order to assess differences between some
sets of means. The data are presented as mean ± standard error of the mean (SEM). The
differences were considered statistically significant at p < 0.05.

3. Results
3.1. Body and Brain Weights and the Brain-to-Body Weight Ratio in OXYS and Wistar Pups

The ANOVA revealed that body and brain weights naturally increased with age in
both rat strains (F3,99 = 130.6, p < 0.0001 and F3,99 = 424.4, p < 0.0001, respectively; Table 1).
Additionally, both parameters were lower in OXYS rats (F1,99 = 23.5, p < 0.0001 for body
weight and F1,99 = 21.0, p < 0.0001 for brain weight). The brain-to-body weight ratio was
affected by the genotype (F1,99 = 8.0, p = 0.006) and age (F3,99 = 5.9, p < 0.001), and there
was an interaction between these factors (F3,99 = 6.1, p < 0.001). In Wistar rats, the peak of
the brain-to-body weight ratio occurred on PND3, after which this parameter started to
decrease because of the rapid growth of the body. By contrast, in OXYS rats, the brain-to-
body weight ratio increased until PND5, thus becoming higher than that in Wistar rats
at this age (p < 0.001). The reversed U shape of the brain-to-body weight ratio may be
explained by differences in body and brain weight changes: while body weight went up
exponentially (R2 = 0.9944 for Wistar rats and R2 = 0.9886 for OXYS rats), brain weight
increased linearly (R2 = 0.992 for Wistar rats and R2 = 0.9991 for OXYS rats).

Table 1. Body and brain weight and the brain-to-body weight ratio in OXYS and Wistar pups.

Time
Point

Wistar Rats OXYS Rats

Body Weight, g Brain Weight, g
Brain-to-Body
Weight Ratio,

%
Body Weight, g Brain Weight, g

Brain-to-Body
Weight Ratio,

%

PND1 7.08 ± 0.42 0.334 ± 0.008 4.84 ± 0.20 6.08 ± 0.31 0.258 ± 0.008 * 4.32 ± 0.17
PND3 9.07 ± 0.41 # 0.443 ± 0.012 # 4.94 ± 0.13 8.00 ± 0.41 # 0.422 ± 0.008 # 5.40 ± 0.24 #

PND5 13.20 ± 0.55 # 0.595 ± 0.016 # 4.58 ± 0.16 10.25 ± 0.52 #,* 0.568 ± 0.011 # 5.66 ± 0.21 *
PND7 17.56 ± 0.59 # 0.759 ± 0.016 # 4.38 ± 0.13 15.23 ± 0.81 #,* 0.714 ± 0.016 # 4.84 ± 0.25 #

* p < 0.05 for differences between the strains; # p < 0.05 for differences from a previous time point.
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3.2. Neurogenesis in the DG of Neonatal OXYS and Wistar Pups

We analyzed the density of proliferating Ki67-positive cells (Figure 1a,c). ANOVA
revealed that this parameter was affected by age of the animals (F4,66 = 6.1, p < 0.001). The
peak of proliferating-cell density in the DG of the hippocampus occurred at PND1 in pups
of both rat strains. In Wistar rats, the parameter slightly declined until PND7, whereas in
OXYS rats, it decreased significantly from PND1 to PND3 (p < 0.001) and then continued to
go down until PND7.
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Figure 1. The density of proliferating cells and neuronal progenitors in the DG of OXYS and Wistar
rats during the first postnatal week. (a) We did not observe any inter-strain differences in the density
of proliferating cells in the DG; the only age-related difference was the decrease in proliferating cell
density in OXYS rats from PND1 to PND3. (b) OXYS rats were born with a lower density of ANPs in
the DG; nevertheless, by PND1 this difference had disappeared. (c) Immunohistochemical staining of
the DG with antibodies against Ki-67 (red); the scale bar is 50 µm. (d) Immunohistochemical staining
of the DG with antibodies against nestin (green) and vimentin (red); the scale bar is 20 µm. DAPI
(blue) indicates cell nuclei. W: Wistar, O: OXYS, GL: granular layer of DG, ML: molecular layer of
DG, H: hilus, Nest: nestin, Vim: vimentin. The data (a,b) are presented as mean ± SEM; * p < 0.05 for
differences between the strains; # p < 0.05 for differences from a previous time point.
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Next, we investigated progenitor cell density in the DG of OXYS and Wistar rats
(Figure 1b,d). ANOVA revealed that the density of QNPs, which may develop into a
neuronal or glial cell lineage, decreased with age (F4,89 = 5.9, p < 0.001), with a peak at
PND1 in both rat strains. Conversely, the density of ANPs, which give rise to the neuronal
cell lineage, increased with age (F4,87 = 12.6, p < 0.0001), reaching a maximum at PND7 in
Wistar rats, consistently with literature data about postnatal neurogenesis in rodents [26].
Furthermore, there were two peaks of ANP density in the DG of OXYS rats: at PND3 and
PND7. It is important to point out that OXYS pups were born with a five-fold decrease in
ANP density in the DG relative to Wistar rats (p < 0.001); however, by PND1, this difference
became insignificant (p = 0.27).

3.3. Neuronal-Cell Density in the Hippocampus and PFC of Neonatal OXYS and Wistar Pups

Next, we analyzed the density of the neuronal-cell lineage (i.e., neuroblasts and
immature and mature neurons) in the hippocampus (Figure 2a,c) and PFC (Figure 2b,d) of
OXYS and Wistar pups. In the hippocampus, the density of neuroblasts was influenced
by age (F4,49 = 68.9, p < 0.0001), and there was an interaction between factors “age” and
“genotype” (F4,49 = 2.8, p = 0.034). In Wistar rats, the density of neuroblasts rose from PND1
to PND3 (p < 0.034) with a five-fold diminution by PND5 (p < 0.0001) and a subsequent
twofold increase by PND7 (p = 0.014). At birth, the density of neuroblasts was higher in
OXYS rats than in Wistar rats (p = 0.018); the parameter decreased by PND1 (p = 0.018)
reaching the level of Wistar rats. The density of neuroblasts continued to go down from
PND3 to PND5 (p < 0.0001) and then went up until PND7 (p < 0.006) in the hippocampus of
OXYS rats. The density of immature neurons decreased with age (F4,47 = 83.3, p < 0.0001).
By contrast, the parameter increased from PND5 to PND7 in both rat strains (p = 0.010
for Wistar rats and p = 0.006 for OXYS rats). We did not notice any inter-strain differences
in immature neuron density in the hippocampus. As for mature neuron density, we
documented the effects of age (F4,50 = 16.4, p < 0.0001) and genotype (F1,50 = 5.6, p = 0.021)
on this parameter. Indeed, in Wistar rats, the density of mature neurons increased from
PND0 to PND1 (p = 0.003), decreased twofold by PND3 (p = 0.004), and then rose twofold
by PND5 (p < 0.001). In OXYS rats, the density of mature neurons decreased from PND1 to
PND3 (p = 0.005) and increased until PND5 (p < 0.001), although it remained lower than
that of Wistar rats at this time point (p = 0.003).

In the PFC, the densities of neuroblasts and immature and mature neurons were
affected only by age (F4,48 = 30.8, p < 0.0001; F4,47 = 83.3, p < 0.0001; and F4,48 = 16.5,
p < 0.0001, respectively). In Wistar rats, the density of neuroblasts gradually increased
from birth to PND3 with a large drop by PND5 (p = 0.002) followed by upregulation
until PND7 (p = 0.003); in OXYS rats, the parameter significantly increased from PND0 to
PND3 (p = 0.002), then decreased until PND5 (p < 0.0001) and rose by PND7 (p = 0.027).
Of note, neuroblast density at PND7 was still significantly lower than that at PND3 in
both rat strains (p = 0.015 for Wistar rats and p < 0.0001 for OXYS rats), indicating the
completion of neuronal migration to the PFC. As for the density of immature neurons,
this parameter significantly decreased from birth (for Wistar rats: p = 0.002 from PND0
to PND1; p = 0.007 from PND1 to PND3; p = 0.002 from PND3 to PND5; for OXYS rats:
p = 0.003 from PND0 to PND1; p < 0.001 from PND3 to PND5), reached a minimum at
PND5 and then increased until PND7 (p = 0.039 for Wistar rats and p = 0.048 for OXYS rats).
Again, the density of immature neurons was lower at PND7 than at PND3 (p = 0.010 for
both rat strains), indicating neuronal maturation. In the PFC of Wistar rats, the density of
mature neurons remained constant from PND0 to PND1, decreased reaching a minimum
at PND3 (p < 0.0001), increased until PND5 (p < 0.0001), and then dropped by PND7
(p < 0.001). In OXYS rats, the picture was the same with the exception of the peak of mature
neuron density at PND5 (p = 0.009 from PND1 to PND3). For distributions of the cells of
the neuronal lineage throughout the regions of the hippocampus and cortical layers, see
Table S1.
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Wistar; O: OXYS; I: cortical layer I; II-III: cortical layers II–III; V-VI: cortical layers V–VI. The data (a,b) are presented as
mean ± SEM; * p < 0.05 for differences between the strains; # p < 0.05 for differences from a previous time point.

Altogether, our results show a decrease in the density of the neuronal-cell lineage
in the PFC from birth to PND3 in both rat strains, and then from PND5 to PND7 only
in Wistar rats (p < 0.001). The observed decrease in cell density might be caused by
nucleus enlargement.

Consequently, the next stage of our study was the examination of neuronal nuclei
sizes in the hippocampus and PFC (Table 2). In both brain regions, this parameter naturally
increased with age (F4,42 = 76.0, p < 0.0001 for the hippocampus; F4,40 = 120.9, p < 0.0001 for
the PFC). Indeed, in Wistar rats, we detected significant enlargement of neuronal nuclear
size at all examined ages (for the hippocampus: p = 0.046 from PND0 to PND1, p < 0.001
from PND1 to PND3, p = 0.004 from PND3 to PND5, and p < 0.001 from PND5 to PND7;
for the PFC: p = 0.004 from PND0 to PND1, p < 0.001 from PND1 to PND3, p < 0.001 from
PND3 to PND5, and p = 0.010 from PND5 to PND7), whereas in OXYS rats, the parameter
increased from PND0 to PND5 (for the hippocampus: p = 0.014 from PND0 to PND1,
p = 0.003 from PND1 to PND3, and p = 0.047 from PND3 to PND5; for the PFC: p < 0.001



Biomedicines 2021, 9, 823 8 of 18

from PND0 to PND1, p < 0.001 from PND1 to PND3, and p = 0.002 from PND3 to PND5). It
is important to emphasize that in the hippocampus, the size of neuronal nuclei was smaller
in OXYS rats (F1,42 = 26.7, p < 0.0001).

Table 2. The size of neuronal nuclei in the hippocampus and PFC of OXYS and Wistar pups (µm2).

Time Point
Wistar Rats OXYS Rats

Hippocampus PFC Hippocampus PFC

PND0 148.78 ± 5.05 90.27 ± 1.10 132.31 ± 1.70 * 89.22 ± 1.18
PND1 163.49 ± 2.95 # 102.83 ± 2.45 # 148.73 ± 4.45 #,* 104.78 ± 1.85 #

PND3 191.39 ± 3.14 # 123.83 ± 1.69 # 167.62 ± 2.31 #,* 120.55 ± 2.21 #

PND5 210.46 ± 3.39 # 169.97 ± 6.30 # 198.05 ± 13.20 # 168.13 ± 10.61 #

PND7 257.74 ± 6.63 # 194.40 ± 3.19 # 221.05 ± 3.59 * 187.26 ± 5.80

* p < 0.05 for differences between the strains; # p < 0.05 for differences from a previous time point.

3.4. Astrocytic Density in the Hippocampus and PFC of Neonatal OXYS and Wistar Pups

The density of astrocyte progenitors in the hippocampus was affected only by the
age of the animals (F4,80 = 12.1, p < 0.0001). Indeed, from birth to PND1, the parameter
increased two-fold in Wistar rats (p = 0.004) and four-fold in OXYS rats (p = 0.004), then
diminished from PND3 to PND5 (p = 0.020 for Wistar rats and p = 0.007 for OXYS rats) and
rose from PND5 to PND7 (p < 0.001 for Wistar rats and p = 0.038 for OXYS rats) in both rat
strains (Figure 3a). Furthermore, the Newman–Keuls post hoc test suggested that OXYS
rats were born with lower astrocyte progenitor cell density in the hippocampus (p = 0.029);
however, the parameter reached a level similar to that of Wistar rats at PND1 (p = 0.78). As
for astrocyte density in the hippocampus, this parameter was influenced by age (F4,80 = 4.4,
p = 0.003), and there was an interaction between factors genotype and age (F4,80 = 5.4,
p < 0.001). Indeed, we observed a difference in age-related dynamics of the hippocampal
astrocyte density between OXYS and Wistar rats (Figure 3a). In Wistar rats, the astrocyte
density remained comparatively unchanged from birth to PND3 and then went up by
PND5 (p = 0.016), whereas in OXYS rats, the parameter increased from birth to PND1
(p = 0.003), reached a maximum at PND3, and decreased until PND5 (p = 0.031). Such
dissimilar dynamics resulted in different astrocyte densities. Indeed, OXYS rats were born
with lower astrocyte density in the hippocampus as compared to Wistar rats (p = 0.039).
Then, the parameter reached the level of Wistar rats at PND1, was higher in OXYS rats at
PND3 (p = 0.009), and lower at PND5 and PND7 (p = 0.048 and p = 0.035, respectively).
For distributions of GFAP-positive cells throughout the regions of the hippocampus, see
Figure 3c.

In the PFC, the density of astrocyte progenitors was affected only by age (F4,80 = 9.8,
p < 0.0001; Figure 3b). In Wistar rats, the parameter increased from birth to PND1 (p < 0.001)
and then from PND5 to PND7 (p = 0.003). OXYS rats were born with a lower density of
astrocyte progenitors in comparison with Wistar rats (p = 0.033); the parameter increased
by PND1 (p = 0.037), reaching the level of Wistar rats and then decreased from PND3 to
PND5 (p = 0.001). The density of astrocytes (Figure 3b) was influenced by age (F4,80 = 12.1,
p < 0.0001) and genotype (F1,80 = 7.0, p = 0.010), and there was an interaction between
the two factors (F4,80 = 7.4, p < 0.0001). In Wistar rats, the density of astrocytes increased
from birth to PND1 (p = 0.007) and then from PND5 to PND7 (p = 0.006). OXYS rats were
born with a lower density of astrocytes relative to Wistar rats (p = 0.016). The parameter
increased by PND1 (p = 0.004), but remained more than 1.5-fold lower than that of Wistar
rats (without significance). The density of astrocytes continued to rise until PND3 in
OXYS rats (p = 0.014), reaching the level of Wistar rats at this stage. We did not detect an
increase in astrocyte density from PND5 to PND7 in OXYS rats; this phenomenon resulted
in decreased astrocyte density in the PFC at PND7 as compared to Wistar rats (p = 0.004).
For distributions of GFAP-positive cells throughout the cortical layers, see Figure 3d.
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Figure 3. The density of astrocytes and their progenitors in the hippocampus (a) and PFC (b) of OXYS and Wistar rats
during the first postnatal week. Changes in GFAP+ cell density in the regions of hippocampus (c) and layers of PFC (d) of
OXYS rats compared to Wistar rats are presented schematically with GFAP+ cell density in each region and layer coded
as heatmap with lg scale from −0.6 to 0.6. (e) Vimentin (red)-positive processes of radial glia in the PFC of Wistar and
OXYS rats; the scale bar is 50 µm. (f) A representative image of GFAP (green)- and vimentin (red)-positive cells in the
hippocampus of a Wistar rat at PND7; the scale bar is 20 µm. DAPI (blue) indicates cell nuclei (e,f). W: Wistar; O: OXYS;
I: cortical layer I; II–III: cortical layers II–III; V-VI: cortical layers V–VI; Vim: vimentin. The data (a,b) are presented as
mean ± SEM; * p < 0.05 for differences between the strains; # p < 0.05 for differences from a previous time point.

For distributions of astrocytes and their progenitors throughout the regions of the
hippocampus and cortical layers, see Table S2.
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Next, we counted radial glial cells’ processes in the PFC (Table 3 and Figure 3e).
Factorial ANOVA suggested that the number of radial glial-cell processes was affected by
age (F4,80 = 19.0, p < 0.0001) and not by genotype (F1,80 = 2.3, p = 0.13); however, there was
an interaction between the factors (F4,80 = 5.1, p < 0.001). Indeed, we revealed a difference
in age-related dynamics of the number of radial glial-cell processes: in Wistar rats, the
parameter reached a maximum at PND1, then decreased six-fold by PND3 (p = 0.002)
and continued to go down with age reaching zero at PND7, whereas in OXYS rats, the
parameter did not significantly change from birth to PND3, thereby revealing its tendency
to be lower at PND0 and PND1 (p = 0.054 and p = 0.058, respectively) and significantly
higher at PND3 (p = 0.010) compared to Wistar rats. After that, the number of radial
glial-cell processes in OXYS rats decreased from PND3 to PND5 (p = 0.002).

Table 3. The number of radial glial cells’ processes in the PFC of OXYS and Wistar rats (counts per
field of view).

Time Point Wistar Rats OXYS Rats

PND0 5.44 ± 0.82 3.44 ± 0.50
PND1 6.22 ± 1.41 2.89 ± 0.82
PND3 1.00 ± 0.29 # 3.22 ± 0.70 *
PND5 0.89 ± 0.45 0.56 ± 0.24 #

PND7 0 0.22 ± 0.15

* p < 0.05 for differences between the strains; # p < 0.05 for differences from a previous time point.

A representative image of immunohistochemical staining for astrocytes is presented
in Figure 3f.

3.5. The Density of Microglia in the Hippocampus and PFC of Neonatal OXYS and Wistar Pups

We showed that in the hippocampus, the total density of microglia (Figure 4a) in-
creased from birth to PND7 (F4,80 = 20.2, p < 0.0001) and was lower in OXYS rats (F1,80 = 49.1,
p < 0.0001). The densities of resting and activated microglia (Figure 4a) were affected by the
genotype (F1,80 = 47.5, p < 0.0001 for resting microglia; F1,80 = 15.4, p < 0.001 for activated
microglia) and age (F4,80 = 63.6, p < 0.0001 for resting microglia; F4,80 = 2.5, p = 0.046 for acti-
vated microglia); moreover, for resting-microglia density, there was an interaction between
the factors (F4,80 = 4.2, p = 0.004). At birth, total microglial density in the hippocampus
of OXYS rats was lower as compared to Wistar rats (p < 0.001), due to lowered density of
both resting (p < 0.0001) and activated microglia (p = 0.022). At PND1, the total density of
microglia in OXYS rats was lower as compared to Wistar rats (p = 0.014) because of lowered
density of activated microglia (p = 0.021 PND1). On the contrary, at PND3, PND5, and
PND7, the total density of microglia was lower (p = 0.045 for PND3; p = 0.016 for PND5;
p < 0.001 for PND7) due to lowered density of resting microglia in OXYS rats (p = 0.003 for
PND3; p = 0.010 for PND5; p < 0.001 for PND7). For distributions of microglia throughout
the regions of the hippocampus, see Figure 4c.

In the PFC, total microglial density (Figure 4b) was influenced by age (F4,80 = 31.6,
p < 0.0001) and was lower in OXYS rats (F1,80 = 18.9, p < 0.0001). The Newman–Keuls post
hoc test suggested that in Wistar rats, microglial density did not significantly change from
birth to PND5, and then increased by PND7 (p < 0.0001). In OXYS rats, the parameter
increased from birth to PND1 (p = 0.007) and then from PND5 to PND7 (p < 0.0001). The
density of resting microglia was affected by the genotype and age (F1,80 = 29.2, p < 0.0001
and F4,80 = 67.6, p < 0.0001, respectively), whereas the density of activated microglia was
influenced only by age (F4,80 = 14.6, p < 0.0001). We did not find any differences in the total
microglial density between OXYS and Wistar rats at PND0 and PND1, and detected only
an insignificant decrease in total microglial density in the OXYS PFC at PND3 (p = 0.064).
By contrast, at PND5 and PND7, the density of total microglia was significantly lower in
OXYS rats (p < 0.001 for PND5 and PND7) due to diminished density of resting microglia
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(p < 0.001 for PND5 and p = 0.008 for PND7). For distributions of microglia throughout the
cortical layers, see Figure 3d.
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Figure 4. The density of microglia in the hippocampus (a) and PFC (b) of OXYS and Wistar rats during the first postnatal
week. Changes in microglia density (meaning Iba1-positive cells) in regions of the hippocampus (c) and layers of the PFC
(d) of OXYS rats compared to Wistar rats are presented schematically with Iba1+ cell density in each region and layer
coded as a heatmap on a lg scale from −0.6 to 0.6. (e) The area of microglial cells was measured using ImageJ software.
(f) A pyknotic nucleus (pointed out by a dotted arrow) covered by microglial cytoplasm. (g) A representative image of
Iba1 (green)- and CD68 (red)-positive cells in the hippocampus of a Wistar rat at PND7; the arrow points to an activated
microglial cell, and the arrowhead indicates a resting microglial cell. DAPI (blue) stains cell nuclei (f,g); the scale bar is
20 µm (e–g). W: Wistar; O: OXYS; I: cortical layer I; II-III: cortical layers II–III; and V-VI: cortical layers V–VI; solid arrow: an
activated microglial cell; arrowhead: a resting microglial cell; dotted arrow: a pyknotic nucleus. The data (a,b) are presented
as mean ± SEM; * p < 0.05 for differences between the strains; # p < 0.05 for differences from a previous time point.
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For distributions of the resting and activated microglia throughout the regions of the
hippocampus and cortical layers, see Table S3.

Then, we measured the area of microglial cells in the molecular layer of hippocampal
DG, CA1, and CA3 regions and in cortical layer I because these layers had the highest
microglial density (Table 4 and Figure 4e). ANOVA revealed that in the hippocampus, the
area of microglia was affected by age (F4,80 = 11.0, p < 0.0001) and was smaller in OXYS rats
(F1,80 = 23.6, p < 0.0001). Age-related alterations of this parameter were similar between
Wistar and OXYS rats. We observed that microglial area enlarged from birth to PND1
(p = 0.002 for Wistar rats; p < 0.001 for OXYS rats), remained large until PND5, and then
decreased by PND7 (an insignificant trend, p = 0.068 for Wistar rats; p = 0.012 for OXYS
rats). Furthermore, the microglial area in the hippocampus was smaller in OXYS rats at
PND0, PND1, and PND7 (p < 0.001, p = 0.009, and p = 0.017, respectively). As for the
microglial area in the PFC, it was affected by age (F4,80 = 5.4, p < 0.001); in addition, there
was a weak insignificant effect of the genotype (F1,80 = 3.2, p = 0.080) on the parameter. In
the PFC, we saw similar age-related dynamics of microglial density between OXYS and
Wistar rats. Indeed, this density rose from birth to PND1 in both rat strains (p = 0.003
for Wistar rats; p = 0.042 for OXYS rats), then declined by PND3 (p = 0.019 for Wistar
rats; not significant for OXYS rats). Further age-related alterations of microglial area were
insignificant in both rat strains: the parameter increased until PND5 and then diminished
by PND7. We did not note any inter-strain differences in microglial area in the PFC.

Table 4. The area of microglia in the hippocampus and PFC of OXYS and Wistar pups (µm2).

Time Point
Wistar Rats OXYS Rats

Hippocampus PFC Hippocampus PFC

PND0 162.74 ± 5.01 154.62 ± 10.41 125.42 ± 7.46 * 133.90 ± 17.50
PND1 195.50 ± 7.57 # 222.71 ± 16.82 # 166.21 ± 6.19 *,# 189.63 ± 18.21 #

PND3 186.81 ± 9.84 161.20 ± 16.55 # 177.68 ± 5.99 144.86 ± 18.69
PND5 190.80 ± 10.77 196.99 ± 17.11 171.77 ± 10.50 186.78 ± 17.71
PND7 164.59 ± 7.96 163.51 ± 12.50 134.28 ± 8.10 *,# 152.04 ± 16.14

* p < 0.05 for differences between the strains; # p < 0.05 for differences from a previous time point.

After that, we estimated the percentage of pyknotic nuclei that were phagocytosed
by microglia (Table 5 and Figure 4f). This parameter reflects functional consistency of
microglia. We showed that in the hippocampus and PFC, the percentage of pyknotic nuclei
phagocytosed by microglia increased with age (F4,80 = 34.6, p < 0.0001 for the hippocampus;
F4,80 = 28.2, p < 0.0001 for the PFC) and was lower in OXYS rats (F1,80 = 23.3, p < 0.0001 for
the hippocampus; F1,80 = 21.4, p < 0.0001 for the PFC). There was an interaction between
factors age and genotype (F4,80 = 3.1, p = 0.019 for the hippocampus; F4,80 = 4.6, p = 0.002
for the PFC).

Table 5. The percentage of pyknotic nuclei phagocytosed by microglia in the hippocampus and PFC
of OXYS and Wistar pups.

Time Point
Wistar Rats OXYS Rats

Hippocampus PFC Hippocampus PFC

PND0 29.79 ± 2.54 35.37 ± 3.35 34.73 ± 2.57 27.59 ± 3.97
PND1 43.21 ± 3.17 # 50.00 ± 2.78 # 29.78 ± 2.40 * 44.07 ± 7.75
PND3 59.04 ± 3.18 # 79.44 ± 9.11 # 44.31 ± 3.37 #,* 29.44 ± 5.21 *
PND5 58.31 ± 5.53 64.66 ± 6.40 43.84 ± 4.47 49.26 ± 9.21
PND7 78.30 ± 3.29 # 98.15 ± 1.85 # 61.50 ± 3.96 #,* 88.43 ± 5.80 #

* p < 0.05 for differences between the strains; # p < 0.05 for differences from a previous time point.

A representative image of immunohistochemical staining for resting and activated
microglia is presented in Figure 4g.
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3.6. Apoptosis in the Hippocampus and PFC of Neonatal OXYS and Wistar Pups

These data are presented in Table 6. In the hippocampus, the number of apoptotic cells
was influenced by age (F4,77 = 59.3, p < 0.0001) and genotype (F1,77 = 33.4, p < 0.0001), and
there was an interaction between the factors (F4,77 = 9.0, p < 0.0001). Indeed, we noted that
at birth, the number of apoptotic cells was maximal in both rat strains and decreased more
than twofold by PND1 (p = 0.005 for Wistar rats and p < 0.001 for OXYS rats). It is worth
mentioning that the number of apoptotic cells was almost twofold higher in OXYS rats than
in Wistar rats on PND0 (p = 0.007) and PND1 (p = 0.019). Then, we documented various
changes of apoptosis in the hippocampus. In Wistar rats, apoptosis slightly decreased from
PND1 to PND7, whereas in OXYS rats, it intensified until PND3 (p = 0.016), becoming
more active as compared to Wistar rats (p < 0.0001), declined more than threefold by PND5
(p < 0.0001), and then continued to decrease until PND7 (p = 0.008).

Table 6. The number of apoptotic cells in the hippocampus and PFC of OXYS and Wistar pups.

Time Point
Wistar Rats OXYS Rats

Hippocampus PFC Hippocampus PFC

PND0 30.43 ± 3.92 3.00 ± 0.62 55.13 ± 6.24 * 5.25 ± 1.01
PND1 12.83 ± 2.98 # 1.57 ± 0.43 22.86 ± 2.23 #,* 3.29 ± 0.97
PND3 15.70 ± 2.36 2.13 ± 0.44 31.50 ± 2.15 #,* 4.11 ± 0.70 *
PND5 8.50 ± 1.77 3.17 ± 0.48 9.00 ± 0.93 # 3.33 ± 0.67
PND7 7.91 ± 0.95 0.75 ± 0.25 # 6.44 ± 0.41 # 1.05 ± 0.11 #

* p < 0.05 for differences between the strains; # p < 0.05 for differences from a previous time point.

In the PFC, the number of apoptotic cells was affected by age (F4,67 = 24.5, p < 0.0001)
and genotype (F1,67 = 30.7, p = 0.002) of the rats. The number of apoptotic cells did not
significantly change from PND0 to PND5 and diminished by PND7 in the PFC of both rat
strains. The downregulation was fourfold in Wistar rats (p < 0.001) and threefold in OXYS
rats (p < 0.001). The number of apoptotic cells at PND3 was greater in OXYS rats than in
Wistar rats (p = 0.034).

4. Discussion

In the present study, we investigated the features of development of the hippocam-
pus and PFC in senescence-accelerated OXYS rats during the first postnatal week. We
demonstrated a disturbance in astroglial support of these structures as well as a microglial
deficiency and higher intensity of apoptosis concurrently with a relatively unchanged neu-
ronal population and hippocampal neurogenesis during a critical period for the formation
of a network between these brain structures.

The brain-to-body weight ratio is a parameter that allows us to draw general conclu-
sions about the state of the brain. Here, we showed a higher brain-to-body weight ratio in
OXYS rats at PND5 because of decreased body weight at this age. We can hypothesize that
the reduced fitness observed, even in young OXYS rats, leads to decreased body weight
and is linked with a diet-related cardiovascular disorder late in life [27], which may be one
of the potential risk factors for the development of AD signs [28].

Previously, we have documented signs of a delayed peak of neurogenesis in the
hippocampal DG in OXYS rats at PND10 [23]. Here, we report the additional peak of
ANP density in the DG of OXYS rats, which was registered on PND3 and coincided with
higher density of neuroblasts in the granular layer of the DG, increased astrocytic density
in the DG, and with a peak of apoptosis that always accompanies neurogenesis [25]. Taken
together, these observations are suggestive of an additional peak of neurogenesis in the
DG on PND3 in OXYS rats. Besides, we found that the peak of proliferating cells in the DG
corresponds to PND1 in both strains. Nonetheless, we can speculate that these cells give
rise to different cell lineages in OXYS rats as compared to Wistar rats. Indeed, in Wistar rats,
there was an increase in neuroblast density in the hippocampus at PND3, which may point
to the differentiation of the proliferating cells into a neuronal lineage. At the same time, in
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the hippocampus of OXYS rats, we noted an increase in astrocyte numbers at PND3 while
the density of their progenitors remained unchanged, suggesting that the proliferating cells
can differentiate into the glial lineage.

From an electrophysiological point of view, CA1 pyramidal neurons in the rat hip-
pocampus undergo considerable alterations in their excitable membrane properties during
the first month of postnatal development, and these changes (specifically the amplitude
and duration of an action potential) are more pronounced in the first postnatal week [29].
In the hippocampal CA1 region at birth in OXYS rats, we noticed a higher density of
neuroblasts and of immature neurons, potentially because of a delay of prenatal neuronal
maturation. Nonetheless, already at PND1, the inter-strain differences disappeared. The
observed decrease in mature-neuron density by PND3 in both rat strains may be related to
the generation and maturation of synapses. Indeed, in the rat hippocampus, the formation
and maturation of synapses increase significantly starting from the middle of the first
postnatal week [30]. It should be mentioned that at PND5, there was lower mature neuron
density in the pyramidal layer of the CA1 region and in the molecular layer of the CA3
region of OXYS rats. Cell bodies of GABAergic neurons are located in the molecular layers
of hippocampal CA1 and CA3 regions [31]. Given the specific excitatory role of GABAergic
neurons during the first week of rodent development (for review see [32]), their deficiency
may have detrimental consequences for brain function.

It is widely accepted that in rodents, neuron migration to the cortex and the formation
of cortical layers continue after birth [33]. The end of neuronal migration marks the
beginning of a period of intense neuronal growth and synaptic formation in the neocortex,
which starts in the middle of the first postnatal week in rats [34]. The largest changes in
PFC neurons are seen during the first 10 days after birth; however, adultlike properties are
not acquired until the end of the third week [35]. In the present work, we documented the
completion of neuronal migration to the PFC at PND3 with subsequent intensive neuronal
maturation until PND5. Although in Wistar rats the peak of the number of radial glial
processes in the PFC was seen on PND1 and decreased until PND3, in OXYS rats the peak
occurred at PND3. Additionally, in Wistar rats neuroblast density increased monotonically
from birth to PND3, whereas in OXYS rats the greatest increase in this parameter took
place from PND1 to PND3. Altogether, these results imply a delay in neuronal migration
to the PFC in OXYS rats.

In this study, we noted a decrease in neuronal density in the hippocampus and PFC of
both rat strains from birth to PND7. Our findings are in line with the data of Sellinger and
coworkers [36], who demonstrated that neuronal density in the PFC of male rats diminishes
from PND2 to PND6 and then increases by PND8. Sellinger and coworkers have linked the
decrease in neuron density in the PFC throughout the early postnatal period with extensive
dendritic growth and synapse formation [36]. We can speculate that the same is the case
for the PFC of Wistar and OXYS rats. On the other hand, the decrease in the density of the
neuronal cell lineage by PND7 may be at least in part explained by the observed significant
increase in nuclear size by that age.

Multiple in vitro and in vivo studies suggest that astrocytes are more vulnerable to
cellular stress than neurons are [37,38]. In the present work, we demonstrated that astro-
cyte density changes in the hippocampus and PFC of OXYS rats during the first week
of life much more greatly than the density of neurons does. Indeed, OXYS pups were
born with a lower density of astrocytes and their progenitors both in the hippocampus
and PFC. Nevertheless, by PND1, these differences disappeared, and at PND3, astrocyte
density was even higher in the hippocampus and layer I of the PFC known as the layer
containing the majority of PFC astrocytes [39]. The upregulation of astrocyte density in
the hippocampus was due to higher astrocyte density in the DG, which may be related
to the additional peak of neurogenesis in the DG of OXYS rats at PND3. On the other
hand, the rise of astrocyte density was temporary; for instance, at PND5, the density of
astrocytes was more than 1.5-fold lower in the hippocampus of OXYS rats. It has been
proven by Zhou and colleagues [40] that astrocytes from the hippocampus of mature rats
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are electrophysiologically passive, whereas astrocytes from the hippocampus of newborn
rats (PND1–PND3) have voltage-gated outward K+ currents and inward Na+ currents. As-
trocyte maturation—meaning the emergence of predominant leak-type K+ currents—starts
on PND4 and proceeds during the first 3 postnatal weeks. Moreover, it is immature astro-
cytes that express thrombospondins promoting synaptogenesis [41]. Therefore, astrocyte
support in the 3 weeks after birth, especially during the first half of the first postnatal week,
is of utmost importance for synaptogenesis and accordingly for neuronal plasticity in an
adult brain.

There are two waves of apoptosis during brain development: the first is prenatal and
intended for elimination of proliferating cells to give rise to a pool of neuronal stem cells;
the second wave is postnatal and eliminates migrating and differentiating neurons that are
not able to form appropriate neuronal circuits [42]. Previously, we have reported a delay
in the postnatal wave of apoptosis in the DG of OXYS rats [22]. In the present work, we
demonstrated that at birth, the number of apoptotic cells in the hippocampus of OXYS rats
is higher than that in Wistar rats. Despite the decreased density of microglial cells (both
resting and activated) and smaller microglial area in the hippocampus of OXYS rats at birth,
we did not observe any differences in the percentage of pyknotic nuclei phagocytosed by
microglia between OXYS and Wistar rats. This finding could be due to a greater number
of apoptotic cells observed in the CA1 and CA3 regions of the hippocampus, whereas a
decrease in the density of activated microglia took place in the DG of OXYS rats. Thus,
the activity of all microglial cells was directed toward phagocytosis of pyknotic nuclei as
a consequence of cell death. It is well known that during development, microglia play a
substantial part in the phagocytosis of dying cells as well as in synaptic pruning [14]. If
the majority of microglial cells were directed to eliminate the detritus of apoptotic cells
in the hippocampus of OXYS rats, then a lesser proportion of microglia was involved in
synaptic pruning, thereby potentially altering the formation of synapses. As a consequence
of higher apoptosis intensity and lower microglial density, there was a significantly lower
percentage of the pyknotic nuclei phagocytosed by microglial cells in the hippocampus of
OXYS rats. On the other hand, we detected pyknotic nuclei covered by astrocyte processes
in the hippocampus of OXYS rats at PND3. We theorized that astrocytes may partly take
over the role of phagocytic cells and clear the cell detritus. Therefore, the increased density
of astrocytes in the hippocampus of OXYS rats at this age may be intended not only for
neuronal support and neurogenesis but also for phagocytosis to complement microglial
function. Taken together, these results may reflect a delay in the prenatal wave of apoptosis
and subsequent insufficiency of microglial phagocytic function in the hippocampus of
OXYS rats on the first days of life. Regarding the PFC, the additional peak of apoptosis in
OXYS rats at PND3 at the end of neuronal migration to the cortex may arise to eliminate
improperly migrating neurons.

To summarize the new findings, we detected an additional peak of DG neurogenesis
that coincides in time with the peak of apoptosis in the hippocampus and PFC of OXYS
pups. Furthermore, we showed delayed migration of neurons to the PFC as well as
disturbances in astrocytic and microglial support of the PFC and hippocampus during the
first postnatal week. These developmental events may have long-lasting consequences,
giving rise to the neurodegenerative process observed late in life in OXYS rats. For instance,
altered neurogenic-niche formation may be the cause of the previously reported alteration
of the neurogenic-niche microenvironment and depletion of neuronal progenitors at an
advanced age [22]. A deficiency of astrocytic support and previously shown altered
formation of mossy fibers [23] may result in inappropriate synaptic formation and lead to
the synaptic dysfunction observed in the hippocampus of OXYS rats late in life [19,21].

It is known that in rodents, the hippocampus and PFC are among the regions that are
most sensitive to early life experiences [43,44]. Nevertheless, the outcome of damage to
the brain depends upon the developmental phase during which the lesion occurs: early
brain damage may cause disturbances of neurodevelopmental programs and may thus
induce behavioral deficits in adults [45]. Indeed, prenatal stress-induced anxiety and
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depression-like behavior become more pronounced not only in early life development but
also at an old age, as there are the two most vulnerable periods in life [46]. Hoeijmakers
and coworkers [47] have revealed that exposure of APP/PS1 transgenic mice to stress early
in life exacerbates Aβ plaque load and alters the immune response to Aβ neuropathol-
ogy in the hippocampus of aged animals. In addition, the cerebral distribution of the
AD pathology matches the pattern of brain regions that mature later in childhood and
adolescence and retain their plastic capacities in adulthood, namely the hippocampus,
PFC, and limbic cortex [4]. Thus, our data are in line with the studies cited above and are
suggestive of a “two-hit hypothesis of AD” in the context of the “developmental origins of
behavior, health and disease” theory [48]. The alterations of early hippocampal and PFC
development in OXYS rats may be regarded as the “first hit,” which can be compensated
for in young-to-adult animals [23]; however, an unknown second hit later in life may
drive the development and progression of AD signs. Additional research is needed to test
this hypothesis.
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throughout the regions of the hippocampus and cortical layers of OXYS and Wistar pups (counts
per 1 mm2). Table S3: Distributions of the density of microglial cells throughout the regions of the
hippocampus and cortical layers of OXYS and Wistar pups (counts per 1 mm2).
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