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Abstract: We address the paradoxical fact that the concept of a covalent bond, a cornerstone of
chemistry which is well resolved computationally by the methods of quantum chemistry, is still
the subject of debate, disagreement, and ignorance with respect to its physical origin. Our aim
here is to unify two seemingly different explanations: one in terms of energy, the other dynamics.
We summarize the mechanistic bonding models and the debate over the last 100 years, with specific
applications to the simplest molecules: H,* and H,. In particular, we focus on the bonding analysis
of Hellmann (1933) that was brought into modern form by Ruedenberg (from 1962 on). We and
many others have helped verify the validity of the Hellmann—-Ruedenberg proposal that a decrease in
kinetic energy associated with interatomic delocalization of electron motion is the key to covalent
bonding but contrary views, confusion or lack of understanding still abound. In order to resolve this
impasse we show that quantum mechanics affords us a complementary dynamical perspective on the
bonding mechanism, which agrees with that of Hellmann and Ruedenberg, while providing a direct
and unifying view of atomic reactivity, molecule formation and the basic role of the kinetic energy,
as well as the important but secondary role of electrostatics, in covalent bonding.
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1. Introduction

Covalent chemical bonding is undoubtedly a central concept in Chemistry. While bond formation
is arguably the most fundamental chemical process, its physical origin is still the subject of debate,
even today when accurate quantitative molecular electronic structure calculations of ever-increasing
accuracy and complexity have become widely available. Seemingly, there is a chasm between numerical
and physical resolutions of the covalent bond. It is our aim to improve the physical understanding of
bonding and help connect the physical and numerical views of bonding by drawing on the duality
between energy and time present in quantum mechanics.

The idea of shared electron pairs corresponding to chemical bonds was introduced by Lewis [1]
over a hundred years ago in a landmark publication, a decade before Schrodinger [2] developed the
method that effectively laid the foundations of quantum chemistry and provided the tools with which
Lewis’ ideas could be rigorously tested and interpreted. Lewis” model built on the earlier work of
Abegg [3] who had introduced and explored the Octet Rule. Abegg’s work was also inspirational in
Kossel’s development of ionic bonding [4]. The theories of Abegg, Lewis, and Kossel were extended
by Langmuir [5-8] who extended the Octet Rule by developing the 18- and 32-electron rules and
introduced the name “Covalent Bond” for a shared pair of electrons. The Lewis-Kossel-Langmuir
theory of covalent bonding is considered a basic tenet of Chemistry and is widely taught in senior high
school as well as university chemistry courses.
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The development of quantum theory provided a theoretical underpinning of covalent bonding,
via Burrau’s [9,10] quantum mechanical calculation on the hydrogen molecule ion Hy* and, in the
same year, the Heitler-London calculation [11] of the geometry and bond energy of the H, molecule.
Burrau’s work [9,10], in good agreement with experiment [12-14], provided theoretical support for
the existence of one electron covalent bonds. The Heitler-London work [11] especially made the
connection between the Lewis shared pair of electrons [1] and its physical quantitative description.
The valence-bond (VB) theory of Pauling [15,16] has provided a natural bridge between these two
theories and, especially in its qualitative form, for many years it has been the bonding theory of choice
of most chemists. Molecular orbital (MO) theory, promoted initially by Mulliken [17], Hund [18],
Hiickel [19], and others [20-25] has, however, come to be preferred by the chemical community,
especially when dealing with multicenter bonds, and more generally for problems of electronic
excitation, reactivity, and transition metal chemistry. By the 1960s and 70s, when the development and
distribution of quantum chemical computer codes had become widespread, the majority of the methods,
such as those in the Gaussian suite of programs [26,27], first released in 1970, were Hartree—-Fock
Self-Consistent Field MO (HF-SCF) [28,29] based. Recently, however, the VB method has seen a
renaissance and has been demonstrated to be the natural approach to a number of important chemical
problems [30-33].

With respect to the basic physics of covalent bonding a long-held and still widespread view is
that chemical bonding is essentially an electrostatic phenomenon. Namely, the energy lowering that
corresponds to bond formation is thought to be the result of the decrease in potential energy due to the
attractive interaction between the nuclei and the electronic charge that is accumulated in the bond
region. This essentially classical and static picture of interacting charge distributions is appealing in its
simplicity, indeed it appears to be a straightforward extension of the Lewis theory. Moreover, the above
electrostatic view appears to be consistent with the Virial Theorem [34-36], according to which the ratio
of total potential to kinetic energy of a molecule at its equilibrium geometry, always equals —2. In other
words, the attractive component of the binding energy is therefore due to the (electrostatic) potential
energy, whereas the kinetic component is repulsive. This electrostatic view was originally advanced by
Slater [36] in 1933, supported by Feynman [37] in 1939, and later by Coulson [24], whose book Valence
of 1952 has had a strong influence on the chemical community. More recently, Bader [38,39] has also
expressed strong support of Slater’s model of covalent bonding.

In contrast to the electrostatic view, Hellmann [40] proposed that covalent bonding should be
understood as a quantum mechanical effect, brought about by the lowering of the ground state kinetic
energy associated with the delocalization of the motions of valence electrons between atoms in a
molecule. For several decades this kinetic view [40] was ignored by most chemists, possibly because
it went against the already accepted seemingly simpler electrostatic explanation [36], and because
Hellmann had based his reasoning on the statistical Thomas—Fermi model [41,42], that was subsequently
shown to be unable to describe covalent bonding [43-45]. Other contributing factors could have
been the apparent conflict with the Virial Theorem [34-36] that Hellmann was unable to resolve [46]
and, quite likely, his early tragic death. Interestingly though, the physicists Peierls [47] and Platt [48]
expressed general agreement with Hellmann’s view, as early as 1955 and 1961, respectively. We note,
however, that the above problem, implicit in the Thomas—Fermi model [43-45], became our own point
of entry into the dynamic analysis of bonding in 1987, 50 years after Hellmann's work [46].

The contradiction between these two different qualitative models of the covalent bonding
mechanism required a rigorous in-depth analysis for its resolution. The analysis was carried through,
on the basis of the quantum mechanical Variation Principle, by Ruedenberg and coworkers [49-59]
from 1962 on, first for Hy* and H, and later for other homonuclear diatomic molecules as well.
These investigations showed that covalent bonding is a quantum effect as originally suggested by
Hellmann [40], since the critical component of bonding is interatomic electron delocalization, which is
the quantum mechanical term for electron sharing. Stabilizing electron delocalization in ground states
is associated with combination and constructive interference of the atomic orbitals (AOs) of the atoms
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in a molecule to form molecular orbitals (MOs). This normally results in bonding by a net decrease
in the kinetic energy of the molecule, in agreement with Hellmann’s view [40]. However, as the
internuclear distance becomes smaller than about twice the equilibrium separation, an additional,
more complex, effect comes into play, namely intra-atomic (orbital) contraction. In a minimal atomic
basis set, as the term implies, orbital contraction corresponds to an increase in the orbital exponents
of the basis functions, resulting in tighter orbitals, and thus electron densities, around the nuclei.
In practice, the orbital exponents, being non-linear parameters, are optimized at each distinct geometry,
by numerical minimization of the molecular energy. (Alternatively, the use of extended but geometry
independent basis sets, such as those in state-of-the-art HF-SCF or density functional calculations,
allows orbital contractions to be resolved via the optimization of the occupied MOs). The net result of
orbital contraction is additional stabilization by a decrease in the potential energy while the kinetic
energy is increased. These energy shifts ensure that the Virial Theorem [34-36] is satisfied. As discussed
elsewhere, the orbital contractions actually enhance the degree of interatomic delocalization and
thereby lower the interatomic kinetic energy further, even though they increase the antibonding
intra-atomic deformation energies. The net result is a decrease in the total energy, as demanded by
the Variation Principle. The Hellmann-Ruedenberg view of covalent bonding has been accepted and
adopted by many theoretical chemists [60-87], including Fukui [62] and Mulliken [63].

Interestingly, after expressing support for Slater’s electrostatic view of covalent bonding in 1939,
26 years later Feynman [88] himself, in his famous Lectures on Physics, explained covalent bond
formation in Hy*, and by extension in other molecules, as the consequence of a flip-flop motion of
electrons between bonded atoms, causing a corresponding drop in the electron’s kinetic energy, as a
molecule forms. His simplest argument was based on the Heisenberg uncertainty principle, AxAp
> 1i/2, that would imply that the lower energy of the electron in the bonding stationary state of the
molecule is a consequence of delocalization, i.e., “spreading out” or increasing Ax, that results in a
drop in kinetic energy (proportional to (Ap)?) without a significant increase in its potential energy.
The opposite would hold for the repulsive antibonding state. This conclusion is in complete agreement
with the views of Hellmann [40] and Ruedenberg [49]. Feynman [88] was, so far as we know, first to
emphasize the close connection between electron dynamics and kinetic energy in covalent bonding,
i.e., between the flip-flop motion and the corresponding kinetic energy lowering. Unfortunately,
his clear sighted reasoning, if after a change of heart, seems to have largely by-passed the attention of
the chemical community.

While our own work over a period of 25 years [68,69,72,75,77-83], has agreed with Hellmann's [40],
Ruedenberg’s [49-59], and Feynman’s [88] views, it has also expanded on them by exploring the
quantum dynamical description of covalent bonding. Noting that Thomas—Fermi (TF) theory [41,42],
the original and simplest type of density functional theory (DFT) [45,89], is unable to describe covalent
bonding [43-45], we analyzed the reasons for this failure in an effort to better understand the basic
physics of bonding [68,78-80]. We have found that, at least in simple systems, the source of the
problem is the simplified semi-classical form of the TF kinetic energy functional, resulting in a theory
that is unable to account for dynamical constraints (non-ergodicity) and slow electron transfer and
thus for any hindered internal electron dynamics in atoms and molecules. As it is the relaxation of
these dynamical constraints that will facilitate interatomic electron transfer in molecules, i.e., electron
sharing, the natural conclusion is that covalent bonding is a dynamical process which is implicit in the
phenomenon of delocalization [80].

The first suggestion that covalent bonding was best seen as a quantum dynamical phenomenon
was, as noted above, published by Feynman [88] in 1965, in his wide ranging lectures on physics,
three years after Ruedenberg’s groundbreaking paper in Reviews of Modern Physics [49]. Feynman [88],
unlikely to have read Ruedenberg’s paper, treats H,™ as a simple two-state system of bonding and
antibonding MOs and uses time-dependent quantum theory to show that the bonding electron in
H,*, must, if localized, oscillate between the two nuclei with a frequency that is directly related to
the energy difference between the delocalized MOs. These MOs are stationary states and their energy
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difference is approximately twice the bond energy. As noted above, this energy difference, part of the
time-independent quantum description of the molecule and due to the orthogonality of ground and
first excited states, is essentially kinetic in character. However, at the time-dependent level, the degree
of bonding could be seen to be proportional to the rate of interatomic electron oscillation, which in
turn is dependent on delocalization of the electron. The dynamical picture of interatomic electron
oscillation Feynman [88] referred to as the “flip-flop mechanism” of covalent bonding. He recognized
that the mechanism could as well be seen in terms of wave function delocalization combined with
energy splitting between molecular orbitals formed from localized atomic orbitals.

Ruedenberg and co-workers [49-59,83] reached an equivalent energy analysis of bonding utilizing
the results of time-independent variational calculations, their main conclusion being that the physical
basis of bonding is interatomic electron delocalization. They went on to analyze the importance of
kinetic energy to bonding, the role of orbital contraction and the Virial Theorem [34-36]. The latter
concept and theorem were actually ignored by Feynman [88], since they do not immediately arise in
the dynamical approach to bonding.

In addition to his treatment of H, ", Feynman [88] discussed bonding in H; as well as in benzene
and (conjugated) dye molecules, as other examples of two-state systems. He demonstrated the
generality of his idea of attraction by particle exchange between attractive centers by the analogous
treatment of the umbrella inversion in ammonia and the interaction of nucleons. The covalent bonding
in molecules was found to be an example of a quite general phenomenon in physics.

As noted above, the quantum dynamical view of covalent bonding is not unique. Nor is at odds
with the Hellmann-Ruedenberg theory [40,49-59,83] or the Virial Theorem [34-36]. Instead it provides
a fully consistent alternative interpretation which sheds light on covalent bonding while avoiding,
or in a deeper analysis helping to resolve, the apparent contradiction between the theory and the
theorem. The next section of this paper will review the salient features of Ruedenberg’s [49-59] theory
and our contributions to it [68,69,72,75,77-83]. We regard it as most useful for those who want to
understand covalent bonding in terms of time-independent interpretations of concepts such as electron
density, delocalization and energy. The quantum dynamical mechanism [68,75,78-81] is provided by
the duality of representations offered to us by quantum mechanics [88] such that we can choose to see
the bonding mechanism in terms of energy as well as in terms of dynamics. We propose to employ
both representations to show that this duality of views of bonding is advantageous since it makes
clear: (i) that bonding is a quantum phenomenon relating to both energy and dynamics and (ii) how
the rate of interatomic electron motion, i.e., delocalization and its timescale, is the key determinant
of the bonding while related mechanisms of orbital contraction or electron correlation are important
but secondary.

Much of the early work on the basic physics of chemical bonding was done in tandem with the
developing new branch of science: Quantum Chemistry. Indeed the earliest quantum mechanical
computations, ab initio and semi-empirical, focused on questions of bonding, but gradually the
balance shifted and nowadays the majority of quantum chemical calculations, performed typically on
supercomputers, focus on modeling chemical processes, structure, and properties. Yet, as chemists we
want to, indeed need to, understand bonding and considerable effort is directed to the extraction of
simple-to-understand bonding information from complex wave functions that are often characterized
by millions of numbers [90-104]. In contrast, this paper is concerned with the fundamental aspects of
bonding, a problem of long standing, rather than the immediate interpretation of results from large
scale quantum chemical calculations.

We summarize the analysis of covalent bonding in Hp* and H; within the energy picture in
Section 2 below, ending with a discussion of the corresponding time-dependence of an electron initially
confined to one of the protons in Hy*. Thus we demonstrate the direct relation between the energy and
the dynamical view of bonding in much the same terms as Feynman [88]. We then, in Section 3, discuss
the general analysis of covalent bonding in the time-dependent picture and end with examples of the
benefits of drawing on both pictures, time-dependent as well as time-independent, to achieve a deeper
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and more general understanding of the bonding mechanism. In Section 4, finally, we reflect on the
circumstances that 100 years ago set many chemists on the path to an oversimplified view of bonding
in terms of electrostatics that made us overly resistant to a correct identification of delocalization and
corresponding easing of kinetic energy as the key to bonding. Hopefully, the combination of energetics
and dynamics will provide an understanding of the covalent bond that’s both physically clear and
fully consistent with the results of quantum chemistry.

2. Energy Analysis of One- and Two-Electron Bonds: The H,* and H, Molecules

These are the simplest prototypes of molecules with covalent bonds, involving just one electron
in the Hp* molecule or the archetypal Lewis pair in H,. The simplest molecular wave functions are
constructed from the (exact) atomic orbitals (AOs) of a hydrogen atom. The spatial components are:

Y(HS ;G R) = [2(1+ S)] ™ *[¢a(C) + 3(C)] (1)

and:
¥(Hp G R) = [2(14+52)] [0a(1)6(2) + d5(1)u(2)], @

where the overlap integral S, defined as:

S = (0 n) = [ a0 (01 G)

is dependent on the orbital exponent C and the internuclear separation R. (The full wave functions for
the ground states are obtained by multiplying the above spatial functions by the doublet and singlet
spin eigenfunctions for Hy* and H,, respectively). The H, wave function of Equation (2), being the
linear combination of atomic configurations, is the archetypal VB wave function [15,16], as originally
proposed by Heitler and London [11]. The coordinates of the two electrons are simply written as 1 and
2. Because it smoothly dissociates to H atoms, in this work it is preferred to the MO wave function
(i.e., a doubly occupied o, MO) that predicts a mixture of H atoms and H*/H™ ions as R — co. We note,
however, that in the case of Hy™ the single electron wave function of Equation (1) could equally well be
regarded as MO or VB type. The normalized AOs are just 1s-type AOs, e.g.,

¢ = (C/n) "

exp(=Cra) , )
where 7, is the distance from nucleus a. The optimized orbital exponents  for Hy* and H, vary
between the separated H atoms limit of 1.0 (R = o), and the united He* and He atom limits of 2.0 and
1.688, respectively (R = 0), in atomic units (see Appendix A).

While these simplest of wave functions can be improved upon so that their predictions become
quantitative, e.g., by the inclusion of polarization functions and in the case of H, account for a greater
degree of electron correlation, it has been found, more than once, that the basic physics of covalent
bonding are adequately resolved by the above minimal sets [56,57,81,82]. Keeping the calculations as
straightforward and simple as possible means that the essential elements of bonding can be clearly
resolved with as little mathematical complexity as possible.

2.1. Bonding Energetics

With C optimized at each distance (full lines), as well as fixed at the H atom value of 1.0 (dashed
lines), the computed energy curves of Hy* and H; are shown in Figure 1. Optimization of the exponent
results in a greater degree of bonding in both systems and shorter bond lengths. The computed
equilibrium bond lengths and binding energies are summarized in Table 1.
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Figure 1. Energies of H," and H, (valence-bond (VB)) (total energy E, kinetic energy T, potential energy
V, all relative to the H and H + H atoms respectively), computed using minimal H 1s atomic orbital
(AO) basis with exponent C optimized (full lines) and fixed at the H atomic value of 1 (dashed lines).

The qualitative similarities between the H,™ and H; energy curves are obvious. With the exponent
C fixed at 1, the total (electrostatic) potential energies for both molecules are repulsive at all distances,
a clear indication that bonding takes place because of the decrease in the kinetic energy. This is a
quantum effect, i.e., a consequence of the quantum mechanical nature of the electron, in particular
the behavior of its kinetic energy. Thus, a drop in kinetic energy is indicative of the electron being
less constrained, i.e., having more room to move in. This is the conclusion that was reached by
Hellmann [40] in 1933 and also by Feynman [88], as discussed in the third volume of his famous
Lectures on Physics series, published in 1965. Feynman treats the H,™ and H; molecules as examples of
two-state systems, where the back and forth flip of the electron(s) (from one nucleus to the other), i.e.,
delocalization, a consequence of the quantum nature of electrons, produces the bonding in both systems.

Table 1. Hy*, H,: Computed molecular energies (E) and their kinetic (T) and potential (V) components
(relative to H and H + H, respectively) at their equilibrium bond lengths (R.) with fixed and optimized
orbital exponents.

H,* H,
4 1.0 1.239 1.0 1.167
Re/ao 2.49 2.00 1.64 1.41

AE/E, -0.065 -0.087 -0.116 —-0.139
AT/E, -0.117 0.087 -0.162 0.139
AV/E, 0052 -0.174 0.046 -0.278
-V/T 2.48 2.00 2.33 2.00

Optimization of the orbital exponent C (resulting in increasingly larger values than 1.0 as R
decreases), yields greater stability as well as shorter equilibrium bond lengths that are in close agreement
with experiment. As in a H atom (where the kinetic and potential energies are {?/2 and —, respectively),
this process of orbital contraction in the molecules is accompanied by an increase in the kinetic energy
but a greater degree of drop in the potential energy, so that the Virial Theorem [34-36,105-107], is
satisfied precisely at the equilibrium geometry. (According to this theorem, for any system of charges at
equilibrium, molecule or atoms, the ratio of potential (V) to kinetic energy (T) is exactly —2. Therefore,
the same ratio holds for the potential (AV) and kinetic (AT) components of the binding energy AE).
While the overall effect of orbital contraction is to strengthen the bond, the actual shifts in the total
bond energies are minor and essentially intra-atomic in nature, so the key to the bonding can clearly be
identified as the decrease in interatomic kinetic energy [58,59] (as demonstrated also in later sections of
this paper). This, of course, is in direct contradiction to the electrostatic theory that claims that the
drop in potential energy, as stipulated by the Virial Theorem, [34-36,105-107] is due to the electrostatic
interaction of the increased electronic charge in the interatomic region with the nuclei [24,36-39].
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The orbital contraction and its effects on the equilibrium geometries and energies, so as to satisfy
the Virial Theorem [34-36,105-107], can be obtained, to a very good approximation, by a simple scaling
procedure [105-107], that yields:

B V(1) . Re(1) —
C= 57y Re® = = ER(Q) =TT+ LV (1), ®)

For Hy*, application of this procedure yields C = 1.238, thus, an equilibrium distance of 2.01 a9 and
a total binding energy of —0.086 Ey,. In the case of Hy, we obtain C = 1.166, i.e., an Re(C) of 1.41 a9 and a
total binding energy of —0.139 Ey,. The agreement with the results of independent orbital optimization,
as summarized in Table 1, is excellent for both systems. Thus, as demonstrated above for H,™ and
Hj,, orbital optimization is essentially a rescaling of the molecular wave functions as well as their
constituent AOs. In other words, the delocalization of electrons, hence bond formation, is effectively
between contracted atoms, exactly as suggested by Ruedenberg [49] in his first publication on this
topic in 1962.

2.2. Molecular Density and Delocalization

By way of further exploration of the phenomenon of covalent bonding, consider the change in
electron density that takes place as a molecule, Hy* or Hy, forms from the constituent atoms and/or
nuclei. The molecular density p((,R) = nq¥%((, R) (at any internuclear separation R and 1s AOs
with exponent { and where 7, is the number of electrons, i.e., 1 or 2 for H,™ or Hy, respectively) is
decomposed into quasi-classical, pqc, (atomic) and interference, pj, contributions, i.e.,

P = pPgc+pr1, (6)

where:

pac(0) = “2[#3(0) + 93(0)] - )

One-dimensional plots of the densities of Hp* as functions of the internuclear coordinate z as
well as the resulting interference densities are shown in Figure 2. The bonding state’s wave function
(Equation (1)) is an in-phase combination of the AOs ¢, and ¢}, and their constructive interference results
in a build-up of density in the bond region, i.e., in-between the nuclei, with a negative interference
contribution close to the nuclei. The opposite holds for the antibonding state, i.e., negative interference
in the bond region and an increased density around the nuclei. Note that the very existence of an
antibonding state is a quantum effect, as it is the consequence of the quantum mechanical (wave)
nature of the electrons. At R = 2.5 gy its energy is 0.209 Ey, above that of the separated atoms H + H*,
i.e., it is a repulsive state, because of its large 0.316 Ey, kinetic energy, despite an attractive —0.106 Ej,
potential energy contribution (both relative to H + H*). The large kinetic energy is a consequence of
the node in the wave function, i.e., a region of large gradients (in an absolute sense), consistent with
the quantum nature of the electron.

At any internuclear distance R, the interference of the AOs is related to their overlap integral, S,,
which plays a crucial role in the energy expressions of both Hy* and Hj. In particular, the kinetic
energies are:

Toa + Ty + 2Ty Tog + Top
T H+ L ab _ a , 8
)= i s~ 175 ®)
T(Hz) . 2T 00 + 2Ty + 4T S . Z(TW + Tabsab) )
= — . ,
2(1+2) 1482

where T, = <¢a|ﬂ¢b> and from symmetry Ty, = Tp,. According to our calculations, at distances
larger than ~ 3 gy the diagonal term T, is significantly larger in magnitude than the off-diagonal Ty,
indicating that the dominant contribution to the total kinetic energy in the case of Hy* comes from
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the quotient T,,/(1+S,), as shown by the plots in Figure 3. Thus, at bond lengths larger than ~ 3 g4y,
i.e., quite near the equilibrium distance of 2.5 a5 (when the orbital exponent is fixed at the atomic
value of 1.0 and the kinetic energy is effectively at its minimum) the contribution of the off-diagonal
kinetic coupling term T, is essentially negligible. Binding, i.e., the drop in kinetic energy, is effectively
due to the rapid increase in the overlap S;,. At smaller distances (in the region R < ~ 3 a¢) T, is no
longer negligible, indeed it is responsible for the repulsive kinetic energy contribution. The same
conclusions apply in the case of Hj, except the critical distance (where the repulsive effect of T,
becomes non-negligible) is smaller, ~ 2.5 ay. The effect of orbital contraction, i.e., optimization of the
exponent (, noticeable at distances smaller than ~ 4.5 ag in the case of H,*, is to increase the magnitude
of T,y (since Ty, = (3/2) that results in the observed increase in total kinetic energy.

P
0.25 1
0.20- p (antibonding)
0 . 1 5 B "I \“ I’! \“
0.10- A 'A\ s~ » (bonding)
0.05
0.00 fee== / N ~
1 T ondin
-0.05- . » (antibonding) A1l 9)
T T T T T T T II T T T T
32 0 1, 2 3zla

Figure 2. Total electron densities (p) of bonding (solid black line) and antibonding (dashed black line)
states of Hy* at R = 2.5 gy with C = 1 and corresponding interference contributions (p;), shown in red

and blue, respectively, as functions of internuclear coordinate z.

/au]
0.5

0.4 -
0.3+
0.2+

0.1+

0.0 1

'01 T T T T T T T T T T T T
0 1 2 3 4 5 6 R/a0

Figure 3. H,"(C = 1): Bond length dependence of the overlap S, kinetic energy matrix elements Ty,
and T, and the contribution Ty,/(1 + Sgp) to the total kinetic energy T.

Orbital contraction, as the data in Figure 1 and Table 1 indicate, results in further stabilization
of the molecules as well as ensuring that the Virial Theorem [34-36,105-107] is satisfied. As shown,
however, in Figure 4, full geometry and exponent optimization results in higher interference density
(difference between densities of molecule and contracted or quasi-atoms) in the bond region than
obtained with C = 1, as well as a correspondingly larger decrease in the density near the nuclei. Relative
to uncontracted H atoms (C = 1) the effect of orbital contraction in the molecule is a prominent increase
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in the density around the nuclei but also, to a lesser extent, in the bond region. As discussed above,
the effect is an overall contraction of the molecular wave function, hence density.

p(H, ¢=1.239)

Figure 4. Interference density in Hy™ for optimized exponent C = 1.239 and bond length Re = 2.0 ¢ (red
line), with nuclei at z = + 1 g, compared with interference densities for C = 1 and Re = 2.5 ¢ (black line)
and relative to H atoms with C = 1 (blue line) as functions of the internuclear coordinate z.

The physical origin of orbital contraction, in particular why it is limited to shorter internuclear
distances, is elucidated in detail in previous publications [58,59,83]. Briefly, the additional interference
density that results from orbital contraction brings about an additional interatomic kinetic energy
lowering, although at the expense of the intra-atomic contribution. Overall, however, the process
brings about a lowering in the total energy.

That a build-up of electron density in the bond region occurs has been long known, especially as its
existence can be illustrated via qualitative arguments or via low level hand calculations. Unfortunately,
it has been too tempting to conclude, incorrectly, that the energetic explanation of bonding must be
due to the extra charge in the bond region, i.e., its electrostatic attraction to the nuclei.

A more complete illustration of the magnitude and distribution of the interference density in Hy*
is provided by the contour map in Figure 5, which clearly shows the movement of charge relative
to the quasi (contracted) atoms as well as the sheet of zero p; that separates the regions of density
buildup and loss. The total charge Qr that is actually moved into the interatomic (bonding) region
can be computed by numerical integration [82,83] (although in the case of Hp* an analytic expression
has been derived [50] and subsequently also used by Schmidt et al. [58,59]). Using the numerical
information on the location of the zero pj sheet, it is also possible to compute the kinetic and nuclear
attraction energies associated with the charge movement, i.e., their values in the regions of positive
and negative py.

In summary, the buildup of electron density in the internuclear region beyond the quasi-classical
sum of the atomic densities, a quantum mechanical consequence of the constructive interference of
electron waves that are specified in terms of AOs, is a process that accompanies the formation of a
covalent bond. The buildup of density in the bond is not caused by, nor does it result in, a drop in
potential energy. Constructive interference is a precondition of electron delocalization, i.e., interatomic
electron flow, which results in a decrease in kinetic energy. An increase in the orbital exponent C on the
one hand results in a tighter electron density around the nuclei but also an increase in the interference
density in the bond region. Ultimately, it also leads to a shorter and stronger bond. While electron
delocalization leads to a drop in the (quantum mechanical) kinetic energy of the electron as well as
increased electrostatic attraction of the electrons to the nuclei (i.e., a lower potential energy), an increase
of the orbital exponent results in tighter, mostly atomic, contribution to the density. The latter brings,
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as envisaged by Feinberg et al. [51], an increase in the nuclear suction, as well as in the kinetic pressure,
i.e., a larger (more negative) potential energy of attraction and a higher kinetic energy.

Figure 5. Contour map of the interference density p; in the xz plane of Hy* at R = 2.0 ag and { = 1.239
(where z is the internuclear coordinate). The positive/negative contours (pr+/pr-) in red/blue are +0.002,
+0.004, +0.008, +0.016, and —0.032. The dashed lines represent zero p; contours. The nuclei (a, b) are at
(0, +1.0 110).

2.3. Intra- and Interatomic Contributions to Bonding Energies

An obvious advantage of constructing molecular wave functions ¥ in terms of AOs, i.e., ¢, and ¢y,
is that the molecular electron density and energies are readily decomposable into intra- and interatomic
contributions. Hence, the total molecular energy relative to its dissociation products is simply [58,59]:

AE = Eintra + Einter = lintra + Vintra + Tinter + Vinter . (10)

In the current case of Hy* and Hy, the intra-atomic kinetic and potential energies due to contraction
are defined as:

Tintra = nel(Cz - 1)/2 s Vintra = _nel(c - 1) s Eintra = Tintra + Vintra , (11)
since the energies of a H atom with wave function ¢(C) are:
T(H,0)=c*/2, V(H,() = -C. (12)

The interatomic components of the various energies are then the molecular kinetic, potential,
and total energies relative to the contracted atoms, i.e.,

Tinter (C) = (Y (O|T[¥(Q)) —naT(H,0), (13)
Vinter (€) = [(¥(O[Va + Vy + (1m0 = 1) V12 [¥(0)) + V] = malV(H,0) , (14)
Einter(C) = Tinter(C) + Vinter(C) ’ (15)

where T is the kinetic energy operator, Vy is the nuclear repulsion energy, V15 is the inter-electron
repulsion operator in Hy and V, and V, are the potential (nuclear attraction) energy operators.
The interference component of the kinetic energy, T7, is actually the same as the interatomic term, Tinger.
Clearly, increasing the orbital exponent results in a tighter AO, i.e., an increase in its kinetic energy and
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a corresponding decrease in its potential energy of attraction to the nuclei as summarized by the above
Equations (11) and (12).

The interatomic potential energy contribution for Hp* can be further resolved to quasi-classical
Vgc and interference V7 contributions, so that:

Vinter(Ha ") = Ve + V1, (16)

where:
Vge = %[(%(@W@(Q) +(Dp(O|Val(0))] + Vi (17)

The corresponding resolution for Hj is somewhat more complex as in addition to the quasi-classical
term Vg it includes two distinct types of interference terms V; and Vy; as well as a sharing contribution
Ve, which accounts for the increase in electron-electron repulsion energy that is induced by electron
sharing [58,59].

The computed intra- and interatomic energies of H,* and H; obtained using molecular wave
functions with optimized AOs, as summarized in Equations (10)-(15) are shown in Figure 6.
The interatomic energies are qualitatively the same as those obtained with C = 1 in Figure 1, in that for
both molecules at all distances R the interatomic potential energies are repulsive. The interatomic total
energy is attractive, except at small distances (less than ~ 0.8 ag in Hy™ and ~ 0.6 4 in Hj), due to the
interatomic kinetic energies being negative, i.e., attractive, at all separations. The repulsive total kinetic
and attractive potential energies that are observed as the AOs contract (see Figure 1) are entirely due to
the intra-atomic components, as described in Equations (11) and (12) and shown in Figure 6.

ol EIE, ,
: 0.44", H2
0.2 W\ inter " intra
“ 0.2
0.0+ 0.04
-0.2 4
-0.2+4
oV
04 inter intra
el g -0.4
Re
-0.6 T ! T T T 0.6 %' |e . : : :
0 ! 2 3 4 5 Ria, 0 1 2 3 4 5 R/a,

Figure 6. Intra- and interatomic energies of H,* and H, from molecular wave functions with
optimized C.

2.4. The Effects of Interference on Charge Movement and Energies

The interference density, pj, being the difference between the molecular electron density and
the sum of the constituent atom densities, reflects the charge rearrangement that occurs on bond
formation (see Equations (6) and (7) and Figures 2, 4 and 5). As illustrated in the contour map in
Figure 5, p; consists of a region of positive values (p4) in the interatomic i.e., bond region and a region
of negative values, the two separated by sheets of zero density. Integration of the charge density over
the p, region results in Qy, the total electronic charge transferred into the bond. (Note that positive
Qy corresponds to charge build-up, i.e., the negative sign of the electronic charge is not taken into
account). Integration of the analogous kinetic and electron/nuclei energy distributions yields T1; and
V1+ as well as V14 and V|, the sums of which result in the total kinetic and potential interference
energies T and V. The former is equal to the interatomic kinetic energy Tinter, While Vinter includes a
quasi-classical contribution in addition to the interference term, as given in Equation (16). The results
of the integrations are summarized in Figure 7 that shows the internuclear distance dependence of the
various terms discussed above.
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Figure 7. Interference terms for Hy™ with { optimized as functions of the internuclear distance R.

Black line: charge transfer Qr into the bond. Red lines: Kinetic interference energies. Blue lines:

Potential interferences energies. The contributions Ty, and Vi, from the density accumulation region

defined by p;+ (See Figure 5). Contributions T and Vi_ from the density depletion regions defined by

pi- (See Figure 5). The individual contributions are shown by dashed lines, while the totals, shown by
full lines, are the sums T+ + Ty— and Vi4 + Vi_.

As the nuclei move closer together there is a gradual increase in the charge transfer term, reaching
a maximum in the equilibrium region, after which there is a sharper decline to zero as the united atom
limit is approached. Clearly, the degree of interference, manifested in the amount of charge transferred
to the bond correlates with the strength of the bond, i.e., the interatomic component of the total energy
of the molecule. Regarding the kinetic/potential contributions to the latter, as expected, the largest
bonding contribution is due to the interference component of the kinetic energy, T7. In both regions,
i.e., pr+ and p;-, the kinetic energy contributions, (T1; and T7-) to Ty are negative, because of the
interference part of the wave function becoming smoother due to the delocalization of the molecular
wave function. In the case of the potential energy the loss of density from around the atoms results
in an increase of V_, while the charge transfer to the bond decreases V1,, although overall the total,
V1, remains positive, i.e., repulsive, at all distances. In summary, bond formation, i.e., the interatomic
energy being negative is due to the negative interference kinetic energy that can be traced to the
delocalization of the molecular wave function that is very much a quantum effect.

Although the above analysis has been illustrated for Hy*, the same arguments and conclusions
apply to H; as well as the covalent bonds of larger diatomic molecules, in particular to By, Cy, Ny, Oy,
and F, [58,59]. Using full valence space multiconfigurational self-consistent field (MCSCF) techniques
Ruedenberg and coworkers [58,59,83] demonstrated that the basic synergism between intra- and
interatomic energy changes in these larger diatomics are very similar to what had been observed in
H7_+ and Hz.

More recently, Ruedenberg and coworkers [97] have developed a quasi-atomic orbital (QUAO)
analysis, where the QUAO:s are rigorous counterparts to the bond forming hybrid orbitals and allow
straightforward analyses of bonding in a molecule, determining bond orders, kinetic bond orders,
hybridizations, and local symmetries. Of particular interest are the kinetic bond orders that provide
computationally efficient energy-based quantitative estimates of covalent bonding. The method
has been applied to a range of large systems, such as xenon containing molecules [98], the disilyl
zirconocene amide cation [99], and cerium oxides [100].

2.5. Spatial Analysis of the Density and Energy Changes on Covalent Bonding

The reasons for the decrease in the total molecular energy towards shorter bond lengths that
result from orbital optimization, are the critical differences between the electrostatic [24,36-39] theories
and Ruedenberg’s kinetic [49-59] theory of bonding. While the orbital exponent changes, as well as
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the corresponding decrease in the total energy, are modest, the changes in the kinetic and potential
components of the binding energy are quite large. The spatial analysis [81-83] that we have developed
and used for Hp* and H, seeks to identify in a very direct way the regions where the major density
and energy changes occur.

The essential elements of this approach are the study of density and density difference maps
of the kinetic and potential energy integrals (as well as density integrals). Thus the essential spatial
features and consequences of the electrostatic and the contrasting kinetic interpretations can be directly
compared. The method focuses on the spatial dependence of the density and energy integrals, whereby
a given property P is expressed in terms of contributions as summarized by the following equations in
the case of one-electron properties:

(P) = f ¥ P Ydxdydz = Z P, (18)

where:
Zp41f o0 0

P, = f f f Y*P Ydxdy } dz . (19)

Zn — 00 —00

Full details of the method as well as results obtained for H,* and Hj re available in our previous
papers [81,82].
The effects of orbital optimization are clearly evident in the difference maps, whereby the change
in property P is defined as:
AP = P(Copt) = P(C = 1). (20)

A comparison of the effects of the molecular and atomic contractions, i.e.,
AAP = AP molecule — APatoms, (21)

provides a relative measure of the atomic and molecular contributions of the density and energy
changes that occur on covalent bonding.

The molecular contraction results, as defined by Equation (20), computed for H, at the VB
level at the internuclear distance of 1.4 a;, where Copt = 1.1695, are displayed in Panel I of Figure 8.
The results clearly indicate that the effects of orbital contraction on the density of the molecule and
the corresponding kinetic, potential and total energy changes are greatest near the nuclei. Numerical
estimates of the intra- and interatomic changes are given in our previous work [82]. Approximately,
75 and 78% of the kinetic and potential energy changes, respectively that occur on contraction are
estimated to be atomic in nature. While orbital contraction does result in an increase in the density in
the interatomic region, the corresponding contribution to the total energy is essentially zero.

Comparison of the effects of contraction in the molecule with those in the free atoms (Figure 8,
Panel II) shows that there is a substantial increase in the interatomic region and a corresponding
decrease in the kinetic energy of the molecule. The drop in potential energy is however more than
cancelled by the increase in the intra-atomic region, resulting in a net antibonding contribution. Noting
that if we define the interatomic components of P with an arbitrary C as:

Pinter(C) = Pmolecule(C) - Patoms(C) ’ (22)

then:
AAP = Pinter(copt) - Pinter(c = 1) ’ (23)

i.e., the plots in Panel II of Figure 8 can be interpreted as the effects of contraction on the properties
of interest: density, kinetic, potential, and total energies. Thus, the decrease in total energy, brought
about by orbital contraction, is due to the drop in the interference component of the kinetic energy.
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These observations are in complete accord with the findings of Schmidt et al. [58,59], whereby orbital
contraction enhances delocalization, i.e., the transfer of electron density to the interatomic region that
results in a lowering of the kinetic energy and hence a lower total energy.

The above results clearly demonstrate that orbital contraction affects the density and energy
contribution from the immediate neighborhood of the nuclei and are contrary to the notion that
the increased stabilization due to orbital contraction is brought about by the interaction between
the increased charge density in the bonding region and the nuclei. The model, first suggested by
Ruedenberg and co-workers [49-59], that we should consider electron sharing between atoms with
contracted densities, i.e., quasi atoms, as the source of covalent bonding, is strongly supported by
these studies.
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Figure 8. Panel I: Molecular contraction at R = 1.4 gy, i.e., difference maps of integrated densities (p)
and kinetic (T), potential (V) and total energies (E) between Hy with Copt = 1.1695 and C = 1.0. Total
energy changes (/Ey): AT = 0.3007, AV = —0.3342, and AE = —0.0336. Panel II: Difference between
molecular and atomic contractions at R = 1.4 gy (as defined by Equation (21)). Total energy differences
(/En): AAT = —-0.0670, AAV = 0.0048, and AAE = —0.0623.

2.6. Covalent Bonding without the Virial Theorem: Non-Coulombic Analogues of Hy* and H,

The central plank in the electrostatic theory of bonding is the Virial Theorem [34-36,105-107] and,
therefore, in simple language, bonding occurs because the attractive potential energy stabilizes the
molecule in spite of the repulsive kinetic component. Counter-arguments, such as that in 2.1 above,
pointing out the effects of scaling, while accepted by some, have not been seen or taken seriously by
the majority of the chemical community. An alternative approach is to demonstrate that the existence
of covalent bonds is independent of the exact nature of the inter-particle potential and therefore not
dependent on the Virial Theorem [34-36,105-107] as we shall demonstrate below.

A simple alternative to a Coulombic potential is a Gaussian one where:

V(r) = 1024 exp(—arz) . (24)

Such a potential (where q1 and q2 are the interacting charges) is quite different from a 1/r Coulomb
potential, inasmuch as the latter has a singularity at the origin and decays quite slowly with  as r — oo,
whereas a Gaussian potential is short-ranged and harmonic at the origin. The infinite range of the
Coulomb potential enables it to support an infinite number of bound states, whereas the Gaussian
potentials used in this work support only one bound state. However, from the point of view of bonding
what is important is that the potential does give rise to a stable atom and hence molecules. A detailed
description of our comprehensive study on the Hy* and H; systems using Gaussian potentials has
been published elsewhere [83], so in this paper only the salient features of the work will be described.

In our previous work [83], we experimented with four different Gaussian potentials, ranging from
very weak (« = 0.25, A = 0.5) to very strong (o« = 2.0, A = 8.0), giving rise to atoms with electrons
that are bound accordingly, the ground state energies ranging from —0.019 to —1.568 Ey,. In this work,
we discuss just one of them, namely the (x = 0.5, A = 1.5) one, that gives an energy of —0.185 Ey,
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(in a basis of eight primitive Gaussians with exponents chosen as an even-tempered sequence [108]
(0.01(3*71),p=1,2... 8)). The exact energy (with Coulomb potential) is —0.5 Ey,. Scaling the resulting
AO by C (by multiplying the Gaussians’” exponents with (?) gives an AO with orbital exponent ,
so minimal basis computations on H,* and H; can be carried out, as discussed above, including
orbital optimization.

A one-dimensional illustration of the similarities and differences between the Gaussian and
Coulomb potentials and the resulting wave functions in H,* is provided in Figure 9. The important
double well nature of the Gaussian potential is obvious, as are the qualitative differences between
the two potentials, in particular the finite depth of Vg at the nuclei. Consequently, the most striking
difference between the wave functions is the absence of the nuclear cusps in Y. While the two wave
functions are qualitatively quite similar, the question is whether the energetic trends that occur on
covalent bonding are essentially the same.

/au
2_

-2 v

Coul

4 3 2 A 0 1 2 éz/ao
Figure 9. Gaussian (G) (« = 0.5, A = 1.5) and Coulomb (Coul) potentials of Hy* and the resulting

ground state wave functions (with C = 1 in both cases) at R = 4 a¢ as functions of the internuclear
coordinate z (x =y = 0).

The internuclear distance dependence of the computed energies for H,™ with the above Gaussian
potential is shown in Figure 10. The qualitative trends in the kinetic, potential, and total energies are
essentially the same as for the Coulomb potential (Figure 9), although there is a minor but noticeable
difference in the behavior of the potential energy. In the case of the Gaussian potential for fixed
orbital exponents, i.e., C = 1, the potential energy initially rises as the internuclear distance decreases,
but then it dips to a minimum (that is actually below the atomic value) before becoming strongly
repulsive. This behavior is much more accentuated for optimized orbital exponents. In the case of
the Coulomb potential, there is no minimum in the potential energy for C = 1 (see Figure 1). Thus,
irrespective of the potential used, molecular binding is almost entirely kinetic in origin when C = 1.
Further, the orbital contraction (C > 1), that occurs as the internuclear distance decreases, affects the
kinetic and potential energies the same way, irrespective of the potential used, resulting in large shifts
in both kinetic and potential energies. The corresponding net decrease in the total energy, however,
is quite modest. The equilibrium bond lengths are 2.58 ag for C = 1 and 2.47 ag for C optimized to 1.136.
The corresponding binding energies are —0.110 E, and —0.120 Ey,, respectively. Similar trends were
observed for the other Gaussian potentials, for both H* and H,.
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Figure 10. Energies of Hy* computed with Gaussian potentials (o = 0.5, A = 1.5). Results with
optimized and fixed (atomic) exponents are shown with full and dashed lines respectively. Total, kinetic
and potential energies are shown in black, red, and blue, respectively.

These results are obvious consequences of the strong dependence of the kinetic and potential
energy in an H atom as well as both molecules (H,* and H,) on small variations of the wave function,
such as contraction or expansion, irrespective of the nature of the inter-particle potential.

In our previous work [83], where a number of different Gaussian potentials were investigated,
we reached the general conclusion that, notwithstanding the marked differences in the distance
dependence of the energies of the various potentials, at a fundamental level they all exhibit the same
characteristics. Thus, in all cases, for both Hp* and Hj, just as for Coulomb potentials, the interatomic
component of the total energy, Ejnter is responsible for bonding. The dominant contribution is the
interatomic kinetic energy, Tinter, Which is equivalent to the interference component of the kinetic
energy, T1. As the latter is a wave mechanical quantity, it follows that covalent bonding is fundamentally
a quantum phenomenon, irrespective of the nature of the potential. The intra-atomic total energy,
Eintra, is invariably repulsive since the repulsive intra-atomic kinetic energy, Tintra, more than cancels
the attraction due to the intra-atomic potential energy, Vinta. The interatomic potential energies, Vinter,
are, however, mostly repulsive.

Hence, we can safely conclude that the mechanisms of covalent bonding in H,™ and H; are
the same, irrespective of the nature, Coulombic or Gaussian, of the inter-particle potential. Thus,
the Virial Theorem [34-36,105-107] is not required for bond formation and, in the case of the Coulombic
potentials, it is not the cause of bond formation.

2.7. The Dynamics of Electron Delocalization in H,*: Time-Dependent Description

All too often students visualize and think about covalent bonding as a static phenomenon,
where the shared electrons are located in-between the bonded atoms and act as “electronic glue.”
This is too literal an interpretation of Lewis structures, where the only role of quantum theory is to
replace Lewis’ shared electrons with electron clouds which are localized in the “binding” regions of the
molecule. The reality, although it may not be obvious from the standard time-independent calculations,
is that electrons are constantly on the move.

In this section, we discuss electron delocalization using the tools and language of time-dependent
quantum theory, which is at the heart of the dynamic description of covalent bonding to be discussed
more generally in Section 3 below. Our treatment concentrates on Hp* so as to make the concept of a
shared electron in Hy* particularly transparent.
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To keep the analysis as simple as possible, following Feynman [88], we treat H,™ as a two-state
system spanned by a minimal set of normalized AOs, ¢,, and ¢},. The eigenfunctions of the Hamiltonian
are the bonding and antibonding MOs, 1 and ¢, which are:

Vou = [2(1£S5)] 2 a £ ) - (25)

We assume that the nuclei a and b are sufficiently far from each other so that the overlap of the
AOs can be neglected, i.e., S;; = 0. The time evolution of any arbitrary time-dependent state |g0(r, t)) of
this system can be written in terms of the eigenfunctions 1; and ¢, as:

((p(r, ) = <¢g(r)|<p(r, 0)>exp(—iEgt/h))l,bg(r)> (26)

+ (Yu ()| (r,0) Y exp(~iEut/B)|Yu(r)) , (27)

where ‘go(r, 0)) is the initial (localized) state of interest, i.e., at t = 0, which we assume to be the AO |qba>
Thus, Equation (26) can be rewritten in the simple form:

)(p(r, )y = 2_1/2[exp(—iEgt/ﬁ)|gbg(r)> + exp(—iEut/ﬁ)|¢u(r))]. (28)

The decay and subsequent variation of the integrated probability density associated with nucleus
a, i.e., electron number 1,, in the Hilbert space spanned by {|¢1>= is described by the projection:

a(t) <¢u|<pru, )X (xa, £)] ba)
{‘exp zEgt/h)

=1 + |exp —lEut/h)|2 (29)
}1{ exp (Eu - Eg)t/ﬁ] + exp[—i(Eu - Eg)t/ﬁ]}
= % + Lexp(iAEt/h) + Lexp(~iAEt/h)
Ha(t) = %[1 + cos(AEE/H)], (30)
where:
AE = Ey—E; (31)

Thus, n, is a periodic function of time with a periodicity of 2nf/AE. The corresponding transfer
(tunneling) rate 771 (of the electron from one nucleus to the other) is therefore predicted to be:

AE
-1 et )
T — (32)
This is the standard formula for transfer rate in simple two level systems. Further:
AE(R) = Eu(R) ~ Eg(R) = 2[Eu(R) ~ En] (33)
= 2[Ey - E¢(R)] = 2B(R) (34)

where B(R) is the (positive) binding energy of H,*. We have found that Equation (25), and hence
Equations (33) and (34), are applicable at R > 4.5ay. At such distances therefore the electron transfer
rate has a direct dependence on the binding energy:

-1 _ 2B(R)
mh

T (35)

At shorter distances, where AE(R) > B(R), the transfer rate rapidly becomes larger than that
given by Equation (35).
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By way of illustration the computed transfer rates at a number of internuclear separations are
shown in Figure 11. At R = 8 g, the height of the Coulomb barrier is —0.5 Ey,, exactly the same as
the energy of an H atom. Electron transfer at larger distances therefore occurs by tunneling. As the
distance becomes smaller the transfer rate rapidly increases, as expected.
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Figure 11. Computed electron transfer rates (from Equation (26)) as a function of the internuclear
separation.

In Figure 12, we showed the probability densities calculated from the electron numbers n, and n,,
of Equation (31) at R = 84y, for a number of different times. Starting with the electron fully localized on
nucleus g, i.e., with density |qb,1(r) 2 , at subsequent times (200, 350, 450, 550, and 700 au) more and
more of the density appears on nucleus b, until at t = 900 au the transfer of density to b is complete.

N
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Figure 12. Time dependent H,* density p;(x, y,z) with x = y = 0 as a function of the internuclear
coordinate z at selected times (in au).

The important point, which the above analysis illustrates, is that the shared electron that
corresponds to the covalent bond in Hy* is not localized. Assuming that at an initial time t = 0
the electron is associated with nucleus a, we see that it does not remain localized on that nucleus,
but moves to nucleus b and back, i.e., executes an oscillatory behavior between the atomic centers.
This means that the ground state, which we normally refer to as stationary, is not localizable except in
the limit of infinite separation R, where there are two states of equal energy which we can represent as
left or right localizable, if we prefer. For any finite R the ground and first excited states are split by
an energy representing the rate of interatomic electron transfer of a localized electron. This means
that delocalization (electron sharing), as used in the Hellmann-Ruedenberg [40,49-59,83] energy
analysis of covalent bonding, is a dynamical process. The shared electron, in addition to moving
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in the proximity of one nucleus, will transfer to the other nucleus and back with a well-defined
periodicity. An average over all possible phases of that motion leaves the electron probability density
time-independent (stationary) but the electron is incessantly moving, as we know from its kinetic
energy. Further, the rate of electron transfer in the large distance regime, i.e., approximately for
R > 4.5a9, is determined by the antibonding-bonding energy splitting, which is predominantly kinetic
in character, since T, — T¢ > E; — E,. Indeed, the effect of potential energy is to reduce the electron
transfer rate, since at any distance V), — V; < 0. These observations underpin our previous analyses,
where we deduced that the kinetic energy has a critical role in the phenomenon of covalent bonding.

The spatial component of the Heitler-London wave function (Equation (2)) is symmetric with
respect to the permutation, i.e., interchange, of the two electrons. Thus each electron has equal
probability of being described by AO @, or ¢y, i.e., “being associated with” or “being on” either nucleus
a or b. The total (one-electron) density p(r) is actually readily shown to be:

p(r) = (1+8%) [03 + 62 + 2] (36)

Thus, the wave function (Equation (2)) and the corresponding density are delocalized and
symmetric (with respect to the exchange of nuclei). Moreover, the motion of the two electrons is
left-right correlated. That means that, loosely speaking, as one electron moves from a to b, the other will
move from b to 4, i.e., the flip-flop motion of the electrons, as described by Feynman [88], is correlated.
If we used a configuration interaction (CI) wave function, that, in addition to the Heitler-London
covalent terms (Equation (2)) would include ionic contributions as well, i.e.,

Y1 = ccov¥eov + Cion Fion » (37)
where cqov and cjo, are variational constants and:

Fion = [2(1+8%)] 72 (¢a(1)a(2) + b (1) 5 (2)], (38)

the time-dependent wave function would represent a flip-flop motion composed of a mixture of
in-phase (ionic) and out-of-phase (covalent) electron exchanges between the atomic centers. In other
words, it would allow for the possibility of both electrons being on nucleus a or b at the same time.

3. The Quantum Dynamical View of Covalent Bonding

Despite the rigorous analysis and arguments of Ruedenberg et al. [49-59,83] during the last
58 years, and its acceptance by many prominent scientists [60-87], the theory of covalent bonding,
as developed by Ruedenberg et al., is not universally known or accepted. Even among experts there
is continuing debate about the origin of bonding and Chemistry textbooks often present simplistic
outdated views of the physical origin of bonding or avoid controversy by only presenting facts and the
simplest quantum chemistry that can reproduce them.

The main reason for the apparent confusion and controversy is, we believe, the quantum
mechanical nature of the mechanism. In classical mechanics, the search for a ground state is a search
for the geometrical configuration of minimum (potential) energy. In quantum mechanics we search for
a ground state that’s described by a wave function, i.e., the state is effectively diffuse over geometries
and has both potential and kinetic energy. While the potential energy is minimized by a localized
state, the kinetic energy is minimized by maximizing spatial diffuseness. Moreover, the diffuseness
included in the ground state must be dynamically connected. All this is accounted for in the search for a
lowest energy solution of the Schrodinger equation, e.g., by the finite basis set method in Hartree-Fock
SCF or correlated calculations. It is easier, given our mainly classical experiences, to envisage the
minimization of potential energy than a total energy with a kinetic component, given its complex
relation to dynamics. This may explain some of the difficulty experienced in understanding covalent
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bonding, which, we claim, is related to reduction of kinetic energy and to interatomic electron dynamics
in molecules.

3.1. The Quantum Mechanics and Dynamics of Atoms

The role of quantum mechanics and its effect on electron dynamics is deeply embedded in
chemistry. For a long period in its early history chemistry was dominated by the search for elements
and its greatest early achievement was their ordering into the periodic table. This was incredibly
important because the properties of these atoms were found to be strongly variable, yet well predicted
by each atom’s place in the table. The periodic table, thus, displays clear and well defined trends in
atomic reactivity [75] and related properties, i.e., chemical periodicity [109]. The earliest discussions of
atomic reactivity and molecule formation were in terms of oxidation and reduction, i.e., the transfer of
electrons among bonded atoms according to valence numbers that were predictable from the place
of an atom in the periodic table. The whole structure of the table was related to the particularly
stable inert gas atoms and it was realized that molecule formation was contingent on the participating
atoms, by electron transfer (once electrons as particles carrying a well-defined charge were identified)
or sharing, approaching inert gas electronic structure, albeit around atomic centers with varying
“non-inert” nuclear charge.

It is clear, in hindsight, that the periodic table represented to the chemists an empirical form
of quantum mechanics long before this subject was born at the hands of Planck, Einstein, Bohr,
Schrodinger, Heisenberg, and many others. The structure of the periodic table, as we now know, is due
to quantum mechanics and its response to the spherical symmetry of the Coulomb attraction between
electrons and nucleus in the atom. This symmetry results in conservation of angular momentum
which, together with the approximate validity of the independent electron model (mean field or SCF
approximation) for many-electron atoms, produces the shell structure reflected in the periodic table.
Thus the conservation of angular momentum and spin are dynamical constraints on the motion of
electrons in atoms which produce strain, i.e., increase in the energy of an atom, which in turn translates
into its reactivity.

The presence and nature of these strains are reflected in the degeneracy of the ground state of a
given atom as seen in the Aufbau rules or in the full Russel-Saunders or j,j coupling degeneracy [110].
For example, the 3P 45 and 3P states of C, N, and O, respectively are 9-, 4-, and 9-fold degenerate
(according to the Russel-Saunders method in the absence of spin—orbit coupling). Degeneracy (number
of states d > 1 of the same energy eigenvalue), or near-degeneracy (small energy splitting between
a set of energy eigenstates), are closely associated with dynamical constraints such as conservation
laws or related barriers to motion, and thereby with reactivity in quantum mechanics. Reactivity
is low (or high) if it takes much (or little) energy to add, remove or restructure electrons from the
initial configuration by some external agent. If the ground state electronic structure of an atom is
degenerate and/or near-degenerate then the ability to respond to an external agent, e.g., in the form of
an approaching other atom, is proportionately enhanced [75,79,80].

We recall that if the electron-electron repulsion is neglected in atoms we get a hydrogenic model
of atoms in which the one-electron states are defined by the quantum numbers #, [, m, and s, where the
state energy ¢, (in Ey,), in addition to the atomic number Z (i.e., nuclear charge Zle|), only depends on
the principal quantum number #:

Z
en:—@,nzl,Z,?a,... (39)
The degeneracy is then 2(2! + 1) summed from [ = 0 to n — 1 which yields d,, = 2n. Thus, we have
shells of 2, 8,18, ... degenerate states. Hydrogenic atoms are hugely degenerate and reactive.
Allowing for the electron-electron repulsion in a simple mean field (SCF) approximation we

retain the approximation of independent electrons but the potential they move in is no longer purely
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Coulombic but screened Coulombic. A simple but quite good approximation for such potential is
(in Ey,) is:
Vatom (1) = ~[1+ (nz = 1) exp(=xr)]r™ = ~Zegr ™, (40)

where an optimized « (in ap~!) in the exponential screening term would be ~2 and 1z would be the
appropriate nuclear charge Z. Looking at this potential as a Coulomb potential with a separation
dependent nuclear charge Z.f(r), we note that this effective charge would be Z for small » but would
decrease to 1 (i.e., account for complete screening) for large . Now the energy of the one-electron
states would depend on the angular momentum quantum number ! but not on m and s. We would
get, as empirically known and used in the “Aufbau rules”, the energy ordering and degeneracies,

i.e., maximum occupancy (in parentheses) by electrons of both spin directions, i.e., ms = i% .

e15(2) < e25(2) < 32;7(6) <e3s(2) < 53]0(6) < e45(2) < €34(10) ... (41)

The degeneracy of 2(2] + 1) is now restricted to the 7, I-subshells and there is growing dependence
of the energy on /, the amount of rotation in the motion. We note that rotation tends to keep the
electron away from the stronger attraction at smaller r. This degeneracy of subshell energies results in
significant degeneracy of the corresponding electronic structures of the atoms which in turn reflects on
the reactivity of the atoms [79], still far less than that of hydrogenic atoms. Adding Fermi correlation
(often called exchange correlation—see below) between electrons of the same spin splits the Aufbau
states (according to Hund’s rule) favoring high spin states. This splitting is generally (but not always)
of smaller energy than that between subshells with less effect on reactivity but all lifting of degeneracy
and dispersal of nearly degenerate states serves to stabilize the system with respect to reactivity.
Only the inert gas atoms He, Ne, Ar, ... have nondegenerate and chemically very stable ground state
electronic structures.

Without constraints in the form of spin and angular momentum conservation, dynamics would
couple the degenerate states and increase the diffuseness, and lower the kinetic energy, resulting
in nondegenerate ground states for all atoms. Near-degeneracies have a similar but lesser effect
in proportion to the energy splitting. Thus the stabilities of the 'S atoms Be and Mg, atoms with
nondegenerate ground states, are not comparable with those of the inert gases because the energy
separation between the ground and first excited state is small for the former (within the same shell)
but large for the latter (excited state in a higher shell).

3.2. The Quantum Dynamics of Molecule Formation

As discussed above, atomic instability (alternatively called strain or reactivity) is due to the
presence of dynamical constraints which localize the electron dynamics and correspondingly the
energy eigenfunctions which reflect this dynamic localization [79,80]. Looking now at the situation in
the formation of Hy* we see a closely related bonding mechanism. At large separations R, the electron
is in one or the other of the two potential wells around the protons. Even if we conserve the spin there
is a two-fold energy degeneracy due to the lack of motion between the protons. By decreasing the
separation, a kinetic coupling sets in which, as we have seen in Section 2 above, gradually lifts the
degeneracy and stabilizes the molecular ion. A dynamical constraint in the form of a potential barrier
to interatomic motion is lifted as R decreases. The result is delocalization and stabilization proportional
to the frequency of interatomic electron oscillation. This has been shown in detail in the preceding
section for the standard minimal atomic basis set of two non-orthogonal functions. Thus bonding in
H,* is due to the lifting of a left or right localization of the electron and a corresponding lifting of
degeneracy which turns into near-degeneracy of decreasing significance (larger energy splitting) as R
decreases. We now consider what happens to this mechanism as we go to two electrons in H; and
then, in a simplified manner, to larger systems with three or more atoms.
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3.2.1. The Correlation Mechanism

In our treatment of H, above, we have encountered, but not elaborated on, the electron correlation
mechanism which has caused some complication in the treatment of molecular electronic structure
and bonding over the years. By choosing the VB wave function for H, we have accounted for the
correlation mechanism in perhaps the simplest way fully consistent with its nature. Our purpose
here is to explain why the simpler independent electron (SCF) approximation is not adequate in the
discussion of covalent bonding and how the correlation mechanism alters the dynamical mechanism
of covalent bonding.

The general statistical meaning of “correlation” is that two or more variables are not independent
but the probabilities of one of the variables are dependent on the state of the other. The full multi-variable
probability density then cannot be written as the product of probabilities of each variable. In quantum
chemistry, one talks of independent electrons or correlated electrons but the former are distinguished
by the ability to describe them by a wave function in the form of a (Slater) determinant of linearly
independent (usually orthonormal) spin orbitals. Such a determinant will satisfy the Pauli principle
of fermion statistics. This is the foundation of the Aufbau method of constructing atomic ground
states from atomic spin orbitals. It should be noted that independent electrons in this Aufbau scheme
can still show correlation in the statistical sense due to the fermion statistics and the determinantal
wavefunction, but, as discussed above and elaborated below, this is referred to as Fermi correlation or
exchange correlation and often not included in the term “correlation.” Fermi correlation operates only
between electrons of the same spin and it is therefore not present in the singlet ground state of Hj.
The other type of correlation, unfortunately, is often not further specified, and we shall refer to it as
Coulomb correlation. It is due to the Coulombic repulsion between the electrons. It acts in a pairwise
fashion between all electrons but its effect is generally strongest between electrons of different spins
because electron pairs of the same spin are already kept apart by Fermi correlation so only weaker
long range forces act to further distance electrons of the same spin from each other.

In the singlet ground state of Hy we have a pair of electrons of opposite spin, so Coulomb
correlation plays a major role. The VB wave function we have used in Section 2 is constructed
using non-orthogonal atomic basis functions, i.e., as a combination of covalent two-electron Slater
determinants, in order to keep the two electrons apart and reduce the Coulomb repulsion between
them. (It also ensures correct dissociation into H atoms). This type of Coulomb correlation included in
the VB wave function may indeed be called an electrostatic bonding mechanism. It certainly plays an
important role, which is why we chose to include it in our standard model for H, above, but it is not
the key to bonding as we shall see below.

The VB approach has been very popular as an empirical tool for the understanding of bonding
and molecular structure, but in ab initio applications the non-orthogonalities encountered in molecules
larger than H, have long dissuaded most computational chemists from using it. Instead molecule
formation and structure has been approached computationally by first assuming independent electrons
in the sense that a SCF wave function in the form of a determinant of orthogonal spin orbitals is assumed
and determined by some (orbital) optimization procedure, at a chosen molecular geometry [28,29].
The computation of correlation effects is then carried out in the basis set of the orthogonal occupied and
unoccupied (virtual) SCF molecular spin orbitals [111]. This second step (of accounting for Coulomb
correlation) is done in a basis of determinantal configurations formed by inserting virtual orbitals in the
ground state SCF determinant in place of originally occupied orbitals. These “excited” determinants
(single, double, ... excitations) then form (in addition to the SCF reference state) a many-electron
basis set in which the Hamiltonian can be diagonalized to find a correlated molecular ground state.
The basic term for this method is “configuration interaction” (CI) [111,112] but there are many insightful
variations on this basic scheme [111,113].

Following the usual SCF + CI approach to the ground state of Hj the first SCF step in the minimal
basis amounts to assigning one pair of electrons of opposite spin to the bonding (o,) molecular orbital
(MO) of Hy*. (In a minimal basis calculation on H; there is no SCF orbital optimization process).
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The electrons are moving independently so, in comparison with H,*, the strength of the delocalization
mechanism and, thus, the bond strength, are expected to nearly double in H,. There is an additional
electron-electron repulsion in Hj, even in the case of the correlated VB wave function. The data in
Figure 13, where the total energies of H, and Hy* (relative to their respective dissociated values) are
compared, bear this out. The stronger bond in H; also results in a shorter bond length. Comparison
of the MO, VB, and CI energy curves of Hj, as shown also in Figure 13, demonstrates that the VB
and CI energies are very close and both theories correctly describe dissociation. The MO curve, while
reasonably accurate at around equilibrium and shorter bond lengths, does not have the correct limiting
behavior as R — oo.
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Figure 13. The bond energy curves of Hj (relative to the energy of two hydrogen atoms) computed in a
minimal basis of two hydrogen AOs with a fixed exponent of 1, as obtained by the MO, VB and CI
methods (solid lines), and comparison with the energy curve of Hy* (dotted line)—all relative to the
energy of a H atom.

The reason for the non-physical behavior of the MO energies of Hj, as dissociation occurs,
is obvious on reflection. The independent electron motion will include covalent (electrons on different
atoms) and ionic (both electrons on the same atom) configurations with equal probability so there will
be substantial inter-electron repulsion as R — oo. The rate of interatomic electron motion, on the other
hand, will approach zero in this limit since there is a wide potential barrier to penetrate by tunneling.
Thus the basic covalent bonding mechanism is only dominant enough to yield good bonding at short
bond lengths but is weakened at large R to be overwhelmed by the inter-electron repulsion arising
between independently moving electrons.

In view of this “dissociation error” the key delocalization mechanism, which is given its maximal
expression in the SCF MO method, must be modified to a correlated form in order to reasonably
describe the whole bonding process as Hj is formed from two far separated hydrogen atoms. This is
not difficult and can be done well by use of either the VB or the optimized CI wave function which
both successfully describe the bonding from small to large bond lengths. The Coulombic correlations
present in the VB or CI wave functions correspond to a hole creation mechanism whereby one electron
avoids close encounters with the other. Since the Coulomb interaction is of long range, the hole created
can vary greatly depending both on the physical character of the system and the ability of the basis set
used to resolve its details. Coulomb correlation is a localization mechanism and we expect it to increase
the kinetic energy of VB or CI in comparison with MO wave functions in order to lower the potential
energy and hence the total energy. This is clearly seen in the data in Figure 14. As expected, the kinetic
energy (T) is lowest when computed by the uncorrelated MO wave function of Hj (in comparison with
the correlated VB and CI methods). The opposite holds for the potential energies. The net results are
the total energies shown in Figure 13. The Heitler—London (VB) wave function yields energies that
are superior (lower) to those obtained at the uncorrelated MO level and are only slightly worse than
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the CI ones. We note that the dissociation error implicit in the MO description of the ground state is
contained in the excess potential energy in the R — oo limit.
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Figure 14. Kinetic (left panel) and potential energies (right panel) of H, computed in a minimal basis
of two hydrogen AOs with a fixed exponent of 1, as obtained by the MO, VB, and CI methods (relative
to separated limit of two hydrogen atoms). The total H; energies in Figure 13 are the sums of kinetic
and potential energies shown here.

It may seem remarkable that the VB ground state, which can be written down so readily without
any other optimization than the exclusion of ionic configurations on physical grounds, can work so
well. One should note in this connection that the VB method has a subtle basis set dependence. It is
dependent on the overlap (non-orthogonality) of the atomic basis set used and is not invariant to a
rotation of basis within the same space as originally spanned. This can be seen by constructing a
VB-like wave function in terms of Lowdin orthogonalized AOs [114], ¢»; and ¢y, related to the original
non-orthogonal AO basis, ¢, and ¢y, via the transformation [80]:

®a = N(¢a— udp) , ¢p = N(Pp — tiha) - (42)
The constants are given by:
1/2
[u:(s—b”b),N:(l—ZtuSHh—l—tuz) ’ (43)
a

where S is the overlap integral <gbu( qi)h>
At this point, it is helpful to express the VB and CI spatial wave functions in terms of the bonding
and antibonding MOs, 1, and ¢, respectively:

‘FVB,CI = Cgll’g(le(Z) + Cuwu(l)lzbu (2) . (44)

The coefficients ¢; and ¢, are determined variationally in a CI calculation, but for a VB wave
function they are defined so as to eliminate the ionic contributions. They are:

¢ (VB) = (14 Sa)[2(1+ 83)] "%, cu(VB) = —(1-Su)[2(1 +3)] "~ (45)
The VB-like wave function (in terms of the orthonormalized orbitals) is, thus:
¥ =272[pa(1)@p(2) + pp(1)a(2)] = 271/ [ng(l)ng(Z) - 1#11(1)%(2)]1 (46)

which agrees with the true VB wave function in the dissociation limit as S, — 0. The potential, kinetic
and total energy curves of this proposed ground state wave function are shown in Figure 15. We see
that, while the potential energy curve is favorable to bonding, all semblance of covalent bonding
by delocalization and kinetic energy lowering has been lost and the total interaction is repulsive.
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It is not difficult to show that the use of an orthogonalized atomic basis set eliminates the flow of
electrons between atomic centers in the molecule. In doing so the key mechanism of covalent bonding
is removed and it does not help that the correlation produces a bonding potential energy. This shows
clearly: (i) the dominant role of interatomic electron motion and (ii) the dependence of the traditional
VB method on the non-orthogonality (overlap) of the atomic basis set which allows correlated electrons
to flow between atomic centers.
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Figure 15. The bond energy of the VB-like ground state formed from Léwdin orthogonalized AOs,
as given by Equation (46).

It is interesting to note here that the failure of a Heitler-London type wave function in terms
of orthogonalized atomic orbitals (OAOs) was discussed by Slater [115] in 1951. He noted that the
seemingly advantageous OAOs actually eliminated the minimum in the bond energy curve making it
purely repulsive. He showed that ionic configurations were needed to recover the bonding, i.e., CI,
and noted that, with respect to the energy, the resulting improvement over the original Heitler-London
wave function is minimal. Slater did foresee more difficulties overcoming the non-orthogonality
problems of the VB approach to molecular electronic structures and properties. What we have added
here is an exposure of the close connection of the atomic orbital overlap to the dynamical mechanism
of covalent bonding, i.e., the correlated interatomic electron motion which is captured in the original
but eliminated in the OAO extension of the Heitler-London wave function.

We emphasize that in the case of minimal basis calculations on H; (as done here) the basis set
dependence discussed above is limited to Heitler-London wave functions of ¥z symmetry. Thus,
the MO and CI wave functions and energies are invariant to any linear transformation of the MOs,
such as orthogonalization. In the case of the MO wave function, we noted that as the og and o, MOs
themselves are invariant to any linear transformation, the MO wave function ¢ (1)1 (2) is similarly
invariant. As the CI wave function is determined variationally in the basis of all Slater determinants of
Y, symmetry (only two in the current situation, as given by Equation (44), it is also invariant under
any linear transformation of the one-electron basis.

3.2.2. Exchange Correlation, Pauli Repulsion, and Extended Delocalization

We have seen so far in our study of H,* and H, how covalent bonding fundamentally arises by the
facilitation of delocalization of electron motion over the two atomic centers. The rate of the interatomic
transfer is directly related to, and therefore a measure of, the strength of bonding. At the same time
two localization mechanisms, orbital contraction and electron correlation (in H, and multi-electron
molecules in general), operate to reduce the potential energy at some lesser cost in increased kinetic
energy. These mechanisms persist for larger molecules as well, plus three more that contribute to
covalent bonding in larger systems: (a) Fermi (exchange) correlation, (b) Pauli repulsion, and (c)
extended delocalization (over more than two atoms).
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We first consider the Pauli repulsion and Fermi, or exchange, correlation mechanisms, both of
which arise when two or more electrons with the same spin are present. We know from the simple
Aufbau picture of atomic and molecular structure that there is a kind of repulsion between electrons
of the same spin going beyond the usual electrostatic repulsion and forcing them to occupy different
orbitals in the usual independent electron models. The origin of this exclusion of double orbital
occupancy for electrons of the same spin direction is the need for the total wave function to be
antisymmetric with respect to any pairwise electron interchange which in turn follows from the fact
that electrons, having odd spin, are fermions that obey Fermi-Dirac statistics. This is vital to the whole
Aufbau picture and to the behavior of electrons in atoms, molecules, and solids. The kind of “statistical
repulsion” which follows is often referred to as Pauli repulsion.

It is of great importance in connection with bonding and molecule formation to realize that the
obvious cost in energy of the Pauli repulsion also brings a reduction in energy due to the Fermi
correlation mechanism which reduces repulsion between electrons by a “hole creation mechanism”
due to the antisymmetry of the wave function. It is readily seen that, e.g., the spatial component of the
lowest energy triplet wave function of Hy:

3, = 272 (19 (2) - pu (e (2)] = [2(1- 82)] " “[0a(1)0(2) ~ $o(Da(2)],  (47)

vanishes if electrons 1 and 2 are both at the same point in space. As previously, ¢ and ¢, are the
orthonormal bonding and antibonding MOs constructed from the 1s AOs, ¢, and ¢, as specified
in Equation (25). Since the wave function is smoothly varying, this means that there is an extended
exclusion of the two electrons coming close. This is what is meant by the “Fermi correlation hole”
which arises among electrons of the same spin.

The energy of the triplet state is repulsive, as first found by Heitler and London [11]. Thus, as the
internuclear separation decreases the overlap integral S, becomes larger, and that is largely responsible
for the increase in the kinetic energy that is the main cause of the increasingly repulsive nature of the
energy. By way of illustration, the energies that were computed in the minimal basis of hydrogenic 1s
AOs with a fixed exponent of 1, are shown in Figure 16.
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Figure 16. The triplet (3Zg) state of Hy. The total energy (E), and its kinetic (T) and potential (V)
components (relative to the energies of two H atoms), are shown in black, red, and blue, respectively.
The blue dashed line corresponds to the magnitude of the electronic component of V. The energies
were computed in the minimal basis of hydrogenic 1s AOs with a fixed exponent of 1.

The critical contribution of the kinetic energy (T) to the repulsive total energy (E), shown in
Figure 16, is very clear. The small attractive contribution of the fotal potential energy (V) at distances
larger than ~ 0.8 ag makes a relatively small contribution to the total energy, while at smaller separations
the nuclear repulsion term makes an increasingly dominant contribution to the total energy. The distance
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dependence of the electronic components of the potential energy, i.e., the sum of the nucleus-electron
(Ve) and electron-electron (V,,) contributions to the potential energy is also shown in the diagram. So
as to make the comparison with the kinetic energy more transparent, it is the magnitude of this overall
attractive term that is shown, i.e., =(Vy;e — V). It should also be noted that the triplet wave function,
as given in terms of the AOs ¢, and ¢}, in Equation (47), and hence the energy, are invariant to any linear
transformation of the occupied orbitals, such as Lowdin or Schmidt orthogonalization (that yield ¢,
and ¢p) or the formation of bonding and antibonding MOs (¢ and v,,). It is well known that the energy
of an electron in an antibonding MO is higher than in the bonding one, due to the higher kinetic energy
of the latter. Thus, there is a net increase of antibonding character if both MOs are occupied. Pauli
repulsion is often described as the energy penalty associated with the orthogonalization of the occupied
orbitals. This association is more subtle (involving a cancellation of attractive electrostatic and repulsive
kinetic energy effects) than may be immediately apparent, but, certainly, if the non-orthogonality of the
AOs could be neglected then the Pauli repulsion would not appear.

It is our contention that the repulsion seen in triplet H, above can be called “Pauli repulsion”.
More generally, the use of the Pauli principle in the construction of atomic and molecular SCF
configurations is so familiar that we may forget that it is also responsible for the repulsion between
electrons of like spins, due to the requirement of antisymmetry of the total electron wave function. For
two interacting atoms this means that the bonding and antibonding MOs that can be constructed from
the doubly occupied AOs from different atoms are fully occupied. As during bond formation these
nominally non-bonding AOs overlap, i.e., the atomic electron densities are allowed to interpenetrate,
the net result is an increase in the electrons’ kinetic energy, which generally more than cancels an
electrostatic binding energy and results in an overall repulsion. The SCF interaction energies for the
helium, neon and argon dimers, as shown in Figure 17, illustrate the situation. Use of SCF theory
is justified for the study of pure Pauli repulsions. Computations at the correlated coupled cluster
[CCSD(T)] level of theory have yielded essentially identical results, although they do resolve the small
attractive minima [116] due to dispersion.
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Figure 17. Helium (in black), neon (in red), and argon (in blue) dimers: total interaction energies (AE),
shown in full lines, computed at the simple mean field (SCF) level of theory using the correlation

consistent triple zeta basis sets. Comparison with the respective potential (-~AV) and kinetic components
(AT-AE) shown by dashed lines.

As in the case of the triplet state of Hy, Pauli repulsion between electrons of the same spin is an
antibonding mechanism which is overwhelmed by a larger covalent bonding mechanism in case of
open shell atoms, such as N, O, or F. However, in the case of two rare gas atoms, where the bonding and
antibonding MOs are fully occupied, no covalent bonds exist in the sense that the numbers of bonding
and antibonding electrons are equal and cancel in the bond order. Pauli repulsion is responsible for the
“steric size” of inert gas atoms such as helium, neon, argon etc. It is also responsible in essence for
defining the steric size and shape of stable molecules.
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For larger covalently bonded molecules than we have studied in detail here, such as N, and F;,
the Pauli repulsion provides an important antibonding mechanism of kinetic energy character that
must be accounted for in any model of the covalent bond. In F,, in particular, Pauli repulsion is often
claimed to play a very important role in producing a bond strength far weaker than expected given the
well-known high reactivity of the fluorine atom. In a fluorine atom, there are six nonbonding valence
electrons, as well as two core electrons, all of which will contribute to Pauli repulsion in F,, but only one
valence electron which can participate in covalent bonding by interatomic transfer. The net result of
Pauli repulsion and covalent attraction by electron delocalization is that the bond in F, is unexpectedly
weak and the bond length long. In the case of Ny, there is obviously a stronger bond, due to less Pauli
repulsion as well as a total of six bonding electrons resulting in a greater presence of delocalization
attraction, yielding the well-known triple bond, one of the strongest bonds known.

The separation of a total bond energy into relevant components among which Pauli repulsion
and delocalization stabilization appear, is, however, a delicate matter, given the compensatory nature
of kinetic and potential energy effects seen already in our inert gas dimers above. The energy
decomposition analysis (EDA) that has been proposed and extensively explored by Frenking and
coworkers [87,102-104] offers a way of computing individual contributions to the total interaction
energy of a molecule relative to its component fragments. It considers bond formation as a result of
a three-step process: (1) classical electrostatic interaction, (2) repulsion by application of the Pauli
principle, and (3) optimization of orbitals in SCF or DFT that will allow for interatomic delocalization
i.e., covalent bonding. While the sum of the individual energies corresponds to the actual bond energy
of a molecule, the component energies, including what is regarded as the Pauli repulsion in step 2,
are obviously dependent on the decomposition technique used. This form of EDA does not seek to
account for all potential-kinetic compensation as we have in our discussion of triplet H, and inert
gas dimers above. Nevertheless, the analysis demonstrates, e.g., in the case of N, that the individual
electrostatic and kinetic effects are very large but counteracting, leaving the dominant attractive
contribution to come from the orbital optimization in the last step that includes full interatomic
delocalization. This is consistent with our view that the triple bond of the N; molecule is associated
with the delocalization of the six valence electrons of the two nitrogen atoms.

It follows from our consideration of the Pauli principle above that in Hartree-Fock theory, which is
the basis for our MO model above, there is an electron correlation mechanism, often called exchange,
automatically included with no extra cost in kinetic energy, but it acts only between electrons of the
same spin. Thus it has not been encountered in the ground states of H,* and H,. We can see the effect
of this in the triplet state of H, above, where the two electrons are of the same spin and they are kept
apart not only by the VB nature of the two configurations, but also by the interference effects between
them which keep the electrons apart beyond the Coulomb correlation in the singlet VB ground state.
Thus we distinguish between two correlation mechanisms: Coulomb correlation, as in the singlet VB or
CI representation of Hj, and Fermi correlation (or exchange correlation), as in triplet H,. The latter is
automatically included in any SCF-MO wave function by virtue of the antisymmetric nature of the total
wave function, as it is a Slater determinant of spin orbitals. The effect of Coulomb correlation on the
total energy is typically smaller (in absolute magnitude) for molecules larger than Hj, but nevertheless
important to the behavior of the valence electrons and therefore to bonding. Coulomb correlation
among electrons is the subject of numerous approximations of ever improving accuracy in quantum
chemistry [111-113].

Finally we shall consider the delocalization mechanism as extended over more than two atomic
centers. This is a subject which is well illustrated in the Hiickel theory of m-electrons in planar
conjugated hydrocarbon molecules [19,20,117]. It is well known experimentally that such molecules,
like butadiene, CH,=CH-CH=CH,, acquire an extra stability by the ability of the m-electrons to
delocalize over the whole chain of four carbon atoms rather than only over a pair of carbon atoms as
would seem to be the case in our formula for the molecule. This extra stability is well reproduced by
the empirical Hiickel theory known to most chemists [20,117]. An even better example is the benzene
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molecule C¢gHg where the extended delocalization of the 7-electrons is over a regular hexagon of six
carbon atoms [19]. We have recently used the Hiickel theory to explain the role of delocalization
dynamics in covalent bonding [80]. The salient point is that delocalization extended over more than two
atomic centers often, but not always, leads to further stabilization of the molecule. This is exemplified
by the aromatic molecules of organic chemistry. The further stabilization by extension of the electron
flow from a pair of atoms to a larger molecular network of atoms is due to the same basic preference
for diffuseness in a quantum mechanical ground state that is seen in ordinary pair bonding of atoms,
such as in Hj. It is an empirical confirmation of the role played by inter-atomic electron motion,
between pairs, in chains or rings, of atoms, in covalent bonding. It is the key to covalent bonding in all
its forms.

4. Discussion and Conclusions

Quantum mechanics can be elusive. When we generate a solution to the Schrédinger equation
to work out a ground state for a molecule and its energy we end up with a wave function for the
electrons. On squaring it we obtain a probability density for the distribution of electrons around the
atoms. Thus, we can visualize the electron density and see the molecule as a set of joined up fuzzy
balls. The ground state is said to be stationary, meaning that the physical properties like probability
densities and electron densities are constants, i.e., do not change with time. With such a stationary
object in mind, “seeing where the electrons are”, it is easy to understand that many chemists have been
looking for the origin of covalent bonding in the electron density difference between molecule and its
constituent atoms. This readily leads to the bonding models based on electrostatics, that concentrate on
electrostatic interactions and the changes that occur as a molecule forms. The Virial Theorem (whereby
there is always a decrease in the total potential energy as a molecule forms, despite the repulsive nature
of the kinetic energy) appears to support such models as the way to understand covalent bonding.
Many great scientists like Slater [36], Feynman [37], and Coulson [24] can be cited in support of the
view that covalent bonding is due to favorable electrostatic interactions in the molecule formation.

The great contributions of Hellmann [40] and then Ruedenberg and co-workers [49-59,73,83] were
to focus attention on the role of quantum mechanical kinetic energy in the energetic analysis of covalent
bonding. The electrons, as fuzzy clouds around the nuclei of the molecule, have kinetic energy, not only
(electrostatic) potential energy. The interatomic delocalization that is implicit in molecule formation,
i.e.,, bonding, invariably leads to a lowering of the electrons’ kinetic energy (that more than outweighs the
antibonding effect of the potential energy). Hellmann [40] and Ruedenberg [49-59,73,83] argue that the
behavior of the electrons’ kinetic energy is the quantum effect that yields covalent bonding. In tandem
with the interatomic changes there are intra-atomic energy shifts as well, due to orbital contractions
that become prevalent in the equilibrium region. As the changes in intra-atomic components of the
kinetic and potential energies on contraction occur in opposition to the interatomic ones, the total (intra-
plus interatomic) energy changes are in accord with the Virial Theorem. Ruedenberg has had a long
battle to convince the scientific community to agree with this view of covalent bonding, as being due
to the interatomic decrease of kinetic energy in response to the interatomic delocalization of valence
electrons. The main problem has been with the interpretation of the Virial Theorem [34-36,105-107],
i.e., to accept that it does not refute the kinetic energy argument provided the intra-atomic orbital
contraction effects are recognized. The latter effects represent a minor contribution to bonding but
are not the origin of it. We entirely agree with this analysis and have consistently supported it in
our own research, as summarized in Section 2 above. In particular, we have collaborated with Klaus
Ruedenberg [83] to show that the covalent bonding mechanism is not confined to systems of particles
interacting by Coulombic potentials and therefore the Virial Theorem [34-36,105-107] (that holds for
Coulombic particles) is not required for bonding, nor is it the cause of bonding in Coulomb systems.

The fact that the kinetic energy is the key to covalent bonding tells us already that bonding is
a dynamical phenomenon. We have stressed in our earlier work and above that an understanding
of covalent bonding from a dynamical point of view is complementary to that of an energy analysis
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and helpful in both assessing simplified physical bonding models and in seeing the mechanism in
its deepest and most general form [80-82]. It is an important feature of quantum mechanics that it
offers a number of dualities of representations. Perhaps the particle-wave duality is best known but
there is also a coordinate-momentum duality. As it turns out, quantum mechanics also offers a duality
of representations in terms of either energy or dynamics, which is important for the understanding
of covalent bonding. These representations are also mathematically much closer than one would
understand on the basis of classical mechanics. As we see in Equations (26)—(35) that describe the
oscillation of the initially localized electron in H, ™, if we know the energy eigenfunctions and their
energies, then the time-dependence is trivially predicted for all times. This is a general fact in quantum
mechanics and it gives us a direct link between the energy and dynamical representations of a
phenomenon. It follows that if we have a non-degenerate ground state which is delocalized, then the
electron dynamics is delocalized and, as we have shown above, this gives rise to a covalent bond in
H,* with a bond strength proportional to the energy spacing between the bonding and antibonding
states. In turn, this bond strength is proportional to the frequency of interatomic oscillation of the
localized electron of minimal energy.

We have shown that this basic dynamical mechanism of covalent bonding is accompanied by
an orbital contraction mechanism and, in Hj, also by an electron correlation mechanism, which both
are of an electrostatic character in that potential energy is decreased at the expense of an increase in
the kinetic energy. They are, however, both generally of smaller magnitude and their presence is a
consequence of the main dynamical delocalization mechanism without which covalent bonding would
not arise. We claim that this picture of one main kinetic and two supportive electrostatic mechanisms,
all of them clearly related to the character of electron motion, remains valid for larger covalently
bonded molecules.

Feynman [88] first proposed this dynamical mechanism as being the essence of covalent bonding.
We have elaborated on this idea [79,80], starting from an analysis of the failure [43-45] of the
Thomas-Fermi theory [41,42], the first density functional theory, to describe bonding. The clarity
afforded by the dynamical analysis has consequences for both simple physical bonding models as well
as the most fundamental bonding theory of Chemistry. The best example of the former is the Lewis
model [1] with its extension to the VSEPR model of molecular geometry [118,119]. In these models,
electrons are arranged as dots around atoms or in-between pairs of atoms. Students easily get the
impression that the valence electrons are static charges interacting with static nuclei screened by core
electrons, but we must understand that the electrons are never still but always moving and the key
to understanding bonding is that the “shared” electrons move between the bonded atomic centers.
In the same way the empirical valence bond (VB) picture of atoms [16] connected by Heitler-London
type covalent bonds [11] should be understood to be showing us molecular networks of atoms that
exchange electrons pairwise through the bonds but may also allow further delocalization, i.e., valence
electron flow over chains or rings of atoms.

Finally, the dynamical mechanism of covalent bonding provides a link to the basic concept
of atomic reactivity which is a necessary prerequisite for bonding and molecule formation [75,79].
Atoms are reactive because their ground state structures are strained by dynamical constraints in the
form of conservation laws for spin and angular momentum. Such strains are minimized in inert gases.
Interatomic electron motion in molecules allows an approach to inert gas configurations, as envisaged
in the early Lewis—Kossel-Langmuir theories [1,4-8]. Seeing bonding from the two seemingly different
aspects, energy and dynamics, we recognized that both provide accurate and complete representations
of the quantum mechanical reality. However, it is the combination of the two that allows the covalent
bonding mechanism to be most completely understood and described.
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Appendix A
Table A1l. Atomic units used in this work and their relation to SI units: [120].
Atomic Unit Relation to SI
charge density, p au = ea53 ~1.08120x 10712 Cm™3
electric charge, Q proton charge, e ~ 1.60218 x 1071 C
energy, U hartree, Ej, = K2/ mga% ~ 4.35975 x 10718 ]
length, 1 bohr, ag = dmegh/mee? = 529177 x10"H m
mass, m electron mass, m, ~ 9.10939 x 10731 kg
time, t au of time = h/Ey ~ 241888 x 10717 s
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