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Abstract

Effective cognitive training must improve cognition beyond the trained domain (show a transfer 

effect) and be applicable to dementia-risk populations, e.g., amnesic mild cognitive impairment 

(aMCI). Theories suggest training should target processes that 1) show robust engagement, 2) 

are domain-general, and 3) reflect long-lasting changes in brain organization. Brain regions that 

connect to many different networks (i.e., show high participation coefficient; PC) are known to 

support integration. This capacity is 1) relatively preserved in aMCI, 2) required across a wide 

range of cognitive domains, and 3) trait-like. In 49 individuals with aMCI that completed a 

6-week visual speed of processing training (VSOP) and 28 active controls, enhancement in PC 

was significantly more related to transfer to working memory at global and network levels in 

VSOP compared to controls, particularly in networks with many high-PC nodes. This suggests 

that enhancing brain integration may provide a target for developing effective cognitive training.
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Introduction

Cognitive training is seeing growing use in populations with diverse cognitive abilities (Hill 

et al., 2017; Lampit et al., 2014; Tang et al., 2019). Improvements in the trained domain 

have been demonstrated robustly in older adults for whom the aim is to prevent or slow 

cognitive decline, especially in the context of dementia (Gates et al., 2019). However, 

for cognitive training to be maximally clinically useful, it needs to result in benefits to 

cognition more broadly beyond the trained domain: i.e., to show a transfer effect, and to 

be feasible in individuals at higher risk for dementia who may already be showing signs of 

cognitive decline. It has been proposed that transfer relies on the training of processes that 

are common across trained and untrained domains resulting in changes in brain architecture 

that go beyond purely task activation patterns (Lovden et al., 2011). However, empirical 

findings suggest that these common processes need to show robust engagement, which is 

often absent in older adults and those at-risk for dementia (Dahlin et al., 2008), to result 

in transfer. Taken together, these findings suggest that, to have maximum clinical utility, 

cognitive training programs should target neural processes that 1) show robust engagement 

in those at-risk for dementia, 2) are domain-general across a range of cognitive processes, 3) 

reflect sustained changes in brain architecture. Identifying neural processes that meet these 

criteria is a key step in understanding how best to develop training programs that will cause 

transfer in individuals at-risk for dementia.

A key at-risk group is older adults with amnestic mild cognitive impairment (aMCI), who 

have a significantly elevated risk of progression to Alzheimer’s disease (AD) (Sperling et al., 

2011), show signs of impairment predominantly in memory-related processes (Hirni et al., 

2013), and demonstrate pathology in memory-related regions (Braak et al., 2000; Palmqvist 

et al., 2017; Vogel et al., 2020). Studies have shown significant differences in how older 

adults with aMCI engage cognitive processes (Li et al., 2015), with important implications 

for cognitive training. Regions engaged during visual attention (i.e., those in visual and 

attention networks) appear to be the least functionally different in aMCI, suggesting they 

may represent a potential target for effective cognitive training. Tasks that rely on Processing 

Speed and Attention (PS/A) are known to activate these regions, suggesting they meet the 

first criteria for effective cognitive training in aMCI. However, while training using these 

tasks has been shown to improve trained domains in individuals with aMCI, there is limited 

evidence of transfer to memory-related domains (Miotto et al., 2018; Rosen et al., 2011). 

Directly analyzing sustained, domain-general brain mechanisms responsible for transfer in 

specific individuals following training using these tasks may provide a means of determining 

how to enhance transfer effects in the population as a whole.

Recently there has been a shift towards understanding neural function in terms of brain 

topology rather than analyzing specific regions in isolation. Research has shown that 

an individual’s brain topology shows trait-like properties (i.e., is reliable over time and 
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individual-specific) (Finn et al., 2015; Gratton et al., 2018), and relates robustly to their 

cognitive traits, including in older adults at various stages of cognitive decline (Avery et al., 

2020). Brain topology therefore reflects a key target for the identification of long-lasting 

brain mechanisms that can be exploited to improve transfer effects of cognitive training in 

individuals with aMCI. One potential mechanism involves the capacity of the cerebral cortex 

for integrating information across a range of cognitive processes via connections that link 

functionally specialized networks. Recent research suggests this capacity can be understood 

by studying Participation Coefficient (PC; how divese a brain region’s connections are to 

different functionally specialized networks) and that cortical networks containing many high 

PC nodes are particularly important for supporting the integration of information (Bertolero 

et al., 2017). Cortical networks that include many high PC nodes could facilitate effective 

transfer of training using PS/A tasks because 1) these networks are robustly activated by 

PS/A tasks in aMCI (Li et al., 2015), 2) high PC nodes in these networks are critical for 

a wide range of cognitive processes (Warren et al., 2014), and 3) PC reflects a property 

of brain architecture with relatively high test-retest reliability, suggesting changes may 

persist over time (Du et al., 2015). Importantly, preliminary research suggests that training 

using PS/A tasks causes an increase in functional connectivity between regions within these 

networks (Ross et al., 2019) in healthy older adults, suggesting the potential for improving 

PC in these regions via tasks involving PS/A.

Using a randomized controlled trial design, we examined the underlying brain mechanisms 

of transfer effects by looking at cortical network-level PC in participants with aMCI 

that completed a 6-week VSOP (vision-based speed of processing) cognitive training 

that is vision-driven PS/A-oriented, in comparison to an active control group engaging in 

computerized mental leisure activities (MLA) of Sudoku, cross-word puzzles, and solitaire. 

We collected behavioral data on trained (Useful Field-of-View; UFOV) and transferred 

cognitive domains (working memory and episodic memory), as well as brain imaging 

data on resting-state and a PS/A task related fMRI immedilatey before and after 6-week 

intervention. We hypothesized that transfer to untrained domains in older adults with aMCI 

would relate to increased network PC in specific networks including large numbers of 

high PC nodes that are robustly activated by VSOP training. By assessing the interaction 

of group-by-neural change, we wanted to assess whether enhanced network PC in the 

intervention group specifically was related to increased transfer effects. We expected to see 

the effects of network PC particularly in networks with high PC nodes that are activated by 

VSOP training, such as ventral and dorsal attention, and frontoparietal networks (Bertolero 

et al., 2017). We also tested whether changes of network PC mediated the relationship 

between trained and untrained domains.

Results

By capitalizing on a vision-driven PS/A-oriented 6-week intervention in 84 older adults 

with aMCI and applying whole-brain graph theoretical methods to functional connectivity 

data acquired using resting state fMRI, we examined the underlying neural mechanisms 

of transfer effects induced by cognitive training. We randomly assigned participants into 

VSOP intervention and MLA control groups at a 2:1 ratio. Sample characteristics are in 

Table 1. There were no significant group differences in baseline characteristics. To study 
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the intervention effect, we only included participants who had both baseline assessment and 

assessment immediately after the intervention period (VSOP: n = 49; MLA: n = 28). For 

each individual the T1 image was parcellated into 3661 network nodes using FreeSurfer 

and the SBCI pipeline (Cole et al., 2021) and then a 3661 by 3661 functional connectivity 

matrix was generated for baseline and post-intervention respectively. Fig. 1A left shows an 

example of the mean functional connectivity matrix for the whole group at baseline. We 

assigned each node to one of the seven large-scale functional networks defined by Yeo et al. 

(2011) (Fig. 1A right). To assess the sparsity of the functional networks, we calculated the 

density as the ratio of the number of positive fc edges with respect to the maximum possible 

edges for each participant at baseline. Then we averaged density across all participants to 

obtain the group mean density. The group mean density is 49% for the whole brain, 42% 

– 62% for between-networks, and 63% – 80% for within-networks (Supplemental Figure 

1). Using these pre-defined networks, we calculated PC: nodes with functional connectivity 

to only nodes from their own network have a PC of 0, while nodes with many distributed 

between-network connections would have a PC closer to 1. We measured network PC by 

calculating mean PC across all nodes within a network and similarly averaged across all 

nodes for global analyses (see Fig. 1B for a schematic depiction). We hypothesized that 

transfer effects would relate to increased PC across large-scale brain networks after training, 

particularly in networks with more high-PC nodes (e.g., network C in Fig. 1B).

Training effect on trained and untrained cognitive domains

To test whether VSOP training resulted in improvements in trained (UFOV) and untrained 

domains (working memory and episodic memory), we calculated the group difference in 

reliable improvements, where a participant was classified as having improved reliably if 

their performance at a follow-up occasion exceeded baseline performance by 1 SEM of 

baseline data (cf., ACTIVE trial (Ball et al., 2002)) (Fig. 2, see Method section for details). 

Significant between-group differences that were higher in the VSOP group relative to MLA 

included: UFOV from baseline to post-test (g = 0.51, χ2 = 7.07, p = 0.008), working 

memory from baseline to post-test (g = 0.22, χ2 = 3.93, p = 0.048). These results suggest 

that VSOP training leads to improvements in working memory. There was no significant 

effect of VSOP training on episodic memory.

Baseline measure of task activation and PC

To confirm that PS/A tasks similar to those used in our cognitive training program robustly 

activate regions in networks that include high-PC nodes in aMCI, we measured brain activity 

during a visual attention task across both groups at baseline and calculated percentages of 

significant voxels within each of the 7 Yeo networks (Fig. 3A). In addition to unimodal 

sensory networks (visual and sensorimotor), results showed that the visual attention task 

activated regions in higher-order dorsal attention (DAN), frontoparietal control, and ventral 

attention networks (VAN) including important high-PC nodes (Bertolero et al., 2017) such 

as the insula (VAN), dorsal anterior cingulate cortex (VAN), dorsolateral pre-frontal cortex 

(FPCN), and superior parietal cortex (DAN) (Fig. 3A). This suggests that performance on 

this task robustly engages high-PC networks in aMCI, in line with studies suggesting they 

are relatively preserved in these individuals (Li et al., 2015). Previously studies suggest that 

while diverse club connectivity is relatively spared in aMCI, certain topological properties 
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of these regions may show differences to healthy older adults (Xue et al., 2020). To assess 

the spatial pattern of high-PC nodes in individuals with aMCI, we plotted the top 20% 

nodal PC (high-PC nodes, Bertolero et al. (2017)) across both groups at baseline (Fig. 3B). 

In line with studies in younger adults, we found highest numbers of high-PC nodes in the 

limbic, frontoparietal, and both attention networks, and lowest in the visual and default 

mode networks, suggesting preservation of PC distribution in aMCI (Bertolero et al., 2017), 

and confirming the importance of the frontoparietal and attention networks that are robustly 

activated by visual attention tasks in our sample for integration across multiple networks. 

To assess the extent to which PS/A tasks similar to those used during training activated 

high-PC nodes defined using our sample, we calculated the percentage of high-PC nodes 

that were significantly active during the PS/A task, and found that 51% of these nodes were 

significantly active. This suggests that these tasks are relatively well-suited to engage these 

nodes, although future research may be needed to identify ways of improving these tasks so 

that they activate a greater proportion of high-PC nodes.

Relationship of brain PC with VSOP-induced trained and transferred effects

To test our hypothesis that increased PC related to greater improvement in the untrained 

working memory domain in the intervention group (i.e., VSOP) compared to the control 

group (i.e., MLA), we conducted GLM models (Change of Cognition = β0 + β1 Group + β2 

Change of PC + β4 Change of PC × Group + ԑ) at global and network levels. We expected to 

see significant interaction effects for Change of PC × Group.

For the trained domain, relative to MLA, greater improvement in UFOV was weakly 

associated with greater increases in global PC score following VSOP training (B = 7.80, 

SE = 4.08, Wald’s χ2 = 3.66, p = 0.056). When examining the effect related to network PC 

scores, the somatomotor network (B = 9.91, SE = 3.09, Wald’s χ2 = 10.32, raw p = 0.001, 

FDR-adjusted p = 0.007), ventral attention (B = 15.51, SE = 5.19, Wald’s χ2 = 8.95, raw 

p = 0.003, FDR-adjusted p = 0.015) and frontoparietal (B = 12.28, SE = 5.12, Wald’s χ2 = 

5.77, raw p = 0.016, FDR-adjusted p = 0.037) networks shows significant relationships to 

trained-domain improvements after FDR correction (Fig. 4A). To additionally ensure these 

results were not driven by changes in head motion that are known to affect resting state 

FC-associated measures, we conducted paired t-tests and found no significant change in any 

of the six head motion parameters in either the whole sample or training group. We also 

included participant change in the six head motion parameters from pre- to post-training 

as covariates in these analyses. Including motion did not alter these results, with the same 

networks surviving FDR-correction, although the relationship between change in global PC 

and UFOV improvements was significant after including head motion parameters (B = 8.83, 

SE = 4.13, Wald’s χ2 = 4.56, p = 0.033).

In line with our hypothesis that increased PC relates to greater transfer effects of cognitive 

intervention, compared to MLA, greater improvement in working memory was associated 

with enhanced global PC score following VSOP training (B = 17.91, SE = 5.07, Wald’s χ2 

= 7.71, p = 0.020). When examining the effect related to network PC scores, the strongest 

effect was observed in the ventral attention network (B = 30.88, SE = 8.05, Wald’s χ2 

= 9.70, raw p = 0.002, FDR-adjusted p = 0.014), with dorsal attention (B = 21.87, SE = 
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9.61, Wald’s χ2 = 5.17, raw p = 0.023, FDR-adjusted p = 0.049), frontoparietal (B = 23.27, 

SE = 9.71, Wald’s χ2 = 5.74, raw p = 0.017, FDR-adjusted p = 0.049), and limbic (B = 

24.17, SE = 11.00, Wald’s χ2 = 4.84, raw p = 0.028, FDR-adjusted p = 0.049) networks 

being significant after FDR correction as well (Fig. 4B). With change of head motion 

parameters as covariates, the ventral attention network was still the most strongly related 

to improvements in working memory (B = 31.17, SE = 9.73, Wald’s χ2 = 10.26, raw p = 

0.001, FDR-adjusted p = 0.007), however, the dorsal attention (B = 21.64, SE = 9.92, Wald’s 

χ2 = 4.75, raw p = 0.029, FDR-adjusted p = 0.068), frontoparietal (B = 22.39, SE = 9.55, 

Wald’s χ2 = 5.49, raw p = 0.019, FDR-adjusted p = 0.067), and limbic (B = 21.28, SE = 

10.91, Wald’s χ2 = 3.81, raw p = 0.051, FDR-adjusted p = 0.089) networks no longer passed 

FDR-correction. Given the relatively marginal p-values in these relationships and the change 

following the addition of motion covariates, we suggest particular caution should be used 

when interpreting these findings outside of the ventral attention network.

There were no significant effects of increased PC following VSOP training on episodic 

memory.

Main effect of training on PC

To test whether VSOP training resulted in enhancement in PC in general across participants, 

we performed between-group analyses with a GEE model (PC = β0 + β1 Visit + β2 Group 
+ β3 Visit × Group + ԑ) (Fig. 5). We didn’t find any significant interaction of Visit × Group 
on PC scores at global or network levels. This suggests that while individuals that showed 

increased PC at global and network levels following training were significantly more likely 

to demonstrate a transfer effect, in general the training task did not lead to an increase in PC 

at either global or network levels.

PC of ventral attention network mediates transfer effect in VSOP group

We didn’t find significant total effect (c) between UFOV and working memory (p = 0.816). 

Despite this insignificant total effect, mediation analyses revealed a significant indirect 

effect of ventral attention network PC (p < 0.05 based on 5000 bootstraps, 95%CI [0.0104, 

0.6091], Fig. 6), suggesting that increase in PC score of ventral attention network mediated 

transfer from the trained domain (i.e., UFOV) to the untrained domain (i.e., working 

memory). No significant mediation effects were found for global PC or other networks.

Additionally, we tested whether neurodegeneration indexed by ADSCT (Cortical thickness 

signature for Alzheimer’s disease-associated neurodegeneration) affects PC. We didn’t find 

a significant effect of ADSCT on PC at global or network levels (all ps > 0.05). When 

controlling for ADSCT, the relationship of PC with VSOP-induced trained and transferred 

effects remained the same.

Discussion

We demonstrated that increases in the PC of human cortical networks following VSOP 

training predicted improvement in an untrained working memory domain. This result was 

robust across global and network levels, with strongest effects observed in the ventral 

attention network. Critically, PC of the ventral attention network mediated transfer from 
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the trained domain (i.e., UFOV) to the untrained domain (i.e., working memory). By 

using surface-based preprocessing and a novel pipeline (Cole et al., 2021) that projects 

the functional connectivity matrix to the white surface, we were able to capture the spatial 

features of the brain more accurately than using volumetric approaches (Brodoehl et al., 

2020; Coalson et al., 2018), preserving spatial precision in our calculation of graphs that 

were used to calculate PC. This atlas-free approach provided us with 3661 × 3661 matrices 

for graph theory analysis, without the need to choose a fine-grained parcellation scheme, 

which can affect the topological properties of brain networks (Lord et al., 2016). To better 

interpret our final results and allow comparability with previous literature, nodal level PC 

that benefited from this improved precision and atlas-free approach was then averaged 

within large-scale networks that are widely used in the literature (Yeo et al., 2011).

These findings improve our understanding of cortical network reconfiguration in response 

to cognitive training and how the capacity for functional integration between networks 

contributes to successful transfer to complex cognitive abilities such as working memory. 

It has been hypothesized that successful transfer effects may be restricted to those domains 

that share common processing components and neural mechanisms (Jonides 2004; Lovden 

et al., 2011), and our results extend this idea by considering the neural processes underlying 

the integration of information between brain networks. While the trained (i.e., UFOV) 

and untrained (i.e., working memory) domains do share overlapping cognitive component 

processes, including visual perception, attention, and executive control, our results also 

suggest that the capacity for integrating information may represent a more subtle domain-

general process that can be exploited to improve transfer effects to cognition more broadly. 

This is supported by the fact that the cortical networks that showed improved PC included 

many high-PC, or “diverse club ”, regions that are known to be particularly critical for 

supporting the integrative processing that supports complex cognition (Bertolero et al., 

2017) such as working memory (Cohen and D’Esposito, 2016). Additionally, the fact that 

these results were identified at rest may suggest that they are more likely to generalize to 

trait-level cognitive functioning that shows some consistency between the laboratoy and the 

real world (Ho et al., 2020).

It is worth noting that VSOP training in our study did not lead to an increase in PC 

overall. Previous research has shown that UFOV training can induce strengthened functional 

connectivity between brain regions from ventral attention (e.g., anterior insula), default 

mode (e.g., anterior cingulate cortex), and frontoparietal (e.g., dorsolateral prefrontal cortex) 

networks (Ross et al., 2019) in healthy older adults in a manner that is consistent with 

increased PC. Additionally, in a previous study using the same sample of individuals as 

in our current study, we found that the same intervention did lead to increases in within-

network functional connectivity (Lin et al., 2020), although between-network connectivity 

was not considered. These results suggest that VSOP training can alter resting brain 

organization in aMCI and PS/A training can improve between-network connectivity in 

healthy older adults. It may be that improving the capacity for integration via increasing 

between-network connections using these tasks is more challenging in individuals with 

aMCI, which would explain why we did not find a significant main effect in our study. This 

may also account for the fact that 51% of high-PC nodes were significantly activated by 

a similar PS/A task in our sample. Having identified improved integration as a mechanism 
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for inducing transfer effects from simple visual attention tasks to more complex cognitive 

functions, a key goal of future research will be to understand how to develop tasks that 

target this neural mechanism in older adults, particularly those with aMCI. One innovative 

approach may be to adapt novel optimization procedures that can analyze fMRI data in 

real-time to modify task features to maximize a specific neural mechanism of interest 

(Lorenz et al., 2017). These approaches may be able to identify VSOP task features that are 

particularly able to activate networks known to be important for integration across multiple 

networks, leading to an increase in the ability of these task to activate a higher proportion 

of high-PC nodes/networks, or even to target features that increase the PC of these networks 

more specifically. The capacity for integration in the brain does appear to be modifiable in 

individuals at-risk for dementia via longer term pharmacological (de Waal et al., 2014) and 

more intensive cognitive training interventions (Dimitriadis et al., 2016), suggesting it may 

be amenable to cognitive training developed specifically for this purpose. These results also 

suggest that PC may be more easily influenced by non-VSOP training, and one important 

goal of future research will be to understand how these findings generalize across different 

types of cognitive training.

One important theoretical question involves how our findings relate to theories highlighting 

the importance of brain segregation, or modularity, for cognitive functioning (Cohen and 

D’Esposito, 2016). It has been proposed that showing distinct functionally specialized neural 

modules is a pre-requisite for the capacity to benefit from cognitive training due to plasticity 

(Gallen and D’Esposito 2019), and theories of aging suggest that in healthy older adults a 

loss of the modular structure of the brain may be responsible for cognitive aging (Koen and 

Rugg, 2019). Research has shown that the brain exists in a delicate balance of integration 

and segregation (Shine et al., 2018), neccesitated by the need to maximize the capacity 

for information transfer given limited biological resources to support wiring costs (Bassett 

and Bullmore, 2006). Functionally specialized modules are required for specific aspects 

of cognition, including motor execution, while other tasks, particularly those involving 

complex cognition requiring a range of different cognitive processes simultaneously 

(e.g., working memory) rely on integration (Cohen and D’Esposito, 2016). It may seem 

contradictory that training relies on both segregation and integration, however, it is clear 

that effective functioning requires both capacities, and both capacities appear to be at-risk 

from AD pathology, which can move the brain towards a more random network architecture 

without clear modules or the capacity for effective integration between them (Dai and He, 

2014). Networks with high-PC nodes represent a key component of brain organization: 

having a relatively small number of nodes that are connected across all networks allows the 

brain to integrate information without compromising it’s modular structure (Bertolero et al., 

2018; Bertolero et al., 2017). We propose that, while modularity is an essential characteristic 

of brain topology, integration via these networks is equally important, and that targeting PC 

as a mechanism of transfer exploits their unique role within the connectome to facilitate 

improved complex cognition without the risk of interfering with the inherent modular 

organization of the brain that is required for more specialized cognition. Therefore, while 

we chose to analyze PC due to the importance of diverse connections for integration during 

complex cognition, we understand that the connectome is a complex balance of integration 

and segregation that can be assessed using a range of graph theory metrics. The ability of 
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the brain to form functionally specialized modules has been proposed as a critical biomarker 

for intervention-related plasticity, and networks/nodes with high PC have been shown to be 

critical for enabling brain modularity by allowing information to move between dissociated 

modules (Gallen and D’Esposito, 2019). Previous papers have also suggested that in some 

individuals, improving segregation as measured using clustering coefficient is also important 

for understanding responses to cognitive training (Chen et al., 2021), further highlighting 

that both integration and segregation metrics are important for intervention-related plasticity 

(Gallen and D’Esposito, 2019). While beyond the scope of this paper, future research is 

needed to clarify exactly how these different measures represent learning-dependent changes 

important for transfer, and to what extent these mechanisms are universal or dependent on 

baseline characteristics of individual connectomes.

There are several unanswered questions from our study: first, while we did find transfer 

effects related to improvements in working memory, we did not find any significant transfer 

effect relating to episodic memory. This may be explained by the fact that, relative to 

working memory, simple episodic memory retrieval as measured Brief Visuospatial Memory 

Test, does not place significant demands on cognitive control, which has been shown to 

modulate the need for neural integration (Ray et al., 2020). It will be important to test 

whether episodic memory performance in tasks that require more cognitive control and 

neural integration (Rosen et al., 2011) is more amenable to transfer via improved network 

integration. Alternatively, it may be that episodic memory impairments, which are more 

pronounced than working memory deficits in individuals with aMCI, are more intransigent 

to cognitive training. This would further increase the need to deploy cognitive training early 

on in cognitive decline, and motivates specialized approaches aiming to understand whether 

episodic memory can be improved by cognitive training in individuals with aMCI.

Second, we did not include subcortical regions in our analysis. Subcortical regions 

have been identified previously as important for transfer in younger adults due to their 

involvement in a range of cognitive processes (Dahlin et al., 2008). However, these regions 

also show damage early on in AD with significant consequences for functional connectivity 

(Son et al., 2017). As our hypothesis required transfer processes to be relatively preserved 

in aMCI, we chose not to include subcortical regions in our hypothesis. Additionally, 

determining how to calculate PC in subcortical regions is not straightforward. Many 

subcortical regions show connections with regions in every cortical network due to their 

roles in neuromodulation (Shine, 2019), and therefore deciding which functional module 

they should be located in is difficult. PC is also known to be affected by module size 

(Pedersen et al., 2020), meaning that if subcortical regions are treated independently they 

are likely to have a highly inflated PC as they have far fewer within-module connections 

than cortical networks. Alternatively, treating the subcortex as a single module carries 

its own conceptual issues, as this would require averaging across a range of functionally 

discrete regions leaving results difficult to interpret. Having considered these conceptual 

and methodological issues, we decided it would be clearer to focus purely on the cortical 

mechanisms underlying transfer. This does not diminish the potential role of subcortical 

connections in transfer, however, it may be that these regions are more important for 

modulating cortical integration than facilitating it directly (Shine, 2019). Future research 

specifically targeting the role of subcortical regions in the integration of information will 
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be needed to further clarify these outstanding issues. Additionally, we chose to use the 

networks defined by Yeo et al. (2011) for this analysis due to their wide use in the 

literature and reliability in a large sample of individuals, allowing clearer comparison with 

the literature and greater reliability than using data-driven modules in our smaller sample. 

However, the use of these relatively large-scale networks limits the spatial specificity of our 

findings, meaning that it is unclear whether sub-networks within these networks may be 

driving results. Future research is needed aimed at understanding exactly how PC within 

these identified high-PC networks is important for transfer following cognitive training.

Finally, with enrollment starting in 2016, we followed 2011 NIH-AA diagnostic criteria 

and did not collect pathological data related to AD, as aMCI was considered a preclinical 

AD status. The revised 2018 NIH-AA research framework now recommends consideration 

of AD pathology; therefore, it is unclear whether VSOP training would be sensitive to 

individuals with positive AD pathology, and future studies including measures of pathology 

are needed to better understand the specific role of pathology in transfer effects.

Method

Ethics statement

The study was approved by the University of Rochester Research Subject Review Board. 

Written informed consented was obtained from each participant. All methods were 

performed in accordance with relevant guidelines and regulations. This study was registered 

with Clinicaltrials.gov on 24/09/2015 (NCT02559063).

Participants

Eighty-four subjects diagnosed with aMCI (single- or multiple-domain) were recruited from 

University-affiliated memory, internal, and geriatric clinics. All clinics used 2011 diagnostic 

criteria for aMCI (Albert et al., 2011). Other eligible criteria have been described earlier 

(Lin et al., 2020). The study was approved by the University of Rochester Research Subject 

Review Board. All participants were sufficiently capable of providing an informed consent 

to participate on their own. Written informed consent was obtained from all participants. No 

adverse effects were associated with either intervention.

Setting, randomization, and blindness

All assessments and selective intervention sessions were conducted in our research lab. Self-

administered intervention sessions were conducted at participants’ homes or neighborhood 

community centers.

Intervention group assignment was designed using a 2:1 ratio in a 7-block randomization. 

Participants were notified by the interventionist about the intervention assignment (in a 

sealed envelope) only after all baseline data were collected. Outcome assessors remained 

blinded to the group assignment. Participants were informed of the comparison of two new 

computerized interventions throughout data collection to avoid the possibility of an uneven 

placebo effect. Participants who completed the MLA intervention were provided with a 

compensatory VSOP training at the end of the study.
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Interventions

Interventions were described previously (Lin et al., 2020). Briefly, VSOP training consisted 

of five tasks that emphasize PS/A, the task platform of which were provided by Posit 

Science (San Francisco, CA). All tasks share visual components that become increasingly 

more difficult and require faster reaction times as participants progress through the training. 

Participants responded either by identifying a specified target object or the location of the 

target on the screen. The training automatically adjusted the difficulty of each task based on 

the participant’s performance, thereby ensuring that participants consistently performed near 

their optimal capacity. Existing literature suggests that 12 h of cumulative VSOP training 

is sufficient to produce immediate as well as up to 11 months benefit in PS/A among 

cognitively healthy older adults (Ball et al., 2002; Wolinsky et al., 2013).

MLA training consisted of an online word search, Sudoku, and Free-Cell, a variation of 

solitaire. Participants were allowed to play any combination of these games to control for 

amount of computer use, and simulate to everyday mental activities.

Both interventions were conducted on online platforms specific to our study, with individual 

password-protected accounts. We provided all participants with an in-person training 

orientation and two in-person check-in sessions at our lab. All other training sessions 

were self-administered by the participants, with technical support available 7 days a week. 

The intervention lasted for six weeks, consisting of up to four 1-hour sessions per week. 

Participants’ access to both intervention platforms was removed on the date of their 

respective post-test assessments. No significant interaction effect between group and dose of 

intervention was found for changes in any variables.

Seven participants from the VSOP group, but none from the MLA group, dropped out 

during the intervention period due to non-study related reasons. Marital status was the only 

factor that approached significance in predicting dropout (57.1% of dropout subjects were 

unmarried vs. 23.4% among those that remained in the study, χ2 = 3.79, p = 0.052).

Sample size estimation

Sample size calculations were performed using G*power. Based on parameter assumptions 

outlined in the protocol, the sample size (N = 84) provided 80% power to detect an 

improvement at Cohen’s d = 0.40, using two groups at the 2:1 ratio, and 4 repeated measures 

up to 6 months of follow-up with a 20% attrition rate.

Measures

Cognitive measures.—PS/A was measured using UFOV, a three-task computer test 

that assesses processing speed, sustained attention, and divided attention based on reaction 

time. A composite score with natural log transformation was used, with higher scores 

indicating f reaction time and poorer performance (Ball et al., 1988). We inverted this 

score by multiplying it by −1, so that higher scores indicated better performance. Working 

memory was measured using a composite score derived from performance on dot-counting 

and dual-1-back tasks of EXAMINER, a computerized test battery, developed by NINDS 

and UCSF (Kramer et al., 2014). Episodic memory was measured using Brief Visuospatial 
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Memory Test delayed recall T-score (Benedict et al., 1996). Across time points, different 

versions of the measures were administered to mitigate practice effects.

Imaging data—Imaging data were collected at University of Rochester using a 3T 

Siemens TrioTim scanner (Erlangen, Germany) equipped with a 32-channel head coil. 

Structural MRI: Each session began with a localizer scan, followed by an MPRAGE scan 

(TR/TE = 2530 ms/3.44 ms, TI = 1100 ms, FA = 7, 256 × 256 matrix, 1mm3 isotropic 

resolution, 1 mm slice thickness, 192 slices) to acquire high-resolution structural-weighted 

anatomical images. BOLD fMRI data were collected using a gradient echo-planar imaging 

sequence (TR/TE = 2500 ms/30 ms, FA = 90, 64 × 64 matrix, 4mm3 in-plane resolution, 

4 mm slice thickness, 37 axial slices). Participants underwent a 5-minute resting-state scan, 

during which they were instructed to relax with their eyes open, followed by a 5-minute 

block-design “target among distractors” visual attention task (see also (Chen et al., 2020; 

Lin et al., 2020)). The stimuli were presented in 5 blocks, each of which consisted of 6 

trials, for a total duration of 42 s; blocks were alternated with fixation periods of 20 s. 

Within each trial, a central fixation cross was presented for 500 ms, followed by 5500 ms 

presentation of the visual search pattern. An interval of 1000 ms was inserted between trials. 

Participants were instructed to search for the target symbol, “ ” (present for 50% of trials) 

displayed among 6 distractors in different orientations (e.g., “ ”, “ ”.). Participants responded 

by pressing one of two response buttons to indicate whether the target was present or absent. 

We used a visual attention task because of its differences in task presentation compared to 

those of the VSOP training tasks while still containing a sustained attention component that 

is fundamental to performing VSOP tasks and for engaging in MLA.

Background information—Background information was collected at baseline. Cortical 

thickness signature for Alzheimer’s disease-associated neurodegeneration (ADSCT) 

was calculated using structural MRI data, with ADSCT ≤ 2.77 mm3 indicative of 

neurodegenerative atrophy (Jack et al., 2015; Lin et al., 2017). Dose of intervention was 

automatically counted by the VSOP and MLA training platforms. We also considered 

phenotype of MCI, single- vs. multi-domain, which was decided by their clinical diagnosis 

by the performance in executive function related battery tests. The analysis revealed no 

significant interaction effects between group and MCI phenotype for changes in any 

variables.

Data analysis

Imaging data preprocessing

Task fMRI data were analyzed with FEAT FSL Version 6.0.0 (www.fmrib.ox.ac.uk/fsl). 

Preprocessing of the functional data included: slice scan time correction (sinc interpolation), 

motion correction to the middle volume, smoothing with a nonlinear algorithm with 5 mm 

kernel, and high-pass temporal filter with sigma=100 s. For each participant, functional data 

were registered to high-resolution brain-extracted anatomical images in native space. Then 

functional and anatomical volumes were transformed into standardized MNI space. The 

general linear model (GLM) was used to fit beta estimates to the task events. The task events 

were convolved with a standard Double-Gamma hemodynamic response function. The six 
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motion parameters were added to models as regressors. We assessed the task activation by 

the contrast of [task > rest]. The resulting statistical map was thresholded and corrected for 

multiple comparisons with FDR corrected p < 0.01.

For resting state fMRI data, we applied a Surface-Based Connectivity Integration (SBCI) 

pipeline (Cole et al., 2021). This surface-based pipeline was designed to enable the 

comparison of structural and functional connectivity, by projecting both signals to the 

white surface. T1 images were parcellated using FreeSurfer 6.0.0 (http://freesurfer.net/). 

Cortical surfaces were reconstructed using the recon_all tool available in Freesurfer. As in 

a previous paper (Cole et al., 2021), functional data was minimally preprocessed prior to 

being entered into this pipeline. Dicom images were converted to nifty format and the first 

10 images of each scan were dropped to allow for stabilization of MRI signals. Images 

were then corrected for slice timing, and head motion using FSL MCFLIRT. Images were 

spatially smoothed in volume space with a Gaussian kernel with full width at half-maximum 

(FWHM) of 5 mm. Images were temporally filtered with a band-pass filter (0.01–0.08 Hz). 

The SBCI pipeline (https://github.com/sbci-brain/SBCI_Pipeline) was then used for further 

preprocessing using Freesurfer: motion correction, sampling to the surface (left and right), 

and surface smoothing with a Gaussian kernel with FWHM 5 mm. Nuisance covariates 

were regressed out, including the white matter signal, cerebrospinal fluid signal, six motion 

parameters (three translational and three rotational), and the global signal (Murphy and Fox, 

2017), generating partial timeseries that controlled for these confounds. We mapped the 

volumetric BOLD signals to the participant’s cortical surface, resulting in a BOLD time 

series at each vertex on the surface meshes. The FC between any pair of vertices was 

calculated by correlating the two partial BOLD time series that had been controlled for 

confounding signals. This whole procedure generated a 3661-by-3661 symmetric weighted 

functional connectivity matrix per participant at baseline and post-intervention respectively.

Network analysis

Each cortical vertex is assigned to one of 7 functional networks created by Yeo and 

colleagues (Yeo et al., 2011). The 7 networks consist of: visual, somatomotor, dorsal 

attention, ventral attention, limbic, frontoparietal and default mode networks (Fig. 1). Fig. 

1 left shows the averaged fc matrix across all participants at baseline. We investigated the 

integration of brain networks at both the global and network levels. Following previous 

studies (Bertolero et al., 2017; Cohen and D’Esposito, 2016), and due to the fact that the 

interpretation of negative edges in FC networks is not clear, negative functional connectivity 

was set to 0. With the GRETNA toolbox (Wang et al., 2015), we calculated participation 

coefficient (PC) for each node, which measures how well a node within a given network is 

connected to other networks:

PCi = 1 − ∑
m = 1

M ki, m
ki

2

The term ki,m denotes the sum of node i’s edge weight within module m, and ki indicates 

the sum of node i’s edge weight in the entire brain. Nodes that interact with only nodes from 

its own module would have a PC of 0, while nodes with many distributed between-network 
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connections would have a PC closer to 1. To estimate global network integration, we 

calculated the mean PC value across all nodes, which reflects the extent of integration 

between networks in the entire brain. To quantify the integration of specific modules, we 

calculated the mean PC value over nodes for each network, which reflects the extent to 

which a network connects to other networks.

Statistical analyses

All statistical analyses were performed using SPSS version 24.0 (IBM).

Behavioral measures: For behavioral measures, we calculated the group difference 

in reliable improvements, where a participant was classified as having improved reliably 

on a particular measure if their performance at a follow-up occasion exceeded baseline 

performance on that measure by 1 SEM of baseline data (cf., ACTIVE trial (Ball et 

al., 2002)). A Chi-square test was conducted with p-value set at 0.05. The effect size of 

training for each outcome was calculated using bias-corrected standardized mean difference 

(Hedge’s g): J*(M_training - M_control)/intra-subject standard deviation, where J is the 

bias-correction factor [1 – 3/(4*(total sample size-1) – 1)]ˆ(−1).

Relationships between behavioral and brain measures: To test our hypothesis 

that higher functional integration of brain networks relates to greater transfer effects of 

cognitive intervention, we used Generalized Linear Model (Change of Cognition = β0 + 

β1 Group + β2 Change of PC + β4 Change of PC × Group + ԑ) at global and network 

levels. Significant between-group difference was based on the interaction of Change of 
PC × Group. Pearson’s correlation between changes of brain integration and behavioral 

variables were conducted for each group separately. One-tailed tests were used because our 

hypotheses were directional, expecting increased PC associated with greater transfer effects.

Main effect of training on brain measures: Generalized Estimating Equation (GEE) 

model with AR(1) working matrix was used for between-group comparison with individual-

level random effect considered: y = β0 + β1 Visit + β2 Group + β3 Visit × Group + ԑ. 
Visit was a later assessment (i.e. post-test) referred to baseline; Group was the VSOP group 

referred to MLA group; any significant between-group change was based on the interaction 

of Visit × Group.

Mediation analyses: In order to determine whether brain integration could mediate the 

relationship between the trained domain (i.e., UFOV) and transfer domain (i.e., memory), 

we conducted mediation analyses with SPSS PROCESS Macro. Change of UFOV was 

the independent variable, change of PC was the mediator, and change of memory was 

the dependent variable. The PROCESS macro used bootstrapped confidence intervals to 

evaluate the significance of the indirect effect. Although traditional mediation analyses 

described by Baron and Kenny (Baron and Kenny, 1986) require a total effect to be present, 

it has been recently argued that the total effect shouldn’t be a prerequisite for tests of 

mediation (Hayes, 2009; Shrout and Bolger, 2002). For example, independent and dependent 

variables (X and Y) are fully mediated by two mediators, M1 and M2. The total effect is 

understood as the sum of the direct effect and all indirect effects. The total effect could be 
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zero when the two indirect effects are comparable in magnitude but in opposite directions. 

In our case, it’s likely that other unstudied mediators carry the effect from trained domain 

through transferred domain in opposite directions, producing a total effect closer to 0.

Multiple Comparisons Control: For network-level analysis, we adjust for multiple 

comparison across 7 networks with Benjamini–Hochberg (BH) procedure.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknnowledgment

The study was supported by NIH/NINR R01 NR015452 to FVL. The authors have no COI.

References

Albert MS, DeKosky ST, Dickson D, Dubois B, Feldman HH, et al. , 2011. The diagnosis of mild 
cognitive impairment due to Alzheimer’s disease: recommendations from the National Institute 
on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. 
Alzheimers Dement 7, 270–279. [PubMed: 21514249] 

Avery EW, Yoo K, Rosenberg MD, Greene AS, Gao S, et al. , 2020. Distributed patterns of 
functional connectivity predict working memory performance in novel healthy and memory-
impaired individuals. J. Cogn. Neurosci 32, 241–255. [PubMed: 31659926] 

Ball K, Berch DB, Helmers KF, Jobe JB, Leveck MD, et al. , 2002. Effects of cognitive training 
interventions with older adults: a randomized controlled trial. JAMA 288, 2271–2281. [PubMed: 
12425704] 

Ball KK, Beard BL, Roenker DL, Miller RL, Griggs DS, 1988. Age and visual search: expanding the 
useful field of view. JOSA A 5, 2210–2219.

Baron RM, Kenny DA, 1986. The moderator-mediator variable distinction in social psychological 
research: conceptual, strategic, and statistical considerations. J. Pers. Soc. Psychol 51, 1173. 
[PubMed: 3806354] 

Bassett DS, Bullmore E, 2006. Small-world brain networks. Neuroscientist 12, 512–523. [PubMed: 
17079517] 

Benedict RHB, Schretlen D, Groninger L, Dobraski M, Shpritz B, 1996. Revision of the brief 
visuospatial memory test: studies of normal performance, reliability, and validity. Psychol. Assess 8, 
145.

Bertolero MA, Yeo BT, Bassett DS, D’Esposito M, 2018. A mechanistic model of connector hubs, 
modularity and cognition. Nature Hum. Behav 2, 765–777. [PubMed: 30631825] 

Bertolero MA, Yeo BT, D’Esposito M, 2017. The diverse club. Nat. Commun 8, 1–11. [PubMed: 
28232747] 

Braak H, Del Tredici K, Schultz C, Braak E, 2000. Vulnerability of select neuronal types to 
Alzheimer’s disease. Ann. N. Y. Acad. Sci 924, 53–61. [PubMed: 11193802] 

Brodoehl S, Gaser C, Dahnke R, Witte OW, Klingner CM, 2020. Surface-based analysis increases the 
specificity of cortical activation patterns and connectivity results. Sci. Rep 10, 1–13. [PubMed: 
31913322] 

Chen Q, Baran TM, Turnbull A, Zhang Z, Rebok GW, Lin FV, 2021. Increased segregation of 
structural brain networks underpins enhanced broad cognitive abilities of cognitive training. Hum. 
Brain Mapp

Chen Q, Yang H, Rooks B, Anthony M, Zhang Z, et al. , 2020. Autonomic flexibility reflects learning 
and associated neuroplasticity in old age. Hum. Brain Mapp 41, 3608–3619. [PubMed: 32510759] 

Chen et al. Page 15

Neuroimage. Author manuscript; available in PMC 2022 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Coalson TS, Van Essen DC, Glasser MF, 2018. The impact of traditional neuroimaging methods on 
the spatial localization of cortical areas. Proc. Natl. Acad. Sci 115, E6356–E6E65. [PubMed: 
29925602] 

Cohen JR, D’Esposito M, 2016. The segregation and integration of distinct brain networks and their 
relationship to cognition. J. Neurosci 36, 12083–12094. [PubMed: 27903719] 

Cole M, Murray K, St-Onge E, Risk B, Zhong J, et al. , 2021. Surface-based connectivity integration: 
an atlas-free approach to jointly study functional and structural connectivity. Hum. Brain Mapp.

Dahlin E, Neely AS, Larsson A, Backman L, Nyberg L, 2008. Transfer of learning after updating 
training mediated by the striatum. Science 320, 1510–1512. [PubMed: 18556560] 

Dai Z, He Y, 2014. Disrupted structural and functional brain connectomes in mild cognitive 
impairment and Alzheimer’s disease. Neurosci. Bull 30, 217–232. [PubMed: 24733652] 

de Waal H, Stam CJ, Lansbergen MM, Wieggers RL, Kamphuis PJ, et al. , 2014. The effect of 
souvenaid on functional brain network organisation in patients with mild Alzheimer’s disease: a 
randomised controlled study. PLoS ONE 9, e86558. [PubMed: 24475144] 

Dimitriadis SI, Tarnanas I, Wiederhold M, Wiederhold B, Tsolaki M, Fleisch E, 2016. Mnemonic 
strategy training of the elderly at risk for dementia enhances integration of information processing 
via cross-frequency coupling. Alzheimer’s Dementia: Transl. Res. Clin. Intervent 2, 241–249.

Du HX, Liao XH, Lin QX, Li GS, Chi YZ, et al. , 2015. Test-retest reliability of graph metrics 
in high-resolution functional connectomics: a resting-state functional MRI study. CNS Neurosci. 
Ther 21, 802–816. [PubMed: 26212146] 

Finn ES, Shen X, Scheinost D, Rosenberg MD, Huang J, et al. , 2015. Functional connectome 
fingerprinting: identifying individuals using patterns of brain connectivity. Nat. Neurosci 18, 1664. 
[PubMed: 26457551] 

Gallen CL, D’Esposito M, 2019. Brain modularity: a biomarker of intervention-related plasticity. 
Trends Cogn. Sci. (Regul. Ed.) 23, 293–304.

Gates NJ, Vernooij RW, Di Nisio M, Karim S, March E, et al. , 2019. Computerised cognitive training 
for preventing dementia in people with mild cognitive impairment. Cochrane Database Syst. Rev.

Gratton C, Laumann TO, Nielsen AN, Greene DJ, Gordon EM, et al. , 2018. Functional brain networks 
are dominated by stable group and individual factors, not cognitive or daily variation. Neuron 98, 
439–452 e5. [PubMed: 29673485] 

Hayes AF, 2009. Beyond Baron and Kenny: statistical Mediation Analysis in the New Millennium. 
Commun. Monogr 76, 408–420.

Hill NT, Mowszowski L, Naismith SL, Chadwick VL, Valenzuela M, Lampit A, 2017. Computerized 
cognitive training in older adults with mild cognitive impairment or dementia: a systematic review 
and meta-analysis. Am. J. Psychiatry 174, 329–340. [PubMed: 27838936] 

Hirni DI, Kivisaari SL, Monsch AU, Taylor KI, 2013. Distinct neuroanatomical bases of episodic and 
semantic memory performance in Alzheimer’s disease. Neuropsychologia 51, 930–937. [PubMed: 
23369803] 

Ho NSP, Poerio G, Konu D, Turnbull A, Sormaz M, et al. , 2020. Facing up to why the wandering 
mind: patterns of off-task laboratory thought are associated with stronger neural recruitment of 
right fusiform cortex while processing facial stimuli. Neuroimage 00, 116765.

Jack CR Jr., Wiste HJ, Weigand SD, Knopman DS, Mielke MM, et al. , 2015. Different definitions 
of neurodegeneration produce similar amyloid/neurodegeneration biomarker group findings. Brain 
138, 3747–3759. [PubMed: 26428666] 

Jonides J, 2004. How does practice makes perfect? Nat. Neurosci 7, 10–11. [PubMed: 14699412] 

Koen JD, Rugg MD, 2019. Neural dedifferentiation in the aging brain. Trends Cogn. Sci. (Regul. Ed.) 
23, 547–559.

Kramer JH, Mungas D, Possin KL, Rankin KP, Boxer AL, et al. , 2014. NIH EXAMINER: 
conceptualization and development of an executive function battery. J. Int. Neuropsychol. Soc 
20, 11–19. [PubMed: 24103232] 

Lampit A, Hallock H, Valenzuela M, 2014. Computerized cognitive training in cognitively healthy 
older adults: a systematic review and meta-analysis of effect modifiers. PLoS Med. 11, e1001756. 
[PubMed: 25405755] 

Chen et al. Page 16

Neuroimage. Author manuscript; available in PMC 2022 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Li HJ, Hou XH, Liu HH, Yue CL, He Y, Zuo XN, 2015. Toward systems neuroscience in mild 
cognitive impairment and Alzheimer’s disease: a meta-analysis of 75 fMRI studies. Hum. Brain 
Mapp 36, 1217–1232. [PubMed: 25411150] 

Lin F, Ren P, Wang X, Anthony M, Tadin D, Heffner KL, 2017. Cortical thickness is associated with 
altered autonomic function in cognitively impaired and non-impaired older adults. J. Physiol 595, 
6969–6978. [PubMed: 28952161] 

Lin FV, Tao Y, Chen Q, Anthony M, Zhang Z, et al. , 2020. Processing speed and attention training 
modifies autonomic flexibility: a mechanistic intervention study. Neuroimage 213, 116730. 
[PubMed: 32165263] 

Lord A, Ehrlich S, Borchardt V, Geisler D, Seidel M, et al. , 2016. Brain parcellation choice affects 
disease-related topology differences increasingly from global to local network levels. Psychiatry 
Res. 249, 12–19.

Lorenz R, Hampshire A, Leech R, 2017. Neuroadaptive Bayesian optimization and hypothesis testing. 
Trends Cogn. Sci. (Regul. Ed.) 21, 155–167.

Lovden M, Backman L, Lindenberger U, Schaefer S, Schmiedek F, 2011. A theoretical framework for 
the study of adult cognitive plasticity. Psychol. Bull 136, 659–676.

Miotto EC, Batista AX, Simon SS, Hampstead BM, 2018. Neurophysiologic and cognitive changes 
arising from cognitive training interventions in persons with mild cognitive impairment: a 
systematic review. Neural Plasticity 2018.

Murphy K, Fox MD, 2017. Towards a consensus regarding global signal regression for resting state 
functional connectivity MRI. Neuroimage 154, 169–173. [PubMed: 27888059] 

Palmqvist S, Schöll M, Strandberg O, Mattsson N, Stomrud E, et al. , 2017. Earliest accumulation 
of β-amyloid occurs within the default-mode network and concurrently affects brain connectivity. 
Nat. Commun 8, 1–13. [PubMed: 28232747] 

Pedersen M, Omidvarnia A, Shine JM, Jackson GD, Zalesky A, 2020. Reducing the influence of 
intramodular connectivity in participation coefficient. Netw. Neurosci 4, 416–431. [PubMed: 
32537534] 

Ray KL, Ragland JD, MacDonald AW, Gold JM, Silverstein SM, et al. , 2020. Dynamic reorganization 
of the frontal parietal network during cognitive control and episodic memory. Cognit. Affect. 
Behav. Neurosci 20, 76–90. [PubMed: 31811557] 

Rosen AC, Sugiura L, Kramer JH, Whitfield-Gabrieli S, Gabrieli JD, 2011. Cognitive training changes 
hippocampal function in mild cognitive impairment: a pilot study. J. Alzheimers Dis 26, 349–357. 
[PubMed: 21971474] 

Ross LA, Webb CE, Whitaker C, Hicks JM, Schmidt EL, et al. , 2019. The effects of useful field 
of view training on brain activity and connectivity. J. Gerontol. B Psychol. Sci. Soc. Sci 74, 
1152–1162. [PubMed: 29757433] 

Shine JM, 2019. Neuromodulatory influences on integration and segregation in the brain. Trends Cogn. 
Sci. (Regul. Ed.) 23, 572–583.

Shine JM, Aburn MJ, Breakspear M, Poldrack RA, 2018. The modulation of neural gain facilitates a 
transition between functional segregation and integration in the brain. Elife 7, e31130. [PubMed: 
29376825] 

Shrout PE, Bolger N, 2002. Mediation in experimental and nonexperimental studies: new procedures 
and recommendations. Psychol. Methods 7, 422–445. [PubMed: 12530702] 

Son S−J, Kim J, Park H, 2017. Structural and functional connectional fingerprints in mild cognitive 
impairment and Alzheimer’s disease patients. PLoS ONE 12, e0173426. [PubMed: 28333946] 

Sperling RA, Aisen PS, Beckett LA, Bennett DA, Craft S, et al. , 2011. Toward defining the preclinical 
stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s 
Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 
280–292. [PubMed: 21514248] 

Tang Y, Xing Y, Zhu Z, He Y, Li F, et al. , 2019. The effects of 7-week cognitive training in patients 
with vascular cognitive impairment, no dementia (the Cog-VACCINE study): a randomized 
controlled trial. Alzheimers Dement 15, 605–614. [PubMed: 30894299] 

Chen et al. Page 17

Neuroimage. Author manuscript; available in PMC 2022 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Vogel JW, Iturria-Medina Y, Strandberg OT, Smith R, Levitis E, et al. , 2020. Spread of pathological 
tau proteins through communicating neurons in human Alzheimer’s disease. Nat. Commun 11, 
1–15. [PubMed: 31911652] 

Wang J, Wang X, Xia M, Liao X, Evans A, He Y, 2015. GRETNA: a graph theoretical network 
analysis toolbox for imaging connectomics. Front. Hum. Neurosci 9, 386. [PubMed: 26175682] 

Warren DE, Power JD, Bruss J, Denburg NL, Waldron EJ, et al. , 2014. Network measures 
predict neuropsychological outcome after brain injury. Proc. Natl. Acad. Sci 111, 14247–14252. 
[PubMed: 25225403] 

Wolinsky FD, Vander Weg MW, Howren MB, Jones MP, Dotson MM, 2013. A randomized controlled 
trial of cognitive training using a visual speed of processing intervention in middle aged and older 
adults. PLoS ONE 8, e61624. [PubMed: 23650501] 

Xue C, Sun H, Hu G, Qi W, Yue Y, et al. , 2020. Disrupted patterns of rich-club and diverse-club 
organizations in subjective cognitive decline and amnestic mild cognitive impairment. Front. 
Neuroscie 14.

Yeo BT, Krienen FM, Sepulcre J, Sabuncu MR, Lashkari D, et al. , 2011. The organization of the 
human cerebral cortex estimated by intrinsic functional connectivity. J. Neurophysiol 106, 1125–
1165. [PubMed: 21653723] 

Chen et al. Page 18

Neuroimage. Author manuscript; available in PMC 2022 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1. 
A. For each participant, we generated a functional connectivity matrix based on 3661 

cortical nodes with Freesurfer recon-all parcellation for baseline and post-intervention 

respectively. Then each node was assigned to one of the seven large-scale functional 

networks defined by Yeo et al. (2011). Left is an example of mean functional connectivity 

matrix for the whole group at baseline. Right shows the networks defined by Yeo. B. 
Schematic overview of network-level Participation Coefficient (PC) analysis. We first 

calculated PC for each node, which reflects how strongly a node within a given network 

is connected to other networks. Then we calculated network-level PC by averaging PC 

across nodes within each network, which quantifies the extent to which a network connects 

to other networks. We expected that transfer effects would relate to increased PC across 

large-scale brain networks after training, particularly in networks with more high PC nodes 

(e.g., network C).

Chen et al. Page 19

Neuroimage. Author manuscript; available in PMC 2022 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2. 
Effects of VSOP training on trained and untrained domains. Percent of participants showing 

reliable improvement for trained (i.e., UFOV) and untrained (i.e., working memory and 

episodic memory) domains for VSOP (red) and MLA (blue). * represents significant 

between-group difference in% with reliable improvement (p < 0.05).
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Fig. 3. 
A. Task activation for the whole group at baseline. For the visual attention task fMRI, we 

computed the group-level BOLD contrast map showing stronger activity for task stimuli 

compared with fixation periods, FDR corrected p < 0.05. B. Top 20% of PC for the whole 

group at baseline. The pie charts were divided into different segments showing percentages 

of voxels or nodes within each network.
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Fig. 4. 
Relationship of global and network PC with VSOP-induced trained (A) and transferred (B) 

effects. The x-axis is the change of PC and the y-axis is the change of UFOV (trained effect) 

or working memory (transferred effect). Significant between-group difference was based on 

the interaction of change of PC × Group. To control the False Discovery Rate (FDR), 

p-values for the interaction effect were corrected across 7 networks using Benjamini–

Hochberg (BH) procedure and both raw and FDR-adjusted p-values were reported. Pearson 

correlation analysis were conducted for VSOP (red) and MLA (blue) separately and raw 

p-values were reported.
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Fig. 5. 
Effects of VSOP training on global and network PC. We didn’t find any significant group-

by-visit comparison of global or network PC. Error bars represent standard error of the 

mean.
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Fig. 6. 
Increased PC in ventral attention network mediates transfer from the trained domain (i.e., 

UFOV) to the untrained domain (i.e., working memory). Mediation results are shown as 

standardized regression coefficients. C: total effect. C’: indirect effect. Significance of 

indirect effect was assessed using bootstrapped confidence intervals [0.0104–0.6091]. * 

indicates p < 0.05.
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