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induces apoptosis of fibroblast-like
synoviocytes through modulating miR-543-
dependent SCUBE2 in rheumatoid arthritis
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Abstract

Background: Rheumatoid arthritis (RA), a kind of autoimmune disorder, is featured by many physical symptoms
and proliferation of fibroblast-like synoviocytes (FLSs). The relevance of long non-coding RNAs (IncRNAs) in the
progression of RA has been probed. Hence, the goal of this report was to investigate the action of plasmacytoma
variant translocation 1 (PVT1), a IncRNA, in FLSs and the basic mechanism.

Methods: Initially, RA rats were developed to evaluate the expression of PVT1, microRNA-543 (miR-543), and signal
peptide-CUB-EGF-like containing protein 2 (SCUBE2) in synovial tissues. Enhancement or loss of PVT1 or miR-543
was achieved to explore their effects on proliferation, cell cycle, and apoptosis of FLSs. The interaction between
PVT1 and miR-543 and between miR-543 and its putative target SCUBE2 was examined to elucidate the
correlations. Finally, the protein expression of proliferation- and apoptosis-associated genes were assessed by
western blot assays.

Results: PVT1 was overexpressed in synovial tissues from RA patients through microarray expression profiles. The
PVT1 and SCUBE2 expression was boosted, and miR-543 was reduced in synovial tissues of rats with RA. PVT1
specifically bound to miR-543, and miR-543 negatively regulated SCUBE2 expression. Overexpression of PVT1 or
silencing of miR-543 enhanced SCUBE2 expression, thereby promoting proliferation and interleukin-1(3 (IL-1(3)
secretion, while inhibiting apoptosis rate of FLSs. Conversely, si-SCUBE2 reversed the role of miR-543 inhibitor.

Conclusion: The key findings support that PVT1 knockdown has the potency to hinder RA progression by
inhibiting SCUBE2 expression to sponge miR-543.
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Background

Rheumatoid arthritis (RA) is a type of chronic disorder
linked to inflammation and autoimmune which princi-
pally disturbs the joints and may contribute to accumu-
lating joint injuries and irreversible disability if
inadequately treated [1]. Current advance in outcomes
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has been achieved as a consequence of a more thorough
comprehension of RA pathophysiology and progresses in
improved outcome measures and therapies [2]. In RA,
fibroblast-like synoviocytes (FLSs), one of the most com-
mon cell types on the pannus-cartilage junction, might
culminate in joint destruction via the generation of cyto-
kines, chemokines, and matrix-degrading molecules [3].
Moreover, after obtaining an aggressive phenotype, FLSs
will become resistance to apoptosis and show elevated
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migration and invasion abilities to surrounding tissues,
such as the bone and cartilage, thus promoting angio-
genesis, cell growth, and activation of immune cells [4].
Hence, clarifying the molecular mechanism in which
FLSs function as pathological factors of RA might cope
with the urgency in the treatment of RA [5].

Recently, long non-coding RNAs (IncRNAs), a set of
non-coding RNAs longer than 200 nucleotides, have
been implicated in multiple functional changes and nu-
merous dysregulated cells in RA patients, including FLSs
[6]. Plasmacytoma variant translocation 1 (PVT1) has
been extensively investigated in cancers, including lung
cancer [7], colorectal cancer [8], and ovarian cancer [9]
where PVT1 was promoted and facilitated cell prolifera-
tion and invasion. Besides, the knockdown of PVT1 has
been lately reported to suppress inflammation of FLSs
and to induce apoptosis in RA through demethylation of
sirtuin 6 [10]. IncRNAs have been revealed to modulate
the expression of microRNAs (miRNAs) through the
competitive endogenous RNA (ceRNA) mechanism,
thereby participated in the development of different
kinds of autoimmune diseases, including RA [11, 12].
MiR-543-3p has been verified to exert a protective role
over neurons through reducing inflammatory response
in spinal cord injury [13]. Also, signal peptide-CUB-
epidermal growth factor-like containing protein
(SCUBE) was highly expressed in the majority of vascu-
larized tissues and primary osteoblasts and bones and
could be detected in inflammation- and hypoxia-related
disease conditions [14]. A miRNA chromosome 19
miRNA cluster was found to target SCUBE2 to culmin-
ate in phenotype of triple-negative breast cancers [15].
In this study, SCUBE2 was observed to be a putative tar-
get gene of miR-543, which might interact with PVT1 in
RA-FLSs. On the basis of the above literature research,
we conjectured that PVT1 might influence the roles of
RA-FLSs through regulating miR-543-mediated SCUBE2.
Henceforth, our intention was to examine the role of
PVT1 on the proliferation, interleukin-13 (IL-1p) release,
and apoptosis in RA-FLSs to illuminate the underlying
mechanism contributed to RA progression.

Methods

Microarray preparation

In short, synovial tissues from 3 healthy people and 3
patients with RA were obtained to extract total RNA,
from which 0.5 pg RNA was used to synthesize comple-
mentary deoxyribonucleic acid (cDNA) using a Gene-
Chip 3’In Vitro Transcription (IVT) Express Kit
(902789, Thermo Fisher Scientific Inc., Waltham, MA,
USA). Then, cDNA was segmented and hybridized with
human IncRNA expression array V3.0 (AS-LNC-H-V4.0,
Arraystar Inc., Rockville, MD, USA). After hybridization,
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the array was scanned with the GeneChipTM Scanner
3000 7G system (000213, Thermo Fisher Scientific).

Induction of a RA model in rats

Fourteen healthy Wistar rats (female; age, 6—8 weeks,
weight, 140-150 g) were fed at 25-27 °C under 45-50%
humidity with free access to food and water. These rats
were randomized into a control group (n = 7) and a RA
group (n = 7). According to the previous literature [10],
the rats were subjected to 3% pentobarbital sodium in-
jection. Then, the RA rats were administrated with
Freund’s complete adjuvant (0.1 mL) at the right pos-
terior toe, and the control rats were administrated
with 0.1 mL phosphate-buffered saline (PBS). A digital
micrometer was used to measure the size of the pos-
terior feet of each rat, and the swelling degree was
calculated by comparing it with the size measured at
the baseline.

Culture and treatment of FLSs in RA

RA-FLSs from American Type Culture Collection (Ma-
nassas, VA, USA) were grown at a temperature of 37 °C
with 5% CO,. When cells were covered with 80% micro-
scopic view, they were detached with trypsin (2.5g/L)
for passage. After being cultured in an incubator for 24
h, plasmids were transfected into RA-FLSs with Lipofec-
tamine 2000 (Thermo Fisher Scientific). After 4h, the
medium was replaced with normal culture medium for
further culture, and then the following experiments were
carried out. FLSs were transfected with overexpressed
(0e)-PVT1, short hairpin RNA- (shRNA; sh)-PVT1, sh-
SCUBE2, miR-543 mimic, miR-543 inhibitor + sh-
SCUBE2 or miR-543 inhibitor + sh-PVT1 with oe-
negative control (NC), sh-NC, mimic NC, inhibitor NC,
or miR-543 inhibitor + sh-NC as controls.

RNA isolation and reverse transcription (RT)-PCR assay
The total RNA was isolated from the tissues using Trizol
(16096020, Thermo Fisher Scientific). Totally, 5 ug RNA
was then synthesized into complementary deoxyribo-
nucleic acid (cDNA) using a cDNA kit (K1622; Fermentas
Inc., Ontario, CA, USA). Subsequently, RT-qPCR is car-
ried out following the protocol of TagMan Gene Expres-
sion Assays (Applied Biosystems, Foster City, CA, USA)
with ¢cDNA as a template. U6 and glyceraldehyde-3-
phosphate dehydrogenase (GAPDH) were applied as the
internal controls for the normalization of miRNA and
mRNA, respectively. Obtained results were reproducible
in three independent experiments. The primer sequences
used are demonstrated in Table 1. The expression of
PVT1 and miR-543 and the SCUBE2 mRNA expression
were measured by the 2-28€t method [16].
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Table 1 RT-gPCR primer sequences
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Primer sequence Forward (5-3")

Reverse (5'-3"

PVT1 GGTACCGAGCTCGGATCCTCAAGATGGCTGTGCC CGCCACTGTGCTGGATGATAGAAAAAGAATTTAATAG
miR-543 GGAAACATTCGCGGTGC GTGCGTGTCGTGGAGTCG

SCUBE2 GCAAGTTTGCGTCAACACAG GACGCCCTTTACTTCCACAC

U6 TGCTCGCTTCGGCAGC AAAAATATGGAACGCTTCACG

GAPDH TTGGTATCGTGGAAGGACTCA TGTCATCATATTTGGCAGGTT

RT-gPCR reverse transcription-quantitative polymerase chain reaction, PVT1 plasmacytoma variant translocation 1, miR-543 microRNA-543, SCUBE2 signal peptide-
CUB-EGF-like containing protein 2, GAPDH glyceraldehyde-3-phosphate dehydrogenase

Western blot assays

The tissues or cells of each group were ice-bathed for
30 min with the lysis buffer supplemented with phenyl-
methyl sulfonylfluoride and subjected to a 15-min cen-
trifugation at 10000 rpm at 4°C. The content of total
protein was examined using a bicinchoninic acid kit
(Thermo). After being separated by the means of 10%
sodium dodecyl sulfate and polyacrylamide gel, the pro-
tein sample was transblotted to a polyvinylidene difluor-
ide membrane (Amersham Pharmacia, Piscataway, NJ,
USA). Followingly, the membranes were then probed at
4.°C with antibodies against SCUBE2 (ab105378, 1:1000),
proliferating cell nuclear antigen (PCNA; ab152112, 1:
1000), Ki67 (ab92742, 1:2000), B cell lymphoma/
leukemia 2 (Bcl-2; ab194583, 1:1000), Bcl-2-associated X
protein (Bax; ab53154, 1:1000), and internal control
GAPDH (ab9485, 1:2000) overnight. Then, they were
blotted at room temperature for 1 h with the horseradish
peroxidase-labeled goat anti-rabbit secondary antibody
to IgG (ab6721, 1:2000). All antibodies used were ob-
tained from Abcam Inc. (Cambridge, UK). Finally, im-
munoreactive  bands  were  detected by an
electrochemiluminescence (GE Healthcare, Chicago, IL,
USA). We applied Image Pro Plus 6.0 (Media Cybernet-
ics, Rockville, MD, USA) to conduct quantitative
analysis.

5-Ethynyl-2'-deoxyuridine (EdU) staining

The cells of each group in logarithmic growth phase
were seeded into a 24-well plate. Three parallel wells
were set up. The culture medium was added with EAU
(C10341-1, Guangzhou RiboBio Co., Ltd., Guangzhou,
Guangdong, China) until the concentration reached
10 umol/L. After a 2-h incubation, the cells in each well
were fixed with 4% paraformaldehyde in PBS at room
temperature for 15 min and incubated for 20 min with
0.5% TritonX-100/PBS and with Apollo® 567 (100 pL,
RiboBio) for 30 min in darkness. Next, the cells were
cultured for 30 min with 100 uL 1 x Hoechst 33342 re-
action solution. Finally, the positive cells were analyzed
under the fluorescence microscope (FM-600, Shanghai
Pudan Optical instrument Co., Ltd., Shanghai, China),
under which the red stained cells were reflective of the

proliferated cells. Three visual fields were arbitrarily
chosen under the microscope.

Flow cytometric analysis

The cells were subjected to a 20-min centrifugation at
3000 r/min at 48h post-transfection and resuspended
with PBS to adjust the concentration into 1 x 10° cells/
mL. After that, the cells were fixed at 4°C with 1 mL
precooled (-20°C) 75% ethanol for 1h, centrifuged for
5min at 1500 r/min, and water-bathed with 100 pL
RNase A (Thermo Fisher Scientific) at 37 °C in darkness
for 30 min. The cells were then cultured for 30 min with
propidium iodide (400 uL, PI, Sigma-Aldrich Chemical
Company, St. Louis, MO, USA) at 4°C in darkness. The
cell cycle observation was conducted using a flow cyt-
ometer (Beckman Coulter, Inc., Brea, CA, USA) at 488
nm red fluorescence.

The cells were trypsinized (Thermo Fisher Scientific,
free of ethylene diamine tetraacetic acid) at 48 h post-
transfection and centrifuged successively at 3000 r/min for
30 min and at 3000 r/min for 15 min. Following the proto-
cols of an Annexin-V-fluorescein isothiocyanate (FITC)
cell apoptosis detection kit (Sigma), Annexin-V-FITC/PI
reagent was prepared with N-2-hydroxyethylpiperazine-N
'-2-ethanesulfonic acid (HEPES) buffer, Annexin-V-FITC,
and PI at a ratio of 50:1:2. Cells were stained at room
temperature for 15 min with 100 pL staining solution and
resuspended with 1 mL HEPES buffer. Lastly, cell apop-
tosis was evaluated using a flow cytometer at 488 nm.

Enzyme-linked immunosorbent assay (ELISA)

The RA-FLSs in logarithmic growth phase at 48 h post-
transfection were plated in a 24-well plate at 1 x 10°
cells each well. Following culture for 24h, the super-
natant was centrifuged at 4 °C at 1800g. After 1 min, the
IL-1P level was measured as per the instructions of the
ELISA kit (ab100704, 1:1000).

Bioinformatics prediction

RA-related dataset GSE103578 was found in the Gene
Expression Omnibus (GEO) database (https://www.ncbi.
nlm.nih.gov/geo/) and analyzed with the application of
the R language limma package (http://master.
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bioconductor.org/packages/release/bioc/html/limma.
html). The differentially expressed genes were screened
out on the conditions of adj.p.Val < 0.05 and |LogFold-
change (FC)| > 2. We then plotted a heatmap of these
differentially expressed genes using the R language
pheatmap package (https://cran.r-project.org/web/pack-
ages/pheatmap/index.html).

Fluorescence in situ hybridization (FISH) for subcellular
localization of PVT1

According to Ribo™ IncRNA FISH probe Mix (Red)
(RiboBio), after the confluence of the cells reached about
80% after 1 day of culture, the cells were then treated
with 4% paraformaldehyde (1 mL) at room temperature
and cultured with 2pg/mL protease K, glycine, and
phthalation reagent, successively. After prehybridization
and hybridization at 42 °C for 1 h and overnight, respect-
ively, the cells were stained with PBS containing 0.1%
Tween-20-diluted 4',6-diamidino-2-phenylindole (1:800)
for 5 min. The analysis was carried out using a fluores-
cence microscope (Olympus, Tokyo, Japan), with images
attained under five different fields.

RNA binding protein immunoprecipitation (RIP) assay

A RIP kit (Millipore Corp, Billerica, MA, USA) was
employed to assess the binding of miR-543 to PVT1 and
SCUBE2. Following an ice bath with lysis buffer
(P0O013B, Beyotime Biotechnology Co., Ltd., Shanghai,
China) for 5 min and a 10-min centrifugation at 4°C at
14000 rpm, a portion of the supernatant was incubated
with the rabbit anti-mouse antibody to IgG (ab109489,
1:100, Abcam). The remaining supernatant together with
50 pL beads were incubated at room temperature with
5 ug antibodies against Ago2 (ab32381, 1:50, Abcam) for
30 min. The aforementioned antibodies were from
Abcam. After detachment with proteinase K, the RNA
was extracted for subsequent PCR.

Luciferase reporter assay

With the purpose of constructing a luciferase report vec-
tor, SCUBE2-3 untranslated region (UTR) and PVT1
containing miR-543 binding sites were inserted into
pGL3 plasmids. The SCUBE2-3'UTR-mutant (MUT)
fragment and the PVT1-MUT fragment of the binding
site mutation were inserted into the pGL3 plasmid by
the point mutation method. The inserted sequence was
verified to be correct by sequencing. PGL3-IncRNA
PVT1, pGL3-IncRNA PVT1-MUT, pGL3-SCUBE2-3’
UTR, pGL3-SCUBE2-3'UTR-MUT recombinant vectors,
and Rellina were co-transfected into 293T cells with
miR-543 mimic or NC mimic. The cells were lysed 48 h
after transfection, and the luciferase reporter gene was
analyzed by a dual luciferase reporter gene analysis sys-
tem (Promega, Madison, WI, USA) following the

(2020) 15:142

Page 4 of 12

instructions of a Dual Luciferase Assay Kit (K801-200,
BioVision, Inc., Exton, PA, USA) with the help of a
fluorescence detector (Promega, Madison, WI, USA).

Data analysis

All sample data were analyzed with Statistical Product
and Service Solutions (SPSS 21.0) software (IBM Corp.
Armonk, NY, USA). All data were displayed as mean +
standard deviation for three repeated individual experi-
ments for each group. The one-way analysis of variance
(ANOVA) was employed for the comparison among
multi-groups, of which comparing between two groups
adopted Tukey’s post hoc test. Differences were regarded
as statistically significant if p < 0.05.

Results

PVT1 is highly expressed in synovial tissues of RA
patients and rat models

First of all, we compared the differentially expressed
IncRNAs in synovial tissues of three healthy people and
three patients with RA. The differential expression of
IncRNAs was analyzed by microarray. After homogeniz-
ing the original data, we screened a total of 133 differen-
tially expressed IncRNAs using Limma Rstudio package
using LogFC >1.5 and p value < 0.05 as screening condi-
tions. Among them, 61 IncRNAs were downregulated
and 72 IncRNAs were upregulated. The heatmap showed
some differentially expressed IncRNAs (Fig. 1a), among
which the difference of PVT1 expression was the most
obvious.

As shown in Fig. 1b, clinical symptoms including
swelling and redness of the hind paw were visible in RA
rats at the 2nd week after the modeling, which were alle-
viated at the 4th week. The swelling degree of the hind
paw of rats was analyzed. The findings revealed that in
comparison with the control rats, the swelling degree of
the RA rats was remarkably increased at the 1st, 2nd,
3rd, and 4th week (p < 0.05; Fig. 1c), indicating the suc-
cessful modeling of RA rats.

After successful induction, the synovial tissues from
control and RA rats were extracted to conduct RT-
qPCR for the PVT1 expression measurement. The re-
sults exhibited that the PVT1 expression in the RA rats
was markedly increased versus that in the control rats (p
< 0.05; Fig. 1d). These data obtained imply that the up-
regulation of PVT1 in the synovial tissues may be associ-
ated with the development of RA.

PVT1 knockdown inhibits the proliferation of FLSs and
the release of IL-1f in RA and promotes their apoptosis
Based on the results of microarray analysis and previous
experiments, we learned that PVT1 was upregulated in
synovial tissues of RA, and then RA-FLSs were trans-
fected with 0e-PVT1 or sh-PVT1. The transfection
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efficacy was then examined by RT-qPCR, suggesting that
PVT1 expression was reduced following sh-PVT1 treat-
ment (p < 0.05), whereas promoted expression was iden-
tified after oe-PVT1 delivery (p < 0.05; Fig. 2a).

At that time, the cell proliferation and apoptosis were ex-
amined by EdU staining and flow cytometry. Figure 2b—d
reveals that the proliferation rate of oe-PVT1-treated cells
was drastically elevated, the proportion of cells in G0/G1
phase was diminished, and the proportion of cells in S
phase was enhanced, accompanied by reduced apoptosis
rate (p < 0.05). Furthermore, sh-PVT1 transfection contrib-
uted to significantly decreased proliferation and the propor-
tion of S, while it contributed to increased proportion of
GO0/G1 and apoptosis rate (p < 0.05). The release of IL-1p

in culture medium was measured by ELISA. The results ex-
hibited that (Fig. 2e) the IL-1P secretion was significantly
promoted by oe-PVT1 (p < 0.05), while it was significantly
diminished by sh-PVT1 (p < 0.05). Finally, the expression
patterns of apoptosis-associated proteins Bax and Bcl2 as
well as proliferation-related proteins PCNA and Ki67 were
assessed by western blot assays. PCNA, Ki67, and Bcl2 in
oe-PVT1-treated cells were significantly upregulated,
whereas Bax expression was decreased (p < 0.05). Con-
versely, PCNA, Ki67, and Bcl2 were diminished due to sh-
PVT1 treatment, while Bax was remarkably increased (p <
0.05; Fig. 2f). Collectively, sh-PVT1 has the potency to sup-
press the proliferation and IL-1B secretion of RA-FLSs and
to induce its apoptosis.
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3 independent experiments

SCUBE?2 is overexpressed and miR-543 is downregulated
in synovial tissues of RA patients and rats

Subsequently, we analyzed the GSE103578 dataset in the
GEO database, which included FLSs from trauma pa-
tients and RA patients. A total of 190 differentially
expressed mRNAs were screened by LogFC >2, p value
< 0.05 using the Limma Rstudio package, of which
108 mRNAs were downregulated and 92 mRNAs
were upregulated. Figure 3a is the heatmap exhibit-
ing some differentially expressed mRNAs. Moreover,
we found that silencing of SCUBE2 could slow down
the injury of RA. Therefore, we chose SCUBE2 as
our target.

In order to further determine the ceRNA mechanism,
we predicted the miRNAs that shared binding relation-
ships with both SCUBE2 and PVT1 by the StarBase web-
site. A total of five miRNAs, miR-627, miR-668, miR-543,
miR-1252, and miR-1363 were screened out (Fig. 3b).
Among them, miR-543 has been reported to inhibit the
expression of tumor necrosis factor superfamily member
15, thus attenuating inflammatory reaction and cell apop-
tosis [13], and to reduce the neuroinflammatory response
by blocking the NF-«kB pathway [17].

miR-543 and SCUBE2 expression in the synovial tis-
sues of control and RA rats were assessed using RT-
qPCR and western blot assays. The findings illustrated
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110 kDa
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that miR-543 expression in RA rats decreased signifi-
cantly relative to control rats, while SCUBE2 expression
increased significantly at both mRNA and protein levels
(p < 0.05; Fig. 3c, d). Hence, the overexpression of
SCUBE2 and downregulation of miR-543 in the synovial
tissues may be linked to the RA development.

PVT1 binds to miR-543 to upregulate SCUBE2 expression
We predicted that PVT1 was principally located in the
cytoplasm as revealed by Lncatlas database, which was
further substantiated by our FISH assay. The blue stain-
ing stood for the nucleus and the red signified PVT1
(Fig. 4a), demonstrating that PVT1 was primarily
expressed in the cytoplasm. It was suggested that PVT1
may function by the ceRNA mechanism.

The binding relationships between miR-543 and
SCUBE2 and between miR-543 and PVT1 (Fig. 4b, c)
were substantiated by the luciferase reporter assay. As
expected, miR-543 mimic profoundly inhibited the lucif-
erase activity of PVT1 wild type (WT) relative to mimic
NC (p < 0.05), rather than the luciferase activity of
PVT1-MUT (p > 0.05). Also, miR-543 mimic repressed
the luciferase activity of SCUBE2-WT similarly. The
above results showed that PVT1 may bind to miR-543
to interact with the SCUBE gene.

Whether PVT1 could bind to miR-543 directly was
validated by RNA pull-down. The results showed that
(Fig. 4d) PVT1 was pulled-down more by WT-miR-543
than MUT-miR-543 and Bio-NC (p < 0.05), implying a
direct binding relationship between PVT1 and miR-543.
RIP assay was performed to confirm whether PVT1
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directly interacted with AGO2 in RA-FLSs, which dis-
played that (Fig. 4e) PVT1 was enriched by antibody to
AGO?2 in RA-FLSs. As a result, PVT1 could form com-
plexes with AGO2.

PVT1, miR-543, and SCUBE2 expression patterns
were examined by the means of RT-qPCR and west-
ern blot assays after overexpression or silencing of
PVT1 and miR-543 in RA-FLSs, respectively (Fig. 4f,
g). The data provided that PVT1 and SCUBE2 expres-
sion was increased significantly and that of miR-543
decreased after overexpression of PVT1 (p < 0.05).
After silencing of PVT1, the opposite trends were ob-
served (p < 0.05). Moreover, we conducted the same
experiments in RA-FLSs overexpressing miR-543,
there was no remarkable change in the PVT1 expres-
sion, but miR-543 expression was significantly upreg-
ulated, while SCUBE2 was remarkably diminished at
both mRNA and protein levels (p < 0.05). Meanwhile,
we observed the opposite trends after the downregu-
lation of miR-543 (Fig. 4h). In conclusion, PVT1 is
participated in the proliferation, apoptosis, and IL-1
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secretion of RA-FLSs by sponging miR-543 to upregu-
late SCUBE2.

Silencing miR-543 promotes the proliferation and IL-1
secretion of RA-FLSs and inhibits its apoptosis

To further observe the mechanism where miR-543 gov-
erns RA-FLSs in RA, these cells were co-transfected with
sh-SCUBE2 or sh-PVT1 and miR-543 inhibitor or miR-
543 mimic alone. The cell viability, cell cycle, and cell
apoptosis rate were detected by EAU and flow cytometry.
As displayed by Fig. 5a—c, the cell proliferation and S
phase ratio were significantly reduced, while GO/G1
phase ratio and apoptosis rate were significantly pro-
moted by miR-543 mimic (p < 0.05). Meanwhile, miR-
543 inhibitor exerted a stimulative role in cell prolifera-
tion and S phase ratio, while it exerted a repressive role
in GO/G1 phase ratio and apoptosis rate. Rescue experi-
ments exhibited that silencing of SCUBE2 or PVT1 re-
versed the function of miR-543 inhibitor in cell viability
and apoptosis.
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The release of IL-1 in cell culture medium was mea-
sured by ELISA. Figure 5d illustrates that the secretion
of IL-1f following the miR-543 mimic treatment was
significantly diminished, and the secretion of IL-1p after
miR-543 inhibitor treatment was remarkably restored (p
< 0.05). Compared with the miR-543 inhibitor + sh-NC
treatment, the secretion of IL-1B was significantly de-
creased following sh-SCUBE2 + miR-543 inhibitor and
sh-PVT1 + miR-543 inhibitor treatments (p < 0.05).

As revealed by western blot analysis (Fig. 5e), relative
to the mimic NC delivery, the PCNA, Ki67, and Bcl2 ex-
pression was decreased, while Bax expression was en-
hanced by the miR-543 mimic delivery (p < 0.05).
Conversely, the protein expression of PCNA, Ki67, and
Bcl2 after miR-543 inhibitor treatment was markedly
promoted, while the protein expression of Bax was re-
duced (p < 0.05). The PCNA, Ki67, and Bcl2 expression
was profoundly decreased, while the Bax expression was
significantly reduced after the miR-543 inhibitor + sh-
SCUBE2 and miR-543 inhibitor + sh-PVT1 treatments
(p < 0.05). Taken together, the facilitated RA-FLS prolif-
eration and inflammation as well as hindered apoptosis
induced by miR-543 inhibition could be counteracted by
silencing of PVT1 or SCUBE2.

Discussion

First, we found in the present study that PVT1 was
highly expressed in synovial tissues of RA patients by
microarray analysis. Similarly, we found that PVT1 ex-
pression was elevated in synovial tissues of RA rats.
Then, we performed the gain- and loss-of-function ex-
periments of PVT1 in FLSs and found that overexpres-
sion of PVT1 significantly promoted the proliferation of
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FLSs and inflammation, yet inhibited apoptosis as evi-
denced by boosted Ki67, PCNA, IL-1pB, and Bcl-2 expres-
sion, whereas it hampered Bax expression. We further
noted that PVT1 bound to miR-543, and miR-543 tar-
geted SCUBE2 by bioinformatics prediction. Moreover,
further miR-543 inhibitor in the presence of silencing
SCUBE2 or PVT1 could promote FLS proliferation and
IL-1p secretion, while inhibiting apoptosis.

Most epidemiologic records suggest that the incidence
of RA is about 0.5-1.0%, and around 70 to 80% of RA
patients have autoantibodies, indicating that RA repre-
sents itself as an autoimmune disease [18]. Considerable
efforts to define the epigenome of RA have concentrated
on FLS of the synovial intimal lining that invade the car-
tilage, demonstrating an exceptional aggressive pheno-
type in RA patients [19]. During this study, we were set
to examine the functions of PVT1 in RA-FLSs to further
clarify the specific mechanisms linked to the pathogen-
esis of RA. PVT1 is located at chromosome 8q24, a well-
acknowledged risk locus for cancer and was promoted in
bladder cancer tissue and linked to advanced histological
grades and higher tumor stage in addition to lymph
node metastases [20]. Furthermore, PVT1 was explored
to significantly decrease miR-365 expression in Huh7
and HepG2 cells through sponging effect through the lu-
ciferase reporter assay [21]. During the past decade, the
ceRNA theory involving IncRNA-miRNA-mRNA net-
work has been established in the progression of various
kinds of disorders, including autoimmune diseases [22].
For instance, a novel IncRNA GAPLINC has been moni-
tored to encourage tumor-like behaviors of RA-FLS
through binding with miR-382-5p and miR-575 [23]. A
loop of has-circ-0028198/has-circ-0092317/XIST/miR-

RA-FLSs
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543/aspartate beta-hydroxylase or has-circ-0028198/has-
circ-0092317/XIST/miR-543/phosphodiesterase 3B has
been implicated in oxidized, low-density, lipoprotein-
stimulated foam cells in atherosclerosis [24]. Further-
more, miR-543 was significantly reduced under
senescence-inducing conditions and could modulate the
aging process of human mesenchymal stem cells [25].
Meanwhile, miR-543-5p expression in the rat spinal cord
was diminished after spinal cord injury [17]. SCUBE2
has been reported to regulate the development of verte-
brae by regulating the expression of bone morphogenetic
protein [26]. Also, the anti-rheumatic role of SCUBE2
through regulating synovial angiogenesis has been re-
ported previously [14].

The important function of PCNA, a main player of the
cell cycle modulation, on proliferation and migration of
FLSs has been previously investigated [27]. In line with
our findings, the anti-apoptotic protein Bcl2 was en-
hanced, whereas the pro-apoptotic gene Bax was sup-
pressed by silencing of signal transducer and activator of
transcription 3 through delivering small interfering RNA
in RA-FLSs [28]. Interestingly, PVT1 could directly bind
to miR-149 as an endogenous sponge RNA and miR-149
suppression reversed the protective roles of PVT1
knockdown in attenuating IL-1B-evoked inflammation in
osteoarthritic chondrocytes [29]. In addition, silencing of
PVT1 promoted cell proliferation, yet suppressed in-
flammation in C28/I2 cells stimulated by IL-1f, which
was counteracted by the deficiency of its target miR-
27b-3p [30]. The contributory roles of sh-PVT1 in the
elevation of RA-FLS apoptosis and suppression of prolif-
eration and IL-1f release was achieved by competitively
binding to miR-543 to downregulate SCUBE2 expres-
sion. Thus, we demonstrated in detail the effects of the
PVT1/miR-543/SCUBE2 axis on the regulation of RA-
FLS proliferation and apoptosis, which is a great advan-
tage of our research. However, we did not further inves-
tigate the effect of the signaling pathway downstream of
the PVT1/miR-543/SCUBE2 axis on RA. For example,
NE-«kB signaling plays an important role in the patho-
genesis and progression of RA [31]. Besides, miR-145-5p
affects RA by regulating Wntl/B-catenin signaling [32].
In the next step, we will study the effect of signaling
downstream of PVT1/miR-543/SCUBE2 on RA.

Conclusion

In aggregate, the current study indicates that downregu-
lation of PVT1 reduces proliferation and IL-1f release,
while it induces apoptosis of RA-FLS by mediating the
miR-543/SCUBE2 axis (Fig. 6). However, we cannot ex-
clude the involvement of other signaling pathways in the
regulation of inflammation due to the complex microen-
vironments, which would be the focus of our future
researches.
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