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Abstract

In deaf people, the auditory cortex can reorganize to support visual motion processing. Although this cross-modal
reorganization has long been thought to subserve enhanced visual abilities, previous research has been unsuccessful at
identifying behavioural enhancements specific to motion processing. Recently, research with congenitally deaf cats has
uncovered an enhancement for visual motion detection. Our goal was to test for a similar difference between deaf and
hearing people. We tested 16 early and profoundly deaf participants and 20 hearing controls. Participants completed a
visual motion detection task, in which they were asked to determine which of two sinusoidal gratings was moving. The
speed of the moving grating varied according to an adaptive staircase procedure, allowing us to determine the lowest
speed necessary for participants to detect motion. Consistent with previous research in deaf cats, the deaf group had lower
motion detection thresholds than the hearing. This finding supports the proposal that cross-modal reorganization after
sensory deprivation will occur for supramodal sensory features and preserve the output functions.
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Introduction

Most people are familiar with the popular idea that the loss of

one sense, such as vision or audition, can lead to enhancements of

the remaining senses. This idea is supported anecdotally and

scientifically, particularly in the domain of visual deprivation. In

blind people, researchers have documented behavioural enhance-

ments to specific aspects of auditory, tactile, and olfactory

processing (for reviews, see [1,2]). In some instances, these

enhancements have been attributed directly to cross-modal

processing in the visual cortex – with no visual input, brain

regions that are normally devoted to vision reorganize to process

incoming auditory information (e.g. [3,4]). Similar cross-modal

neural recruitment has been found in deaf people, with increased

responsiveness of the superior temporal cortex in response to visual

information, specifically to visual motion stimuli [5–10]. Although

this cross-modal activity in deaf people is believed to support some

enhanced visual abilities [11], the exact behavioural correlates of

this activity have yet to be fully understood.

One barrier to understanding the nature of cross-modal activity

in deaf people has been the difficulty in identifying specific

behavioural enhancements in this population. Many studies have

identified changes to visual attention (for a review, see [12]), but

researchers have been less successful at confirming behavioural

enhancements that are specific to visual motion processing. For

example, deaf people show no enhancement for detecting changes

in velocity [13], and the evidence for enhancements to motion

direction sensitivity is ambiguous: while one recent study found

that deaf people were faster and more accurate at discriminating

small differences in the angle of motion direction in the periphery

[14], other reports found that coherent motion direction

thresholds were either similar to or worse than in hearing people

[15,16]. Although deaf people sometimes show faster reaction

times to moving stimuli in the periphery as compared to hearing

people [17–19] (but see [14] for a counter example), they also

show faster reaction times for stationary peripheral stimuli [21–23]

suggesting the possibility of a general enhancement to reaction

times for peripheral stimuli rather than a specific change to visual

motion processing. Consistent with this hypothesis, deaf people

show a bias for peripheral space in the distribution of visual

attention [24,25], and in the distribution of ganglion cells in the

retina [26].

Recently, the link between cross-modal cortical recruitment and

visual ability has been clarified in congenitally deaf cats [27]. Here,

researchers found that auditory deprivation led to an enhance-

ment in two aspects of vision: motion detection and peripheral

localization. Consistent with previous work in deaf humans, there

were no changes in the cat’s sensitivity to motion direction or

velocity, nor to non-motion related features, such as grating acuity,

vernier acuity, and orientation. These selective visual enhance-

ments were abolished when auditory regions were deactivated,
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confirming that they were supported by cross-modal neural

activity [27].

In the present study, we sought to replicate the behavioural

enhancement in visual motion detection previously found in deaf

cats [27] in a group of deaf humans. Despite the abundance of

studies examining visual motion processing in deaf people, to our

knowledge, none have specifically measured motion detection

thresholds, the variable known to be enhanced in deaf cats. This

link between non-human and human research is a necessary step

towards understanding cross-modal plasticity in humans. This

issue is particularly relevant to further our understanding of

plasticity in the auditory system, where humans show unique

cognitive abilities for auditory information, such as language and

music processing. We hypothesized that, similarly to deaf cats,

deaf humans will show enhanced visual motion detection

thresholds when compared to hearing controls when measured

with similar psychophysical approaches.

Materials and Methods

Ethics Statement
The experiment was approved by the Research Ethics Board at

the Montreal Neurological Institute and all participants gave

informed written consent.

Participants
Twenty hearing (13 males, 7 females; mean age: 31.8 years old)

and 16 deaf people (9 male, 7 female; mean age: 31.2 years old)

participated in the study. All participants had normal or corrected-

to-normal vision and no history of neurological conditions. From

the deaf group, seven participants reported suspected hereditary

congenital deafness, seven reported congenital deafness of

unknown etiology, and two were deafened from meningitis at 11

and 6 months of age. All deaf participants were confirmed to have

profound hearing loss using standard audiometry [28]: Pure-tone

thresholds at all frequencies tested (500, 1000, 2000, 4000 and

8000 Hz) were above 90 dB for each participant, with the

exception of four participants who were able to hear 500 Hz at

80 or 85 dB. Deaf participants used sign language as their primary

language and had minimal hearing-aid use. Hearing participants

reported normal hearing and no experience with sign language or

lipreading.

Stimuli
Stimuli were two greyscale, horizontally-oriented sinusoidal

gratings (grating size: 6u66u, spatial frequency: 0.33 cycle/u,
Michelson contrast: 50%), presented on a CRT computer

monitory with a grey background. A schematic of the stimulus is

shown in figure 1. Gratings were presented simultaneously for

500 ms in the left and right visuals fields, centred at 210u and +
10u from a central fixation square (size: 0.5u60.5u). In each trial,

one the two gratings was randomly selected to move while the

other remained stationary. The motion of the moving grating was

randomized between upwards and downwards. The speed of the

motion varied according to an adaptive staircase procedure,

described below. The stimuli and staircase procedure were

generated using Presentation software (Neurobehavioral Systems,

Albany, CA, USA).

Procedure
Participants were tested individually. The experimenter verbally

explained and demonstrated the task, with the assistance of a sign

language interpreter when necessary. Participants were instructed

to maintain fixation on the central square and indicate, by button-

press, which of the two gratings (the left or the right) was moving,

and to guess if uncertain. Participants were then seated alone in a

darkened room, with their heads stabilized in a chin rest,

positioned 57 cm from the centre of the computer screen. We

used an Eyelink 1000 eye tracker (SR Research, Mississauga, ON,

Canada) with a 1000 Hz sampling rate to monitor monocular eye

movement of the right eye during the task. The eye tracker was

calibrated before each run. The first run consisted of a practice,

where participants were given automatic feedback on their

responses, as well as feedback from the experimenter on their

fixation. The participants then completed eight testing runs,

broken up with two breaks during which the experimenter

interviewed the participant on their history and did audiometric

testing for hearing thresholds.

For the first trial of each run, the grating had a speed of 0.566

degrees/second. For each correct response, the speed decreased by

0.0472 degrees/second, and for each incorrect response, the speed

increased by 0.142 degrees/second. Thus the staircase consisted of

a one-up one-down procedure, weighted with a 1:3 ratio in step

size [29]. Trials in which participants broke fixation during the

presentation of the gratings were automatically excluded from the

staircase. If the staircase reached a speed of zero or 0.660 degrees/

second, the subsequent trial was automatically one step up or

down, respectively. The run terminated after 15 reversals, which

took an average of 136.7 trials (range: 94–211, standard deviation:

19.2). For each participant, individual runs were discarded if the

participant broke fixation in more than 18% of the trials. This cut-

off was chosen because it represents two standard deviations above

the mean number of times fixation was broken across all

participants and runs. Fourteen runs were excluded with this

criterion: seven participants (3 hearing, 4 deaf) had one run

excluded, two had two excluded (1 deaf, 1 hearing), and 1 (deaf)

had three excluded. Within a run, the output threshold consisted

of the arithmetic mean of all 15 reversals. Across a participant’s set

of runs, we took the median value as that participant’s motion

detection threshold.

Results

To compare motion detection thresholds of deaf and hearing

groups, we did a one-tailed Student’s t-test. As shown in figure 2,

the deaf group had lower visual motion detection thresholds than

the hearing group (t=2.71, p=0.0055). Visual inspection of the

data showed two hearing participants with particularly high

thresholds. Exclusion of these two individuals did not eliminate the

statistical difference between groups (t=2.19, p=0.018 DF=32).

A Shapiro-Wilks test indicated that the hearing group was not

normally distributed when all participants were included

Figure 1. Diagram of the visual motion detection task. In each
trial, two gratings appeared in the left and right visual fields centred at
an eccentricity of ten degrees for 500 ms. One of the gratings was
stationary while the other moved. Participants indicated which of the
two gratings was moving by a button press. The speed of the moving
grating varied according to an adaptive staircase procedure.
doi:10.1371/journal.pone.0090498.g001
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(W=0.813, p=0.013). As such, we repeated the group compar-

ison with the non-parametric Mann-Whitney test, and the

statistical significance of the group difference was preserved

(U=82.5, p=0.007 with all participants included; U=82.5,

p=0.017 with two suspected outliers in the hearing group

excluded).

Discussion

We found that people with early and profound deafness have

lower thresholds for visual motion detection compared to people

with normal hearing. This finding is consistent with previous

research in congenitally deaf cats, where this enhanced visual

ability is supported by activity in auditory regions [27]. Based on

this previous research [27], we believe that the enhanced visual

ability found in deaf humans is likewise supported by auditory-

visual cross-modal neural activity. Our proposal is corroborated by

the well-documented cross-modal recruitment of auditory regions

for visual motion processing in deaf people [5–10]. It is also

consistent with research in blind people, where selective enhance-

ments in performance on auditory behavioural tasks have been

linked to cross-modal activity in regions that normally process

vision (for a review, see [30]). However, given that we tested

behaviour without measuring neural activity, we cannot rule out

other possible mechanisms that may play a part. In particular,

documented changes to the distribution of retinal ganglion cells

[26] and to early visual processing [22] may have contributed.

Our result contrasts with previous studies on aspects of visual

motion processing in deaf people, where deaf and hearing

performed similarly on tests of direction and velocity perception

[13,15,16,19,20]. In fact, a review of all research on the visual

abilities of deaf people reveals that enhancements are highly

selective [11]. Several theories have been proposed to explain this

selectivity. Early suggestions followed the idea that enhancements

were limited according to the principles of organization in the

visual system, restricted to functions of the dorsal visual stream

[11,31] or to the magnocellular system [17]. While either one of

these suggestions is consistent with our result, both can be rejected

in light of null results in other research. The dorsal stream

hypothesis is not supported because it fails to explain the null

results for visual motion direction and velocity processing

[13,15,16,19,20], both of which occur in the dorsal visual stream

[32]. The magnocellular hypothesis is not supported based on

evidence that deaf and hearing people have similar contrast

thresholds for the detection of motion [33], while the magnocel-

lular system is known to support motion detection of gratings with

low contrast [34]. Another early explanation for the specificity of

visual enhancements in deaf people held that enhancements may

be limited to attentionally-demanding tasks in peripheral vision

[11]. While it is clear that there are changes to peripheral visual

attention after deafness [12], we do not believe that these changes

can explain our finding, as previous research that also used

peripheral stimuli did not find a similar enhancement [13,16,19].

Based on the evidence from deaf cats, and other data, a more

recent theory for the selectivity of visual enhancements in deaf

people has been proposed [27,35]. This idea, termed the

supramodal hypothesis, can be explained in three parts. First,

cross-modal neural recruitment after deafness will occur selectively

in cortical modules that rely on supramodal input. ‘‘Supramodal

input’’ refers to sensory features that are common to more than

one sensory modality. For example, motion is a supramodal

sensory feature because it can be sensed by both audition and

vision, whereas color is not because it can be sensed only by vision

[27]. Second, the output function of a cortical module will be

preserved after cross-modal reorganization. This idea of preserved

function is consistent with the proposal for a metamodal

organization of the brain, determined based on output functions

regardless of the input sensory modality [36]. A similar explana-

tion of preserved function has been proposed in cross-modal

research with blind people (e.g. [37,38], for reviews see [30,39]).

Third, the reorganization will be limited to cortical modules for

which audition is the primary sensory input [40]. This part of the

hypothesis was introduced to explain the specificity of enhance-

ments for motion processing, reasoning from the fact that both

direction and velocity, two features for which no behavioural

enhancements have been documented, are processed primarily in

the visual system, with no known homologues in the auditory

system [40].

Our result of enhanced visual motion detection in deaf people is

consistent with the supramodal hypothesis, as motion can be

perceived with both the visual and auditory senses. Provided that

our behavioural result is supported by cross-modal recruitment of

the auditory cortex, more research is needed to determine the

exact function of the auditory cortical module that has been

reorganized. According to the supramodal hypothesis, this

hypothetical cortical module may be involved in peripheral

auditory motion detection. Although the neural correlates specific

to motion detection have not been examined in the auditory

domain, previous research has examined the neural correlates of

auditory motion processing. Within the temporal lobe, the planum

temporale (PT) has been implicated in this function [41–43]. The

PT also supports motion-related cross-modal activity in deaf

people [5–8]. In a recent study from our lab [44], deaf people who

had minimal hearing-aid use showed greater functional connec-

tivity between the PT and primary visual cortex as compared to

hearing people, which again suggests cross-modal reorganization

of this region after auditory deprivation. The PT is therefore a

fitting proposed neural correlate for the enhanced visual motion

detection thresholds that we observed in the present study.

As our study examined the effects of early deafness, more

research is needed to determine whether or not this sensory

compensation will occur for deafness acquired later in life. As well,

since our deaf and hearing groups differed in language experience,

future research may explore whether or not visual spatial language

experience impacts visual motion detection thresholds. Another

Figure 2. Visual motion detection thresholds of the hearing
and deaf groups. Group averages are shown with horizontal bars.
Deaf people showed significantly lower motion detection thresholds
than hearing people. Effect remained statistically significant when two
possible outliers in the upper range of the hearing group were
excluded.
doi:10.1371/journal.pone.0090498.g002
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intriguing question for future research concerns the interaction

between visual ability and hearing rehabilitation: Since cross-

modal reorganization of auditory cortex is known to interfere with

the functioning of a cochlear-implant [45–48], we predict that

cochlear-implant outcome and visual motion detection thresholds

will correlate, such that individuals with worse cochlear-implant

proficiency, presumably because of increased cross-modal reorga-

nization, will also show better visual motion detection thresholds.
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