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Summary
Background Alzheimer’s disease (AD) is a prevalent neurodegenerative disorder that poses a worldwide public health
challenge. A neuroimaging biomarker would significantly improve early diagnosis and intervention, ultimately
enhancing the quality of life for affected individuals and reducing the burden on healthcare systems.

Methods Cross-sectional and longitudinal data (10,099 participants with 13,380 scans) from 12 independent datasets
were used in the present study (this study was performed between September 1, 2021 and February 15, 2023). The
Individual Brain-Related Abnormalities In Neurodegeneration (IBRAIN) score was developed via integrated regional-
and network-based measures under an ensemble machine learning model based on structural MRI data. We
systematically assessed whether IBRAIN could be a neuroimaging biomarker for AD.

Findings IBRAIN accurately differentiated individuals with AD from NCs (AUC = 0.92) and other neurodegenerative
diseases, including Frontotemporal dementia (FTD), Parkinson’s disease (PD), Vascular dementia (VaD) and
Amyotrophic Lateral Sclerosis (ALS) (AUC = 0.92). IBRAIN was significantly correlated to clinical measures and gene
expression, enriched in immune process and protein metabolism. The IBRAIN score exhibited a significant ability to
reveal the distinct progression of prodromal AD (i.e., Mild cognitive impairment, MCI) (Hazard Ratio (HR) = 6.52
[95% CI: 4.42∼9.62], p < 1 × 10−16), which offers similar powerful performance with Cerebrospinal Fluid (CSF) Aβ
(HR = 3.78 [95% CI: 2.63∼5.43], p = 2.13 × 10−14) and CSF Tau (HR = 3.77 [95% CI: 2.64∼5.39], p = 9.53 × 10−15)
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based on the COX and Log-rank test. Notably, the IBRAIN shows comparable sensitivity (beta = −0.70, p < 1 × 10−16)
in capturing longitudinal changes in individuals with conversion to AD than CSF Aβ (beta = −0.26, p = 4.40 × 10−9)
and CSF Tau (beta = 0.12, p = 1.02 × 10−5).

Interpretation Our findings suggested that IBRAIN is a biologically relevant, specific, and sensitive neuroimaging
biomarker that can serve as a clinical measure to uncover prodromal AD progression. It has strong potential for
application in future clinical practice and treatment trials.

Funding Science and Technology Innovation 2030 Major Projects, the National Natural Science Foundation of China,
Beijing Natural Science Funds, the Fundamental Research Funds for the Central University, and the Startup Funds
for Talents at Beijing Normal University.
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license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Research in context

Evidence before this study
The available evidence highlighted the limitations of existing
neuroimaging biomarkers, particularly their translation from
research to clinical practice. Previous studies have explored
deep learning and machine learning techniques to develop
neuroimaging biomarkers for AD. Still, most studies have
focused on single-site cohorts with limited sample sizes,
potentially limiting generalisability. We searched PubMed,
Web of Science, and Scopus for eligible studies from January 1,
2010 to March 30, 2023, mainly using the search terms
(“classification” OR “diagnostic” OR “predict*”) AND (“MRI”
OR “Magnetic Resonance Imaging”) AND (“Alzheimer*”).

Added value of this study
Our study contributes to the existing evidence on
neuroimaging biomarkers for AD. By developing the
Individual Brain-Related Abnormalities In Neurodegeneration
(IBRAIN) score, we address the limitations of previous
biomarkers and offer several advancements. First, our study
includes a large multisite cohort comprising over 10,000
participants, enhancing the generalisability of our findings.

Second, IBRAIN integrates regional- and network-based
measures using structural MRI data, providing a
comprehensive and biologically relevant approach. Third, we
systematically compare IBRAIN with CSF biomarkers,
demonstrating its comparable performance in assessing
clinical outcomes and longitudinal changes.

Implications of all the available evidence
Our findings have several implications for clinical practice,
policy, and future research. The development of IBRAIN as a
reliable and accessible neuroimaging biomarker holds promise
for improving early detection, personalised prognosis, and
monitoring of AD progression. IBRAIN’s performance
surpasses or matches that of CSF biomarkers, suggesting its
potential as a less invasive alternative. The practicality and
accessibility of IBRAIN make it a valuable tool for neurologists,
radiologists, and researchers focused on AD biomarker
development. Further research should explore the integration
of IBRAIN into clinical workflows, evaluate its utility in diverse
populations, and investigate its role in treatment trials and
precision medicine approaches.
Introduction
Alzheimer’s disease (AD) is a progressive neurodegen-
erative disorder representing a significant public health
concern.1 Quantifiable, individualised, and generalised
biomarkers are critical for detecting prodromal AD,
delineating its progression, and assessing the effective-
ness of personalised prognosis.2 The measurement of
quantified Aβ using Positron Emission Tomography
(PET) and Cerebrospinal Fluid (CSF) is a commonly
employed method for diagnosing AD within profes-
sional medical organisations.3 However, it is worth
noting that this technique is not widely adopted in pri-
mary care settings, primarily due to its cost, invasive-
ness, and technical complexity,4 which restricted the
early diagnosis of AD within the high-risk population.
Thus, developing a more generalised and readily avail-
able biomarker is urgently needed.

Structural Magnetic Resonance Imaging (sMRI) has
become one of the most common measures for capturing
the abnormal pattern of the brain in clinical practice.5

Furthermore, advanced deep learning and machine
learning techniques for constructing AD neuroimaging
biomarkers based on sMRI provide novel insights for
developing commonly used diagnosis assistants.6,7 How-
ever, translating such biomarkers from bench to bedside
still poses significant challenges, i.e., generalisation, bio-
logical explanation, cross-classical diagnostic categories,
and identifying their subtle pathophysiological differ-
ences.8 For these challenges, previous studies have
emphasised the significance of validating biomarkers
www.thelancet.com Vol 65 November, 2023
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using large datasets encompassing multiple research sites
rather than relying solely on single datasets.9,10 It is note-
worthy that the most commonly employed framework for
validation in previous studies remains k-fold or leave-n-out
cross-validation,10 despite a limited number of studies that
have endeavoured to explore the applicability of inter-site
cross-validation,11,12 specifically within the inner ADNI
dataset.13–17 Therefore, extensive independent validation is
needed to develop the MRI biomarker. Additionally, the
early detection of AD is a multifaceted task that cannot be
simplified as a two-class classification problem. Therefore,
it is crucial to validate a specific biomarker that encom-
passes the cross-classification of diagnostic categories.8

Moreover, validating a biomarker in clinical cohorts is a
critical step often overlooked in clinical translation.18 Many
studies focus primarily on developing and evaluating bio-
markers using research datasets, neglecting the essential
aspect of proper validation in real-world clinical settings.10,19

To translate research advancements into clinical
practice, a simple and robust model-based neuroimaging
biomarker that can comprehensively capture the
abnormal pattern of AD is needed due to its practicality
and ease of interpretation compared to those complex and
unexplainable models.20 Furthermore, AD is a progres-
sively degenerative condition characterised by a cross-
scale complex phenotype, from subtle morphological
changes11 to macroscopic21 and then to global brain
damage.22 Concentrating solely on a single-scale MRI
measure is insufficient to fully capture the comprehen-
sive abnormal pattern of AD. This limitation hinders the
successful clinical translation of biomarkers. Therefore,
the integration of cross-scale neuroimaging measures
may be necessary to obtain a comprehensive assessment
of the Brain-Related Abnormalities In Neurodegeneration
(IBRAIN) for AD.

We hypothesised that an IBRAIN, derived from in-
tegrated different scales of brain structural measures,
including subtle morphological changes (regional
radiomics features, R2F) macroscopic (regional GM),
brain covariance changes (regional radiomics similarity
network, R2SN; and R2SN mean connectivity strength,
RMCS), could serve as a reliable neuroimaging
biomarker for AD. We aimed to test this hypothesis by
evaluating: 1) the discriminative accuracy of IBRAIN in
classifying AD from normal controls (NCs) and the
samples with other neurodegenerative diseases; 2) the
association between IBRAIN score and clinical symp-
toms and gene expression; and 3) the ability of IBRAIN
to reveal distinct clinical outcomes or progression in NC
and mild cognitive impaired (MCI) stages and to test its
sensitivity in individuals with conversion to AD (Fig. 1).
Methods
Participants and clinical assessments
The present study involved the analysis of 12 indepen-
dent datasets, encompassing a total of 10,099 participants
www.thelancet.com Vol 65 November, 2023
with 13,380 scans of T1-weighted images (this study was
performed between September 1, 2021 and February 15,
2023). The initial discovery dataset was derived from the
Alzheimer’s Disease Neuroimaging Initiative (ADNI;
http://adni.loni.usc.edu), including 888 baseline partici-
pants (605 NCs and 283 AD, Supplementary Table S1).
The data selection strategy employed in this study can be
found in Supplementary Materials S01 (Supplementary
Figure S1).

Additional testing datasets included, i.e., longitudinal
participants and a complementary set of ADNI discovery
datasets (entitled ADNI-L, as a primary testing dataset,
1877 participants with 4519 scans, Supplementary
Materials S01, Supplementary Table S2), and other
AD-NC datasets (a total of 4851 NCs and 2332 AD)
(Table 1). In this study, a total of eight AD datasets were
included, comprising 390 participants (M/F: 230/160)
from the EDSD dataset, 419 participants (M/F: 357/62)
from the AIBL dataset, 885 participants (M/F: 718/167)
from OASIS dataset, 774 participants (M/F: 742/32)
from ARWIBO dataset, 69 participants (708 scans) from
MIRIAD dataset (M/F: 243/465), 3272 participants from
NACC dataset (M/F: 2225/1047), 735 participants
from MCADI dataset (M/F: 336/399). All participants
comprising the MCADI dataset were approved by the
Medical Ethics Committee of the local hospitals in
China and signed written informed consent forms, with
the remaining data sets being obtained from openly
accessible sources.

It should be noted that the diagnosis of AD in these
datasets was primarily based on clinical evaluation. Most
of them followed NINCDS-AADRCA criteria.23

In addition, other neurodegenerative diseases cohorts
contain individuals with Lewy body disease (LBD,
N = 101), frontotemporal dementia (FTD, N = 184),
Parkinson’s disease (PD, N = 232), vascular dementia
(VaD, N = 103), amyotrophic lateral sclerosis (ALS,
N = 16), as well as those with other neurological, genetic,
or infectious conditions (N = 35), depression (DEPR,
N = 32) and cognitive impairment for other specified
reasons (COR, N = 87) (Supplementary Materials S01,
Supplementary Table S3), were also utilised for valida-
tion. Details can be found in Supplementary Materials
S01.

Data processing and feature extraction
First, the T1-weighted image for each participant was
first pre-processed by using the CAT12 toolbox (http://
www.neuro.uni-jena.de/cat/, v12.8), and the regional
GMV was quantified based on the Brainnetome atlas
(246 brain regions).24 Second, to evaluate the regional
high-order morphological changes, the T1-weighted
image was aligned to Montreal Neurological Institute
(MNI) space by Advanced Normalisation Tools (ANTs)
with "SyN" parameters for each participant. A total of 47
radiomics features (Detailed can be found in
Supplementary Materials S02, Supplementary Tables S4
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Fig. 1: The pipeline of the present study. (A) Multi-scan neuroimaging features were utilised in this study, including grey matter volume (GMV),
regional radiomics features (R2F), regional radiomics similarity network (R2SN), and R2SN mean connectivity (RMCS). (B) Training and testing strategy
employed in this study, including detailed progression for constructing the IBRAIN model. (C) Validation of the IBRAIN model in cross-sectional
analysis, including its ability to distinguish AD and NC, its relationship to clinical measures and gene expression, and its ability to distinguish AD
and non-AD disorders. (D) Validation of the IBRAIN in longitudinal analysis, including its ability to reveal the distinct progression of MCI, its ability to
quantify MCI converting to AD within a certain period, and examining individual IBRAIN progression in MCI converting to AD.
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and S5) for each brain region of the Brainnetome atlas
were extracted.11,14 Third, the individual R2SN was
generated by mapping the individual’s radiomics
Site Group Age (years) Sex (M/F)

EDSD NC (230) 68.76 ± 6.14 108/122

AD (160) 72.52 ± 8.05 68/92

AIBL NC (357) 67.93 ± 6.49 156/201

AD (62) 69.31 ± 7.96 25/37

OASIS NC (718) 66.46 ± 9.22 289/429

AD (167) 74.78 ± 7.85 80/87

ARWIBO NC (742) 51.87 ± 14.52 309/433

AD (32) 73.50 ± 7.17 14/18

MIRIAD NC (243) 69.86 ± 6.94 127/116

AD (465) 69.56 ± 6.86 188/277

NACC NC (2225) 65.58 ± 10.73 705/1520

AD (1047) 71.72 ± 8.34 521/526

MCADI NC (336) 64.71 ± 8.86 148/188

AD (399) 69.23 ± 9.16 154/245

ADNI-L NC (1402) 73.32 ± 6.11 662/740

AD (915) 74.33 ± 7.57 523/392

Table 1: The summary of the testing participants (scans) in the
present study.
features (Supplementary Materials S03, Supplementary
Table S6) into a radiomics similarity matrix of pair-
wise interregional Pearson’s correlations25 (Detailed can
be found in Supplementary Materials S03). Finally, the
regional connectivity was also evaluated by computing
the R2SN mean connectivity strength (RMCS) (Fig. 1A).
The detailed brain regions’ names in the Brainnetome
atlas can be found in Supplementary Materials S03
(Supplementary Table S7).

Computing IBRAIN via ensemble machine learning
Initially, a classification model using a classical support
vector machine (SVM) was developed for each feature
set (GM, R2F, R2SN, and RMCS) using data from both
AD and CN participants. To establish the optimal clas-
sification model for each feature set, internal 5-fold
cross-validation was performed on the ADNI discovery
dataset (N = 888), which resulted in the generation of
training scores for each feature set. Subsequently, a
linear regression model was re-trained to combine the
training scores of the four feature sets via the discovery
dataset. IBRAIN score was calculated for the testing set
by integrating the four SVM prediction scores for each
feature set based on the trained linear model (Fig. 1B).
www.thelancet.com Vol 65 November, 2023
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Details can be found in Supplementary Materials S04
(Supplementary Figures S2 and S3). It is important to
note that age, sex, and apoe4 status are known factors
associated with neurodegeneration. To specifically cap-
ture the neurodegeneration-related changes, the
IBRAIN was calculated by integrating various neuro-
imaging feature sets without incorporating age, sex,
APOE4 status, or other demographic information. We
aim to create a biomarker that directly reflects the un-
derlying neurodegenerative processes by focusing solely
on the neuroimaging features and excluding de-
mographic variables.

Furthermore, to further explore whether the IBRAIN
score was robust for different machine-specific
sequence parameters, we included two traveling data-
sets (dataset 1: three healthy traveling participants with
ten sites26; dataset 2: nine healthy participants with 12
sites27) to explore the repeatability of the IBRAIN score
among different MRI machines (Supplementary
Materials S01). The intraclass correlation coefficient
(ICC) was used to estimate the reproducibility of
IBRAIN. The ICC has a value between 0 and 1; ICC = 0
indicates no reproducibility, and ICC = 1 indicates ab-
solute reproducibility.28

The distinguishability and the biological basis for
IBRAIN
To evaluate the differentiability of IBRAIN in NC and
AD, we examined the accuracy of AD and NC classifi-
cation based on the IBRAIN score of eight independent
datasets, with a total of 6253 NCs and 3247 ADs. In
addition, we conducted a further comparison to assess
the areas under the curve (AUC) for classifying in-
dividuals with AD and NC using IBRAIN in contrast to
three representative deep learning models (ResNet,29

3DAN,30 and 3DViT31) as well as regional GM volume
(i.e., hippocampus, amygdala, and other altered brain
regions). Details can be found in Supplementary
Materials S05.

Subsequently, we conducted a correlation analysis to
investigate the biological underpinnings of IBRAIN by
examining its relationship with clinical and biological
indices using the ADNI-L datasets (N = 1877 with 4519
scans, including 1402 NC, 2202 MCI, and 915 AD
scans). It should be noted that age and sex were
considered concomitant variables. Here, the biological
indices encompassed CSF measures (amyloid-beta
(Aβ1–42), total Tau (Tau), and phosphorylation Tau181 (p-
tau181)) (https://adni.loni.usc.edu/summary-of-dates-of-
csf-biomarker-analysis/). Those concentrations have
been measured using the INNO-BIA AlzBio3 RUO test
(Fujirebio, Ghent, Belgium). This test utilises a micro-
bead-based multiplex immunoassay format performed
on the Luminex platform. Additionally, global fluo-
rodeoxyglucose (FDG) and global AV45 measures were
incorporated as brain metabolism and amyloid deposi-
tion indicators, respectively. We also included the
www.thelancet.com Vol 65 November, 2023
polygenic hazard score (PHS), which reflects an in-
dividual’s genetic risk for developing AD. Regarding
clinical indices, we included the mini-mental state ex-
amination (MMSE), a widely used screening tool for
assessing cognitive function. The Alzheimer Disease
Assessment Scale Cognitive score (ADAS-Cog) was
utilised, specifically ADAS-Cog11, ADAS-Cog13, and
ADAS-CogQ4, which assess various cognitive domains
affected by AD pathology. The Rey Auditory Verbal
Learning Test (AVLT) was included to evaluate imme-
diate recall and learning abilities (Supplementary
Materials S01, Supplementary Table S2).

Our study obtained gene expression profiles of pe-
ripheral blood samples from ADNI participants from
Bristol-Myers Squibb (BMS) laboratories. The Affyme-
trix Human Genome U219 Array (www.affymetrix.com)
was utilised for expression profiling, which includes
530,467 probes targeting 49,293 transcripts.32 At last,
744 participants had genome-wide data with 18,635
genes among these participants. We then performed a
Gene-set enrichment analysis to examine whether the
genes significantly correlated with IBRAIN are associ-
ated with Gene Ontology terms via the Metascape plat-
form (https://metascape.org/gp/index.html#/main/
step1) (Fig. 1C). Metascape offers bioinformatics tools
for gene annotation, pathway analysis, and functional
enrichment analysis. It provides researchers with a
platform to explore and interpret gene expression data
by identifying enriched biological processes, molecular
functions, cellular components, and pathways associ-
ated with a set of genes of interest.33

The specificity of IBRAIN: AD vs. eight other non-
AD disorders
To investigate whether IBRAIN is specific for AD, we
conducted the analysis for AD vs. non-AD participants
classification. The IBRAIN score of the non-AD partic-
ipants was also computed based on the AD-NC IBRAIN
model trained in the ADNI baseline dataset. This step
consists of 915 AD scans from the ADNI-L dataset and
790 participants with eight non-AD neurodegenerative
diseases. Moreover, we further examined the discrimi-
native performance of IBRAIN for AD and each non-AD
disorder by implementing a bootstrap framework. Spe-
cifically, we randomly selected the same number of AD
participants as each non-AD condition from the 915 AD
scans 1000 times. We computed the distribution of all
AUC values. This approach allowed us to evaluate the
diagnostic performance of IBRAIN for AD and each
non-AD disorder across multiple iterations, thereby
increasing the robustness and generalisability of our
findings (Fig. 1C).

Besides, to further investigate the performance of
IBRAIN in accurately identifying AD within a popula-
tion that includes individuals with mixed pathologies in
real-life clinical practice. Two clinical cohorts were
included in the present study (an OASIS-4 dataset and a
5
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clinical cohort from the Affiliated Hospital of Youjiang
Medical University for Nationalities of China). Details
can be found in Supplementary Materials S01.

The association between IBRAIN and MCI
longitudinal conversion
CSF Aβ and CSF total Tau are the most common up-
stream and downstream biomarkers for AD within the
"AT(N)" framework. Therefore, in our study, we
compared the performance of the association with AD
progression between CSF Aβ/Tau and IBRAIN. We
examined the capacity of IBRAIN to discern the likeli-
hood of developing AD dementia among MCI in-
dividuals compared to the CSF Aβ and total Tau
biomarkers. We subdivided the patients with MCI (662
scans had both IBRAIN, CSF Aβ, Tau, and their longi-
tudinal information) into three subgroups with low-
(first quartile), middle- (second and third quartile), and
high-values (fourth quartile) via IBRAIN, CSF Aβ, and
CSF total Tau, respectively. We employed Kaplan–Meier
analysis to examine the longitudinal disease conversion
within these subgroups. Initially, we computed the
median survival time (MST) for each subgroup. Subse-
quently, we conducted the Log-rank test to assess the
statistical significance of disease progression differences
among the various subgroups. Furthermore, we calcu-
lated the hazard ratio (HR) with a 95% confidence in-
terval (CI) for the high-risk group in comparison to the
low-risk group, utilising the Cox test (Fig. 1D).

We computed the difference of the IBRAIN, CSF Aβ,
and CSF total tau between stable MCI (sMCI) and pro-
gressive MCI (pMCI). We also endeavoured to develop a
time-to-event prognostic Cox model to forecast the
likelihood of individuals with MCI transitioning to AD
based on integrating IBRAIN and clinical measures
(Fig. 1D).

The longitudinal changes of IBRAIN from
individuals with MCI converting to AD
The present study conducted a longitudinal analysis of a
cohort consisting of 308 individuals diagnosed with
MCI who subsequently progressed to AD over an
average follow-up period of 2.51 ± 2.11 years. Among
these participants, 211 had available CSF measures, and
141 had undergone more than two visits during the
study period. A linear mixed model was employed to
assess the progression of the IBRAIN score and CSF
biomarker (CSF Aβ and CSF total Tau) over time while
controlling for confounding factors such as age and sex.
The objective was to examine the longitudinal changes
in these biomarkers and evaluate their respective abili-
ties to track disease progression in individuals with MCI
converting to AD.

Role of the funding source
The funding provided support for data collection, but
they did not participate in the study’s design, data
analysis, interpretation, or manuscript writing. Authors
KZ and YL had access to the dataset and final re-
sponsibility for the decision to submit it for publication.
Results
IBRAIN exhibits diagnostic capabilities
First, the IBRAIN demonstrated a high ICC value be-
tween two traveling datasets (ICC = 0.98 in the first
traveling dataset; ICC = 0.94 in the second traveling
dataset). This finding further emphasises the trans-
portability and stability of the IBRAIN measure, even in
the presence of varying MRI machine parameters
(Supplementary Materials S04, Supplementary Table S8).
The construction and evaluation of the IBRAIN model
were conducted using a discovery dataset of 888 partici-
pants from the ADNI baseline dataset (Fig. 2A). Subse-
quently, the performance of the model was assessed
using a testing dataset comprising 9500 scans diagnosed
with either AD or NC from eight independent datasets.
AD and NC were classified using the IBRAIN frame-
work, which yielded an impressive AUC of 0.92 across all
testing datasets (Fig. 2B). Remarkably, the AUC exceeded
0.95 in the ADNI-L, EDSD, MIRIAD, and AIBL datasets,
highlighting the robustness of the model in accurately
distinguishing between AD and NC. The IBRAIN
demonstrated high discriminative accuracy in dis-
tinguishing AD with Aβ+ from NC with Aβ−, with an
AUC of 0.97. Furthermore, it also performed well in
differentiating individuals with MCI with Aβ+ from NC
with Aβ−, with an AUC of 0.83 (Supplementary Materials
S05, Supplementary Figure S4).

The IBRAIN exhibited a comparable classification ac-
curacy to advanced deep learning models while main-
taining low complexity and high interpretability
(Supplementary Materials S05, Supplementary Table S11).
Furthermore, integrating multiple scan features for AD
and NC classification exhibited superior performance
compared to each feature set in isolation and regional GM
volume (i.e., hippocampus, amygdala), thus demonstrating
the effectiveness of the fusion strategy employed in this
study (Supplementary Materials S05, Supplementary
Table S12).

Furthermore, we quarter-categorised patients with
AD of ADNI-L into five stages based on their cognitive
ability assessed by the MMSE score. These stages
included severe AD (MMSE score 1–19), late-middle AD
(MMSE score 19–21), early-middle AD (MMSE score
21–23), and early AD (MMSE score 23–30). Our find-
ings showed that the IBRAIN model performed excel-
lently in differentiating severe AD (ACC = 99.58%),
late-middle AD (ACC = 95.26%), early-middle AD
(ACC = 96.72%), and early AD (ACC = 84.39%).

IBRAIN exhibits clinically relevant
Pearson correlation analysis revealed that 623 genes were
significantly associated with IBRAIN (all p < 0.01).
www.thelancet.com Vol 65 November, 2023
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Fig. 2: The results for distinguishing AD and NC. (A) The IBRAIN model was developed using an inner cross-validation strategy applied to the
ADNI dataset. The dataset was partitioned into inner training and testing sets, with the inner training set used for constructing the IBRAIN model
using different parameter settings. The performance of the model was assessed on the inner testing set to determine the optimal configuration of
the IBRAIN model for accurately distinguishing between individuals with AD and NC. The process of the training IBRAIN model. (B) The receiver
operating character (ROC) curve and areas under the ROC curve (AUC) for all testing datasets and each independent dataset.
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Furthermore, our gene enrichment analysis demonstrated
that immunity-related terms, such as neutrophil degran-
ulation (R-HSA-6798695, p = 1.20 × 10−26), leukocyte
activation (GO:0045321, p = 3.89 × 10−14), immune
response-regulating signalling pathway (GO:0002764,
p = 4.27 × 10−14), and innate immune response
(GO:0045087, p = 1.35 × 10−11), as well as protein
metabolism-related terms, such as metabolism of lipids
(R-HSA-556833, p = 3.98 × 10−8), and protein phosphor-
ylation (GO:0006468, p = 4.90 × 10−7), were significantly
associated with IBRAIN (Fig. 3A). Detailed results for
gene enrichment analysis can be found in Supplementary
Materials S06 (Supplementary Table S13). The Metascape
enrichment network visualisation comprehensively rep-
resents the relationships and similarities between
enriched terms. It depicts both intra-cluster and inter-
cluster connections, highlighting up to ten terms per
cluster. Each cluster is assigned a unique colourcode,
allowing for easy identification and interpretation of the
results. By visualising the functional associations and
patterns among the enriched terms, the network offers
valuable insights into the underlying biological processes
associated with IBRAIN. It should be noted that the re-
sults mentioned above serve as unsubstantial evidence to
support the hypothesis that IBRAIN may be related to
www.thelancet.com Vol 65 November, 2023
brain immunity and protein metabolism. This uncertainty
assertion is contingent upon the absence of a pathologi-
cally confirmed dataset.

Moreover, our analysis revealed significant differ-
ences in IBRAIN scores between the NC, MCI, and AD
groups (p < 1 × 10−16). We also found significant asso-
ciations between IBRAIN scores and various clinical
measures, including CSF Aβ, CSF total Tau, CSF p-
tau181, FDG, AV45, PHS, MMSE, Alzheimer Disease
ADAS-Cog, i.e., ADAS-Cog11, ADAS-Cog13, ADAS-
CogQ4, AVLT-immediately, and AVLT-learning (all
p < 1 × 10−12) (Supplementary Materials S06,
Supplementary Figure S7). Furthermore, the correlation
between cognitive ability and IBRAIN was higher than
that between cognitive ability and FDG, CSF Aβ, CSF
Tau, and CSF p-tau (Fig. 3B). CSF Aβ (p = 9.94 × 10−4)
and CSF total Tau (p = 5.80 × 10−3) showed significant
differences between IBRAIN negative (IBRAIN >0) and
IBRAIN positive (IBRAIN <0) (Supplementary Materials
S06, Supplementary Figure S7).

IBRAIN is a diagnostic specificity neuroimaging
biomarker for AD
The IBRAIN score exhibited significant differences be-
tween individuals with AD (N = 915) and those without
7
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Fig. 3: The biological basis of the IBRAIN. (A) The most correlated terms and gene pathways associated with IBRAIN include immunity-related
terms such as neutrophil degranulation, leukocyte activation, immune response-regulating signalling pathway, and innate immune response.
Additionally, protein metabolism-related terms such as metabolism of lipids and protein phosphorylation are also significantly associated with
IBRAIN. (B) The correlation between existing biomarkers and IBRAIN to cognitive ability in the ADNI1&GO dataset and ADNI2&3 dataset,
respectively. Here, the biomarkers primarily comprise CSF Aβ, Tau181, Ptau181, and global FDG, while the cognitive ability is primarily assessed
by MMSE, ADAS-Cog score, and AVLT score.
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AD (N = 789) (p < 1 × 10−16). Among all non-AD dis-
orders, the distribution of IBRAIN scores in FTD was
found to be most similar to that observed in AD (Fig. 4A
and B). The IBRAIN score also demonstrated diagnostic
capabilities in distinguishing AD from non-AD condi-
tions, with an AUC of 0.92 (Fig. 4C). In addition, using a
bootstrap framework, we found that the AUC was
higher than 0.90 in distinguishing AD from PD, VaD,
ALS, ON, DEPR, and COR, respectively, but lower in
differentiating AD from LBD (AUC = 0.85) and FTD
(AUC = 0.83) (Fig. 4D). Herein, our results indicate that
the IBRAIN score can potentially differentiate in-
dividuals with AD from those with non-AD disorders
across classical diagnostic categories.

The results of our study demonstrate that the IBRAIN
biomarker exhibits promising performance in recognising
AD from individuals with mixed pathologies using the
OASIS-4 dataset. Specifically, IBRAIN achieved an AUC of
0.78 for distinguishing AD (AD variants, non-
neurodegenerative disorders, AD with coexisting vascular
pathology, and Alzheimer’s disease dementia) from other
conditions. Additionally, IBRAIN correctly identified 11
out of 15 AD cases within the Guangxi hospital clinical
cohort. However, it is essential to acknowledge that there
were also some instances where patients with non-AD
were misdiagnosed as AD (Supplementary Materials
S05, Supplementary Figure S5).

IBRAIN score mirrors the conversion from MCI to
AD
The present study employed Kaplan–Meier analysis to
investigate differences in conversion timing among
various subgroups stratified by IBRAIN, CSF Aβ42, and
CSF Tau within a subset of the ADNI-L. Our results
underscore the efficacy of IBRAIN in effectively
discerning distinct longitudinal clinical conversion
www.thelancet.com Vol 65 November, 2023
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Fig. 4: The specific of the IBRAIN for AD. (A) The distribution of IBRAIN levels in patients with AD and patients with Lewy Body disease (LBD),
Frontotemporal Dementia (FTD), Parkinson’s dementia (PD), Vascular dementia (VaD), Amyotrophic Lateral Sclerosis (ALS), other neurologic,
genetic or infectious conditions (ON), Depression (DEPR), and Cognitive impairment for other specified reasons, i.e., written-in values (COR). (B)
The distribution of IBRAIN in AD and all non-AD disorders. (C). The ROC curve for differentiation AD and patients with non-AD. (D) The ROC
curve for differentiation of AD and each non-AD disorder via a bootstrap framework.
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trajectories among individuals diagnosed with MCI.
Notably, the high-risk subgroup, as identified by IBRAIN,
displayed a notably abbreviated MST of 2 years (95% CI:
1.39∼2.61). Conversely, the low-risk subgroup exhibited a
substantially lengthier MST of 10 years (95% CI:
9.98∼10.02). The HR for the high-risk group, relative to
the low-risk group, was notably elevated at 6.52 (95% CI:
4.42∼9.62), with statistical significance reflected in a p-
value of 9.27 × 10−26. Besides, IBRAIN exhibited com-
parable performance to that of CSF Aβ (HR = 3.78 [95%
CI: 2.63∼5.43], p = 2.13 × 10−14) and CSF Tau (HR = 3.77
[95% CI: 2.64∼5.39], p = 9.53 × 10−15) (Fig. 5A).

Then, the results also suggested that IBRAIN exhibits
comparable performance to CSF biomarker combina-
tions, i.e., CSF Aβ42/Aβ40, CSF Tau/Aβ40, and CSF
Ptau181/Aβ40. This result was obtained based on the 306
patients with MCI in ADNI2 (Supplementary Materials
S07, Supplementary Figure S10). Furthermore, similar
results were obtained in all ADNI-L patients with MCI
(Supplementary Materials S07, Supplementary Figure S8)
or the NC converting to AD groups (Supplementary
Materials S07, Supplementary Figure S9). IBRAIN
www.thelancet.com Vol 65 November, 2023
better identifies distinct longitudinal clinical conversion
with MCI than hippocampal and amygdala volumes
(Supplementary Materials S07, Supplementary
Table S15). The IBRAIN derived from the R2F showed
the highest performance for individual feature sets in
identifying distinct longitudinal clinical conversion with
MCI (Supplementary Materials S07, Supplementary
Table S17).

We observed significant differences in the levels of
IBRAIN (Cohen’s d = 1.20 [95% CI: 0.89∼1.21],
p < 1 × 10−16), CSF Aβ (Cohen’s d = 0.88 [95% CI:
0.85∼0.92], p < 1 × 10−16), and CSF Tau (Cohen’s
d = −0.74 [95% CI: −0.77 to −0.72], p < 1 × 10−16) be-
tween the sMCI and pMCI groups (Supplementary
Materials S07, Supplementary Figure S11). Notably,
IBRAIN demonstrated an AUC greater than 0.8 in
predicting clinical conversion in patients with MCI
(Supplementary Materials S07, Supplementary
Figure S12). Besides, the IBRAIN was significantly
correlated with AD progression in two independent
datasets (Supplementary Materials S07, Supplementary
Table S18).
9
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Fig. 5: Longitudinal analysis of the IBRAIN in patients with MCI. (A) The conversion of the MCI participants under the stratified framework
via IBRAIN, CSF Aβ, and CSF Tau, respectively. Here, the patients with MCI were subdivided into three subgroups with low- (first quartile),
middle- (second and third quartile), and high-values (fourth quartile) via IBRAIN, CSF Aβ, and CSF total Tau. (B) The individual progression of
the IBRAIN, CSF Aβ, and CSF Tau in the patients with MCI that have undergone conversion to AD.
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The longitudinal change of the biomarkers from
individuals with MCI converting to AD
In this study, we investigated the utility of individual
IBRAIN as a tracer in the conversion of MCI to AD. In
addition, we compared the diagnostic performance of
IBRAIN with the commonly used biomarkers CSF Aβ
and CSF total Tau. Our findings indicate that all three
biomarkers, IBRAIN (beta = −0.70, p < 1 × 10−16), CSF Aβ
(beta = −0.40, p = 4.40 × 10−9), and CSF Tau (beta = 0.12,
p = 1.02 × 10−5), were statistically significant in a linear
mixed model (Fig. 5B). These results suggest that
IBRAIN may serve as a valuable diagnostic tool for
identifying individuals at risk of developing AD. IBRAIN
performs better statistical parameters of the longitudinal
progression in conversion with MCI to AD than hippo-
campal and amygdala volumes (Supplementary Materials
S07, Supplementary Table S14). For individual feature
sets, the IBRAIN derived from the R2F showed the
highest statistical significance in the longitudinal
progression in conversion with MCI to AD
(Supplementary Materials S07, Supplementary
Table S16).
Discussion
We have proposed an integrated machine learning
framework that is simple and effective for developing a
novel biomarker, IBRAIN, for AD diagnosis. The find-
ings indicate that IBRAIN has the great potential to
serve as a valid and reliable neuroimaging biomarker for
detecting and monitoring AD progression in individuals
with a high risk. Furthermore, the collective evidence
suggests that IBRAIN possesses considerable promise
for clinical implementation owing to its practicality and
accessibility.

In much primary care in China and other countries
that have not yet reached a highly developed level of
medical care, brain MRI is routinely obtained for
www.thelancet.com Vol 65 November, 2023
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individuals at risk for cognitive decline.34 Still, the
diagnostic and prognostic yield of MRI remains low.8 In
translating research advancements into the clinic, spe-
cific biomarkers are needed to evaluate comprehensive
brain abnormal patterns.35 The present study proposed
an integrated machine-learning approach to investigate
AD’s local and global abnormal patterns. The integrated
model demonstrated superior performance compared to
isolated feature sets, highlighting the effectiveness of
the fusion strategy. IBRAIN is computed utilising an
integrated machine learning framework, demonstrating
similar accuracy in classifying individuals with AD from
NC compared to several deep learning models.12

Notably, IBRAIN maintains a low complexity and of-
fers high interpretability. Moreover, IBRAIN can cap-
ture multiscale brain abnormal patterns at the
individual level, encompassing subtle regional
morphological changes and macroscopic alterations and
disruptions to the brain’s connectome. Given that any
progressions in these MRI scans would have a consid-
erable effect on the worldwide diagnostic and prognostic
assessment of AD,36 as a general principle, applying a
simplified model endows a heightened level of explic-
ability, which renders it advantageous for compre-
hending the mechanisms underlying AD and
facilitating the development of prognostic therapy. The
IBRAIN model showed promise in identifying advanced
cognitive impairments in the severe and middle stages
of AD, further refinement is needed to enhance its
sensitivity in detecting subtle cognitive changes in early
AD. Future research efforts should focus on optimising
and validating the IBRAIN model, particularly in the
early stages of AD.

Compared to the other three feature sets, the limited
weight assigned to RMCS in the IBRAIN model can be
attributed to the potential lack of independence between
RMCS and the other features. This phenomenon sug-
gests that RMCS may capture overlapping information
already captured by the other feature sets. However,
despite its relatively lower weight, including RMCS in
constructing the IBRAIN score remains crucial. RMCS
allows us to capture and quantify specific changes in
regional connectivity patterns uniquely associated with
AD pathology. This integration of RMCS enhances the
comprehensive nature of the IBRAIN model. It provides
valuable insights into the brain’s connectivity network
disruptions in individuals with AD. Besides, it is
essential to recognise that different feature sets may
exhibit specific performance in different stages of AD.
Our study observed that the grey matter volume feature
set demonstrated superior performance in distinguish-
ing AD from normal controls. This result suggests that
GM set is particularly informative for classifying AD at a
global level. Meanwhile, the regional radiomics features
showed the highest statistical significance in the longi-
tudinal conversion from MCI to AD, highlighting the
importance of considering regional-level subtle
www.thelancet.com Vol 65 November, 2023
alterations in the brain for assessing disease progression
and identifying individuals at higher risk of conversion.
IBRAIN, as a comprehensive biomarker, integrates
multiple feature sets to offer a comprehensive assess-
ment of AD progression. This integration enhances the
classification accuracy compared to R2F and improves
the sensitivity compared to GM. These findings
demonstrate the effectiveness of the fusion strategy
employed in this study.

An optimal biomarker should be linked to either an
upstream or a downstream biomarker.8 The current
study demonstrates that the IBRAIN biomarker exhibits
a significant correlation with the common upstream
biomarker (CSF Aβ) and the common downstream
biomarker (CSF total tau) for AD within the "AT(N)"
framework.37 Therefore, IBRAIN might mirror the
changes of indiscernible pathological alterations that are
indiscernible utilising traditional sMRI diagnostic
methodologies. In a word, IBRAIN is a biologically
relevant neuroimaging biomarker. More importantly,
the longitudinal analysis revealed the remarkable
sensitivity and potential applicability of IBRAIN in
unveiling disease progression in high-risk individuals,
surpassing even the capabilities of CSF biomarkers.
Previously proposed MRI biomarkers, i.e., single grey
matter volume and cortex thickness, also show low intra-
individual variability over time,38 limiting the ability to
track disease progression and downstream pathology.8

Hence, IBRAIN exhibits the potential to advance the
current clinical diagnosis framework and treatment for
AD.

Radiogenomics created a bridge between IBRAIN
and its underlying biological mechanisms. A gene
enrichment analysis has demonstrated a significant
correlation between IBRAIN and immunity-related
terms. Neuroinflammation is a complex and dynamic
process involving activating immune cells and releasing
pro-inflammatory molecules within the central nervous
system. It is increasingly recognised as a significant
factor in the pathogenesis and progression of AD.39

Neuroinflammation in AD is characterised by the acti-
vation of microglia and astrocytes, increased production
of pro-inflammatory cytokines, and the presence of
immune cells in affected brain regions. This inflam-
matory response is believed to contribute to the pro-
gression of neurodegeneration and the accumulation of
amyloid-beta plaques and neurofibrillary tangles, lead-
ing to neuronal damage and cognitive decline.40 In our
study, the gene enrichment analysis revealed significant
associations between IBRAIN and immunity-related
terms, such as neutrophil degranulation, leukocyte
activation, immune response-regulating signalling
pathway, and innate immune response. These findings
suggest that neuroinflammation may play a role in the
underlying mechanisms captured by IBRAIN. However,
further investigation is needed to elucidate the precise
mechanisms by which neuroinflammation influences
11
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the IBRAIN biomarker and its relationship to AD
pathology.

Interestingly, IBRAIN was also correlated with terms
related to protein metabolism or phosphorylation. Ab-
normalities in these processes have been linked to the
accumulation of misfolded proteins, such as Aβ, Tau,
and p-tau, which also target neuronal damage and
cognitive decline.41 Our finding emphasises the signifi-
cance of the immune-mediated mechanisms that pre-
cipitate protein irregularities in AD. Furthermore, the
results imply that IBRAIN, an index derived from
comprehensive multi-scan features, is a promising po-
tential indicator for both immune and protein-
associated processes. Based on this speculation,
IBRAIN might exhibit potential for predicting the ther-
apeutic outcomes of anti-inflammatory agents and
small-molecule drugs targeting AD protein metabolism.
It is imperative to establish the veracity of this hypoth-
esis within a pathologically confirmed dataset, specif-
ically by investigating the activity of glial cells.

In clinical practice, the early detection of AD is a
complex task that cannot be taken as a two-class classi-
fication problem. There exist significant challenges in
clinical settings, as there is substantial overlap among
neurodegenerative diseases that share similar patho-
physiology, such as tauopathy,42 brain structure abnor-
malities,43 and genetic risk.44 Any biomarker employed
for AD detection demonstrates high specificity that can
accurately differentiate AD from samples with other
neurodegenerative diseases, such as FTD and VaD.8

Consequently, we still lack AD-specific imaging bio-
markers that can be used to guide clinical decisions.45,46

This observation suggests that the IBRAIN framework
may be capable of detecting and characterising specific
cerebral modifications associated with AD. These char-
acteristic holds promise for the potential clinical
implementation of the IBRAIN. Upon the successful
conclusion of biomarker discovery and validation, which
involves the analytical validation of the biomarker assay
and the clinical validation of its accuracy, the clinical
utility phase of biomarker development ensues. As
such, prospective randomised clinical trials are war-
ranted to assess the effects of integrating IBRAIN into
clinical workflows.

Validating a biomarker in clinical cohorts is a crucial
and often overlooked step in achieving clinical trans-
lation.18 Many studies focus on developing and evalu-
ating biomarkers using research datasets without
adequate validation in real-world clinical settings.10 We
systematically assessed the feasibility of IBRAIN for
application in clinical practice based on two indepen-
dent clinical cohorts. The findings from the validation in
clinical cohorts are instrumental in establishing the
clinical utility and reliability of the IBRAIN biomarker.
We have taken a significant step toward achieving clin-
ical transformation by confirming its accuracy and
robustness in real-world clinical settings. The results of
the classification analysis for distinguishing AD from
non-AD individuals in two clinical cohorts offer valuable
insights from two perspectives. On the one hand, the
findings demonstrate the promising potential of
IBRAIN in accurately identifying AD within a popula-
tion that includes individuals with mixed pathologies, as
observed in the OASIS-4 dataset. On the other hand, it is
essential to acknowledge the limitations associated with
the reconstruction of low-resolution T1 images, which
may have impacted the performance of IBRAIN.
Therefore, addressing these limitations and refining the
IBRAIN model to optimise its accuracy and perfor-
mance, specifically in reconstructing low-resolution T1
images, is imperative. By addressing these challenges,
we can enhance the reliability and applicability of
IBRAIN as a neuroimaging biomarker for AD diagnosis.

Several recent studies have demonstrated the diag-
nostic performance4,47–49 and predicted the longitudinal
progression of AD in individuals at high risk of blood
biomarkers, such as p-tau181 and p-tau217.3,50–53 We
acknowledge the potential of blood biomarkers as
promising tools for AD diagnosis and prognosis. The
accessibility and cost-effectiveness of blood biomarkers
make them particularly attractive for large-scale
screening and routine clinical use. Unlike blood bio-
markers, IBRAIN can comprehensively assess the
brain’s abnormal patterns, capturing information at
different scales and regions, allowing for a more holistic
understanding of the disease and its progression. It is
important to note that the choice between neuroimaging
and blood biomarkers is not mutually exclusive. Both
approaches have advantages and limitations, and a
combined multimodal approach may offer even greater
diagnostic and prognostic accuracy.

IBRAIN robustly distinguished disease from a
healthy brain and was able to capture early pathological
alterations indicative of prodromal AD. Furthermore,
this novel methodology provides the capacity for a per-
sonalised imaging biomarker with high precision and
sensitivity. It’s worth noting that the implementation of
mass screening with IBRAIN could pose several chal-
lenges, including cost considerations and resource
limitations. Consequently, our primary vision for
IBRAIN is initially focused on targeted screening,
particularly in high-risk populations. This approach is
viable within clinical practice primarily because IBRAIN
exclusively relies on high-resolution sMRI data. This
strategy aligns with contemporary healthcare practices,
where resource allocation often prioritises individuals
based on their level of risk and need. Another pivotal
factor supporting the suitability of IBRAIN for targeted
screening in high-risk populations is its foundation on
high-resolution MRI data. This sets it apart from typical
clinical cohorts that frequently employ lower-resolution
data. Concurrently, we are actively promoting the
development of a novel IBRAIN model based on general
clinical cohorts with lower-resolution data. This
www.thelancet.com Vol 65 November, 2023
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initiative aims to broaden the adoption and utilisation of
IBRAIN across various applications. Furthermore, our
current study underscores IBRAIN’s significant corre-
lation with common upstream biomarkers and common
downstream biomarkers within the "AT(N)" framework
for AD. This suggests that IBRAIN has the potential to
capture subtle pathological alterations that may not be
discernible through traditional sMRI diagnostic
methods. Moreover, IBRAIN represents a neuro-
imaging biomarker that amalgamates diverse neuro-
imaging features across multiple scales, thus providing
a more comprehensive means of characterising
abnormal brain patterns in AD. Consequently, IBRAIN
holds promise as a potential prognostic index for AD.
The attainment of this objective within clinical practice,
whether in radiology departments, neurology units at
local hospitals, or high-end physical examination in-
stitutions, is eminently feasible due to IBRAIN’s exclu-
sive reliance on high-resolution sMRI data. As a result,
IBRAIN exhibits substantial potential for future trans-
lational applications.

Notwithstanding the progress, the present study has
several limitations. Firstly, a significant proportion of
the study participants lacked CSF or PET measures,
potentially leading to false positives in diagnosing AD.
To address this limitation and enhance the reliability of
our findings, we will collect and obtain access to datasets
encompassing both MRI and CSF measures in the
future. Secondly, the select nature of the populations
should also be further considered, as the study cohorts
appear to favour a larger number of non-Hispanic white
people greatly. We will additionally strive to include
more diverse cohorts to enhance the generalisability and
applicability of our findings. Thirdly, it is important to
emphasise a limitation regarding the application of
IBRAIN in clinical practice. IBRAIN was developed us-
ing high-resolution MRI data, setting it apart from
typical clinical cohorts that often employ lower-
resolution data. As a result, its applicability may be
constrained, and it is best suited for use in high-risk
populations with access to high-resolution MRI data.
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